

Dateianlage
cover.gif

Berger Automating with SIMATIC

Automating
with SIMATIC
Controllers, Software, Programming,
Data Communication, Operator Control
and Process Monitoring

by Hans Berger

5th revised and enlarged edition, 2013

Publicis Publishing

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

The author, translator and publisher have taken great care with all texts and
illustrations in this book. Nevertheless, errors can never be completely avoided.
The publisher, author and translator accept no liability, regardless of legal basis.
Designations used in this book may be trademarks whose use by third parties
for their own purposes could violate the rights of the owners.

www.publicis-books.de

Print ISBN: 978-3-89578-387-6
ePDF ISBN: 978-3-89578-676-1

5th edition, 2013

Editor: Siemens Aktiengesellschaft, Berlin and Munich
Translation: Siemens I IA Control Components and Systems Engineering, Erlangen
Publisher: Publicis Publishing, Erlangen
© 2013 by Publicis Erlangen, Zweigniederlassung der PWW GmbH

This publication and all parts thereof are protected by copyright.
Any use of it outside the strict provisions of the copyright law without the consent
of the publisher is forbidden and will incur penalties. This applies particularly to
reproduction, translation, microfilming or other processing‚ and to storage or
processing in electronic systems. It also applies to the use of individual illustrations
or extracts from the text.

Printed in Germany

Foreword

5

Foreword

The automation of industrial plants results in a growing demand for components
which are increasingly different and more complex. Therefore a new challenge
nowadays is not the further development of highly specialized devices but the op-
timization of their interaction.

The Totally Integrated Automation concept permits uniform handling of all auto-
mation components using a single system platform and tools with uniform opera-
tor interfaces. These requirement is fulfilled by the new SIMATIC, which provides
uniformity for configuration, programming, data management, and communica-
tion.

The STEP 7 engineering software is used for the complete configuration and pro-
gramming of all components. Optional packages for expanding functionalities can
also be introduced seamlessly in STEP 7 if they have the same operating philoso-
phy. The SIMATIC Manager of STEP 7 V5.5 and the TIA Portal of STEP 7 V11 coordi-
nate all tools and centrally manage any automation data. All tools have access to
this central data management so that duplicate entries are avoided and coordina-
tion problems are prevented right from the start.

Integrated communication between all automation components is a prerequisite
for “distributed automation”. Communication mechanisms that are tuned to one
another permit the smooth interaction of controllers, visualization systems, and
distributed I/O without additional overhead. This puts the seminal concept of “dis-
tributed intelligence” within reach. Communication with SIMATIC is not only uni-
form in itself, it is also open to the outside. This means that SIMATIC applies
widely-used standards such as PROFIBUS for field devices and Industrial Ethernet
and TCP/IP protocol for the best possible connections to the office world and thus
to the management level.

The 5th edition of this book provides an overview of the structure and principle of
operation of a modern automation system with its state-of-the-art controllers and
HMI devices, and describes the expanded facilities of distribution with PROFIBUS
and PROFINET. Using the SIMATIC S7 programmable controllers as example, this
book provides an insight into the hardware and software configuration of the con-
troller, presents the programming level with its various languages, explains the
exchange of data over networks, and describes the numerous possibilities for op-
erator control and monitoring of the process.

Erlangen, July 2012 Hans Berger

Contents

6

Contents

1 Introduction . 9

1.1 Components of the SIMATIC Automation System . 9
1.2 From the Automation Task to the Finished Program 11
1.3 How Does a Programmable Logic Controller Work? 13
1.4 The path of a binary signal from the sensor to the program 15
1.5 Data management in the SIMATIC automation system 17

2 SIMATIC Controllers – the Hardware Platform 19

2.1 Components of a SIMATIC Station . 20
2.2 The Micro PLC SIMATIC S7-200 . 21
2.3 The SIMATIC S7-1200 Modular Micro Controller . 24
2.4 The SIMATIC S7-300 modular mini controller . 28
2.5 Technological functions of a CPU 300C . 33
2.6 SIMATIC S7-400 for demanding tasks . 35
2.7 High Availability with SIMATIC . 41
2.8 Safety Integrated with SIMATIC S7 . 42
2.9 Use Under Difficult Conditions: SIPLUS . 46
2.10 Process Connection with Digital Modules . 47
2.11 Process connection with analog modules . 48
2.12 FM modules relieve the CPU . 49
2.13 Bus connection with communication modules . 50
2.14 SIMATIC PC-based Automation . 52
2.15 ET 200 distributed I/O system . 57
2.16 The SIMATIC programming device . 61

3 STEP 7: Engineering Tool for SIMATIC 62

3.1 Overview of STEP 7 variants . 62
3.2 Automating with STEP 7 . 64
3.3 Editing projects with STEP 7 V5.5 . 65
3.4 Editing projects with STEP 7 inside TIA Portal . 70
3.5 Configuring a SIMATIC station . 74
3.6 Tools for programming . 79
3.7 Giving the addresses a name . 80
3.8 Programming a logic block . 81
3.9 Programming a data block . 85
3.10 Programming a user-defined data type . 89

Contents

7

3.11 Working with program source files . 90
3.12 Help on Program Creation . 94
3.13 Downloading the user program to the CPU . 96
3.14 Processing the user program online . 100
3.15 Controlling the user program with online tools . 102
3.16 Finding hardware faults using diagnostic functions 106
3.17 Testing with watch tables . 108
3.18 Testing the program with the program status . 111
3.19 Testing user programs offline using S7-PLCSIM . 115
3.20 Documentation in wiring manual format with DOCPRO 116

4 The programming languages . 119

4.1 Ladder Logic LAD . 121
4.2 Function Block Diagram FBD . 125
4.3 Statement List STL . 129
4.4 Structured Control Language SCL . 133
4.5 S7-GRAPH sequence control . 136
4.6 The function library of LAD, FBD, and STL . 138
4.7 The function library of SCL . 141
4.8 Global address areas . 143
4.9 Absolute and symbolic addressing . 149
4.10 Indirect addressing . 152
4.11 Elementary data types . 153
4.12 Complex data types . 156
4.13 Data types for block parameters . 158
4.14 Further data types . 160

5 The user program . 161

5.1 Program execution with SIMATIC . 161
5.2 The start-up routine . 163
5.3 The main program . 165
5.4 The process images . 168
5.5 Cycle Time, Reaction Time . 170
5.6 Program functions . 173
5.7 Time-of-day interrupts . 177
5.8 Time-Delay Interrupts . 179
5.9 Cyclic Interrupts . 180
5.10 Hardware Interrupts . 182
5.11 Multiprocessor Interrupt . 183
5.12 Synchronous errors with a CPU 300/400 . 184
5.13 Asynchronous errors with a CPU 300/400 . 186
5.14 Error handling with a CPU 1200 . 189
5.15 Diagnostic functions with a CPU 300/400 . 191

Contents

8

5.16 Overview of user blocks . 193
5.17 Block properties . 194
5.18 Know-how protection, copy protection . 197
5.19 Block interface . 199
5.20 Calling blocks . 201

6 Communication . 205

6.1 Configuring the network . 205
6.2 The MPI subnet . 210
6.3 External station S7 basic communication . 211
6.4 Global data communications . 213
6.5 The Industrial Ethernet subnet . 214
6.6 Open User Communication, IE communication . 216
6.7 S7 communication . 217
6.8 The PROFIBUS subnet . 220
6.9 Internal station S7 basic communication . 221
6.10 The AS-Interface subnet . 223
6.11 The point-to-point connection . 224
6.12 Distributed I/O with PROFINET IO . 225
6.13 Special functions for PROFINET IO . 232
6.14 Isochronous mode program . 238
6.15 Distributed I/O with PROFIBUS DP . 242
6.16 Special functions for PROFIBUS DP . 248
6.17 DPV1 interrupts . 250

7 Operator control and monitoring . 252

7.1 Key Panels KP8, PP7 and PP17 . 253
7.2 Basic Panels . 255
7.3 Comfort Panels . 256
7.4 Mobile Panels . 258
7.5 Micro Panels . 259
7.6 SIMATIC Panels – Series 70 . 260
7.7 SIMATIC Panels – Series 170 . 261
7.8 SIMATIC Panels – Series 270 . 262
7.9 Multi Panels . 263
7.10 SIMATIC Panel PC . 264
7.11 Configuring SIMATIC HMI . 266
7.12 Process Diagnostics in the User Program Using S7-PDIAG 274
7.13 Process Diagnostics Using SIMATIC ProAgent . 276
7.14 Telephone network connections with TeleService 277

Index . 281

Abbreviations . 284

1 Introduction

9

1 Introduction

1.1 Components of the SIMATIC Automation System

The SIMATIC automation system consists of many components that are matched
to each other through the concept of “Totally Integrated Automation” (TIA). Totally
Integrated Automation means automation with integrated configuration, pro-
gramming, data storage, and data transfer.

As programmable logic controllers (PLCs), the SIMATIC S7 controllers form the
basis of the automation system. SIMATIC S7-200 and S7-1200 are micro systems
for the low-end performance range – as a stand-alone solution or in a bus net-
work. The SIMATIC S7-300 with standard CPUs and compact CPUs is the system so-
lution with a focus on the manufacturing industry. And as the top-level device
with the highest performance power of the SIMATIC controllers, the SIMATIC
S7-400 enables system solutions for the manufacturing and process industries.

SIMATIC WinAC (Windows Automation Center) combines the functions of open-
loop control, technology, data processing, visualization, and communication on
one personal computer (PC) and is the first choice if you have to handle PC appli-
cations in addition to classic PLC tasks.

SIMATIC WinCC (Windows Control Center) is the engineering and runtime soft-
ware for PC-based devices. HMI devices are configured with WinCC as engineering
software, while WinCC as runtime software turns personal computers into HMI de-
vices for industrial plants and processes.

SIMATIC HMI stands for Human Machine Interface and is the interface between
operators and the machine. From the simplest text display to the operator station
with powerful graphics, the human-machine interface provides all the facilities
you need for operating and monitoring a machine or plant. Powerful software in-
dicates the state of the plant with event and fault messages, manages recipes and
measured value archives, and supports plant operators with troubleshooting, ser-
vicing, and maintenance.

SIMATIC NET links all SIMATIC stations and ensures trouble-free data communi-
cation. Various bus systems with graded performance also allow third-party devic-
es to be connected, whether field devices in the plant or process PCs connected at
the control level. Data traffic can go beyond the limits of various subnets, such as
the transfer of automation data such as measured values and alarms or the com-
missioning and troubleshooting of a central location in the network group.

1 Introduction

10

SIMATIC DP stands for distributed I/O. It expands the interface between the cen-
tral controller and machine or plant with I/O modules directly on site. This distrib-
uted I/O, which is spatially separate from the controller, is connected to the central
control via the PROFIBUS DP and PROFINET IO bus systems – thus reducing wiring
overhead. SIMATIC controllers, ET 200 I/O system modules, and third-party devic-
es can be used as distributed I/O.

The STEP 7 engineering software is used to configure, parameterize, and pro-
gram SIMATIC components. The SIMATIC Manager in the “classic” STEP 7 version
and the TIA Portal in the updated version are the central tools for managing au-
tomation data and related software editors in the form of a hierarchically orga-
nized project.

Fig. 1.1 Components of the SIMATIC automation system

S

S

S

SIMATIC HMI stationSIMATIC S7 station SIMATIC PC station

S

S

S

SIMATIC NET

SIMATIC DP STEP 7

.

S

SIMATIC automation system

S

1.2 From the Automation Task to the Finished Program

11

The main activities performed with STEP 7 are:

b Configuring the hardware
(arranging modules in racks and parameterizing the module properties)

b Configuring the communication connections
(defining communication partners and connection properties)

b Programming the user program
(creating the control software and testing the program)

The user program can be created in the programming languages ladder logic
(LAD), function block diagram (FBD), statement list (STL), and structured control
language (SCL) as “logic control”, or in the programming language GRAPH as
“sequence control”

1.2 From the Automation Task to
the Finished Program

When you start to solve an automation problem, you have to ask yourself what
type of PLC you are going to use. If the machine to be controlled is a small one,
will an S7-200 be big enough or do you need an S7-300? Is it better to control the
plant with an S7-400 or with a pair of S7-300s? Compact central I/Os in the control
cabinet or distributed I/Os in the plant?

The following is a general outline of the steps that lead from the automation task
to the finished program. In individual cases, specific requirements must be met.

Choosing the hardware

There are many criteria for selecting the type of controller. For “small” controls
the main criteria are the number of inputs and outputs and the size of the user
program. For larger plants you need to ask yourself whether the response time is
short enough, and whether the user memory is big enough for the volume of data
to be managed (recipes, archives). To be able to estimate the resources you need
from the requirements alone, you need a lot of experience of previous automation
solutions; there is no rule of thumb.

A production machine will probably be controlled by a single station. In this case,
the number of inputs/outputs, the size of the user memory and, possibly, the
speed (response time) will enable you to decide between the S7-200, S7-1200,
S7-300, or the S7-400. How is the machine controlled? What HMI devices will be
used?

Spatially distributed systems raise the question of what is overall the better value:
the use of centralized or distributed I/O. In many cases distributed I/O not only re-
duces the wiring overhead needed, but also the response time and the engineer-
ing costs. This is possible due to the use of “intelligent” I/O devices with their own
user program for preprocessing of signals “on site”.

1 Introduction

12

Distributed automation solutions have advantages: The user programs for the dif-
ferent plant units are smaller with faster response times, and can often be com-
missioned independently of the rest of the plant. The necessary exchange of data
with a “central controller” is particularly easy within the SIMATIC system using
standardized bus systems.

Which programming language?

The choice of programming language depends on the task. If it mainly consists of
binary signal processing, the graphical programming languages LAD (Ladder Log-
ic) and FBD (Function Block Diagram) are ideal. For more difficult tasks requiring
complex variable handling and indirect addressing, you can use the STL (State-
ment List) programming language, which has an assembly language format. SCL
(Structured Control Language) is the best choice for people who are familiar with
a high-level programming language and who mainly want to write programs for
processing large quantities of data.

If an automation task consists of sequential processes, GRAPH can be used. GRAPH
creates sequencers with steps and step enabling conditions that are processed se-
quentially. All programming languages – including GRAPH – can be used together
in a user program. Every program section and “block” can be created with the suit-
able programming language, depending on requirements.

Creating a project

All the data for your automation solution is collected together in a “project”. You
create a project using STEP 7. A project is a (software) folder in which all the data
is stored in a hierarchic structure. The next level down from the project are the
“stations”, which in turn contain one or more CPUs with a user program. All these
objects are folders which can contain other folders or objects that represent the
automation data on the screen. You use menu commands to insert new objects,
open these objects, and automatically start the tool required to work with them.

An example: The user program consists of blocks, which are individual program
sections with limited functions. All programmed blocks are listed in the block
folder. Depending on the programming language used, double-clicking on a block
starts the suitable program editor, with which you can alter or expand the pro-
gram in the block, guided by menus and supported by online help.

Configuring hardware

A project must contain at least one station, either a programmable logic control
(PLC) station or a human-machine interface (HMI) station. A PLC station is re-
quired to control a machine or plant. After the station is opened, a rack is shown
onscreen, to which you can add the desired modules. To do this, drag the required
modules from the hardware catalog to the relevant slot. If needed, change the de-
fault module properties to meet your requirements.

A project can contain additional stations that you configure in the same manner as
the first station. The data transfer between the stations takes place via a subnet.

1.3 How Does a Programmable Logic Controller Work?

13

Using network configuration, you connect the bus interfaces of the “communica-
tion modules” to the subnet and thus create the network group.

Writing, debugging and saving the user program

The user program is the totality of all instructions and declarations programmed
by the user for signal processing by means of which the machine or plant to be
controlled is influenced in accordance with the control task. Large, complex tasks
are easier to solve if they are divided into small, manageable units, which can be
programmed in “blocks” (subroutines). The division can be process-oriented or
function-oriented. In the first case, each program unit corresponds to a part of the
machine or plant (mixer, conveyor belt, drilling assembly). In the second case, the
program is divided up according to control functions, for example signaling, com-
munication, operating modes. In practice, mixed forms of the two structuring
concepts are generally used.

In the user program, signal states and variable values are used that you should
preferably address with a name (symbolic addressing). A name is assigned to a
memory location in the symbol table or in the PLC variable table. You can then use
the name in the program. After you have entered the user program you “compile”
it so that it can process the relevant control processor. The user program is creat-
ed “offline”, without a connection to a controller, and is saved to the hard disk of
the programming device.

You can test smaller programs, as well as individual parts of larger programs, of-
fline with the PLCSIM simulation software and thus find and correct any possible
errors before the user program is used in the machine or plant.

For commissioning, connect the programming device with the CPU, transfer the
program to the CPU user memory, and test it using the STEP 7 testing functions.
You can monitor and change the variable values and monitor the processing of the
program by the control processor. Comprehensive diagnostic functions allow
quick identification of error location and cause.

After commissioning is concluded, you document the project, e. g. in circuit man-
ual format, by means of DOCPRO. With the “classic” version of STEP 7, you can ar-
chive an entire project, including documentation, in compressed form.

1.3 How Does a Programmable Logic Controller
Work?

In conventional control engineering, a control task is solved by wiring up contac-
tors and relays individually, i.e. depending on the task. They are therefore re-
ferred to as contactor and relay controllers, and electronic controllers assembled
from individual components are referred to as hard-wired programmed control-
lers. The “program” is in the wiring. Programmable logic controllers, on the other
hand, are made up of standard components that implement the desired control
function by means of a userprogram.

1 Introduction

14

SIMATIC S7 is an automation system that is based on programmable logic control-
lers. The solution of the control task is stored in the user memory on the CPU in
the form of program instructions. The control processor reads the individual in-
structions sequentially, interprets their content, and executes the programmed
function.

The CPU module contains an additional program: the operating system. It ensures
the execution of the device-internal operating functions, such as communication
with the programming device and backing up data in the event of power failure.
The operating system also initiates the processing of the user program, either re-
curring cyclically or dependent on a trigger event such as an alarm.

Cyclic program processing

The prevalent processing type of the user program for programmable logic con-
trollers is cyclic program processing: After the user program has been completely
processed once, it is then processed again immediately from the beginning. The
user program is also executed if no actions are requested “from outside”, such
as if the controlled machine is not running. This provides advantages when pro-
gramming: For example, you program the ladder logic as if you were drawing a
circuit diagram, or program the function block diagram as if you were connecting
electronic components. Roughly speaking, a programmable logic controller has
characteristics like those of a contactor or relay control: The many programmed
operations are effective quasi simultaneously “in parallel”.

Fig. 1.2 Execution of the user program in a SIMATIC controller

Cycle start

Switching-on

<Interrupt> Interruption

Interruption<Error>

O
p

er
at

in
g

 m
od

e
O

p
er

at
in

g
 m

od
e

R
U

N

Interrupt handler

Main program

Program execution modes

ST
A

R
TU

P

Error program

Start-up routine

1.4 The path of a binary signal from the sensor to the program

15

After the power is switched on and the operating function test runs, the operating
system starts an (optional) start-up routine once (Fig. 1.2). The main program is
next in the sequence. If it has been processed to the end, processing begins again
immediately at the start of the program. The main program can be interrupted by
alarm or error events. The operating system then starts an interrupt handler or
error program. If the interruption-controlled program has been completely pro-
cessed, the program processing continues from the point of interruption in the
main program. A priority scheduler controls the program execution order if sever-
al interrupt events occur simultaneously.

The user program is made up of blocks. There are several block types. Organiza-
tion blocks represent the interface to the operating system. After a start event oc-
curs (power up, cycle start, alarm, error), the operating system calls the associated
organization block. It contains the appropriate user program for the event. An or-
ganization block only has to be programmed if the automation solution requires
it. The program in an organization block can, if needed, be structured by function
blocks (blocks with static local data) and functions (blocks without static local da-
ta). Data blocks in the user memory or the bit memory address area in the system
memory are available to store user data.

1.4 The path of a binary signal from the sensor
to the program

In order to do its job, the control processor in the controller needs to be connected
to the machine or plant it is controlling. I/O modules that are wired to the sensors
and actuators create this connection.

Connection to the programmable logic controller, module address

When wiring the machine or plant, you define which signals are connected to the
programmable logic controller, and where. An input signal, e.g. the signal from
pushbutton +HP01-S10 with the significance “Switch on motor”, is connected to a
specific terminal on an input module (Fig. 1.3).

Each module is located in a particular slot on the rack, the number of which is the
slot address. In addition, each I/O module has a so-called “logical” address. The us-
er program uses this address to address a signal of the module. In the logical ad-
dress, the binary signals are aggregated into bytes (bundles of eight bits). Bytes
are numbered starting from zero – even with gaps. The bit address is counted
from 0 to 7 for each byte.

You determine the slot address by plugging the module into a certain place on the
rack. STEP 7 assigns the logical address consecutively, which you can change in
the configuration table. The first byte of the module receives the module start ad-
dress, which is the lowest address of the module. If a module has more bytes, the
byte addresses are automatically incremented. In the example, the module has the
module start address four – either set by STEP 7 as default or set by you – and the

1 Introduction

16

next byte thus automatically has the number five. The “switch on motor” signal is
connected to terminal two of the second byte (relative byte 1). By specifying the
module address as 4, you are given the address of the signal: “Input in byte 5 to bit
2” or in short: I 5.2.

Symbolic address

The address “I 5.2” denotes the memory location and is the absolute address. It is
much easier if you can address this signal in the program with a name that match-
es the meaning of the signal, for example “switch on motor”. This is the symbolic
address. You can find the assignment of absolute addresses to symbolic addresses
in the symbol table or the PLC variable table. In this table, the “global” symbols
are defined; these are the symbols that are valid in the entire user program. You
specify the symbols that are valid for only one block (“local” symbols) when pro-
gramming the block.

Fig. 1.3 Path of a signal from the sensor to its use in the program

System memory

“Motor ON” I 5.2

Symbolic addressing Absolute addressing

Motor ON5 I 5.2DI 16 BOOL4

00

77

00

77

Byte 4Relative
Byte 0

Byte 5Relative
Byte 1

Input modulSensor

+HP01
-S10

Signal path from the sensor to the program

7 6 5 4 3 2 1 0

Byte 4

Byte 5

Bit

1.5 Data management in the SIMATIC automation system

17

Process images

When you use the signal “switch on motor” or I 5.2 in the program, you do not
address the signal memory in the module but a storage area within the CPU. This
storage area is referred to as the “process image”. It is also available for the out-
puts, which in principle are treated in the same way as the inputs.

The CPU operating system automatically transfers the signal states between the
modules and the process image in each program cycle. It is also possible to ad-
dress the signals directly on the modules from the user program. However, the
use of a process image has advantages compared to direct access, including much
faster access to the signal states and the steady signal state of an input signal dur-
ing a program cycle (data consistency). The disadvantage is the increased re-
sponse time, which is also dependent on the program execution time.

1.5 Data management in the SIMATIC
automation system

The automation data is present in various memory locations in the automation sys-
tem. First of all, there is the programming device. All automation data of a STEP 7
project is saved on its hard disk. Configuration and programming of the project da-
ta with STEP 7 are carried out in the main memory of the programming device
(Fig. 1.4).

Fig. 1.4 Data management in the SIMATIC automation system

The work memory contains the
part of the control program

(program code and data) that is
processed during runtime.

The load memory contains
the project data transferred

to the CPU.

The offline project data
is saved on the hard disk.

All project data is executed
in the programming device's

main memory.

Programming device

CPU

Data management in the SIMATIC programmable controller

1 Introduction

18

The automation data on the hard disk is also referred to as the offline project data.
Once STEP 7 has appropriately compiled the automation data, this can be down-
loaded to a connected programmable logic controller. The data downloaded into
the user memory of the CPU is known as the online project data.

The user memory on the CPU is divided into two components: The load memory
contains the complete user program, including the configuration data, and the
work memory contains the executable user program with the current control data.
The load memory of the CPU 1200 can be expanded with a plug-in memory card. For
the CPU 300, the load memory is on the memory card, which therefore must always
be inserted in the CPU for use. The memory card for the CPU 1200 and CPU 300 is
an SD Card, for failsafe storage of the automation data. On the CPU 400, the mem-
ory card expands the load memory; here, the memory card is a RAM card (so that
the user program can be changed during testing), or a FEPROM card (for failsafe
storage of the user program).

2 SIMATIC Controllers – the Hardware Platform

19

2 SIMATIC Controllers –
the Hardware Platform

SIMATIC controllers – the core of the automation systems – control production
machines, manufacturing plants, or industrial processes. The following descrip-
tion mainly refers to programmable logic controllers (PLC). Siemens also offers
PC-based SIMATIC controllers.

SIMATIC S7 are programmable logic controllers (PLCs), which are available in
four designs:

b SIMATIC S7-200, the compact micro PLC

b SIMATIC S7-1200, the modular „micro PLC“,

b SIMATIC S7-300, the modular PLC of the mid performance range

b SIMATIC S7-400, the modular PLC of the upper performance range

The S7-200 station consists of a basic unit and can be expanded with additional
modules. In S7-300/400 stations, the power supply unit, the CPU module and the
I/O modules are installed in the same mounting rack. This centralized configura-
tion can be extended with expansion racks for the installation of additional I/O
modules. The expansion rack may be a remote installation, that is it can be placed
at a distance from the central rack. You use the STEP 7 Micro programming lan-
guage to program the SIMATIC S7-200 controller. STEP 7 with its different pro-
gramming languages is provided for the controllers of the SIMATIC S7-300/400 se-
ries.

PC-based automation is the umbrella term for PLCs based on a personal comput-
er (PC):

b The industrial PC is available as a Rack PC or Box PC.

b The SIMATIC Panel PC is a combination of HMI device and controller.

b SIMATIC WinAC is the generic term for the program packages of SIMATIC PC-
based Automation. WinAC runs on a standard PC under a Windows operating
system. Distributed I/O modules form the link to the process.

With SIMATIC PC-based Control, the controller can take the form of a purely
software solution (Software PLC) or a plug-in card (Slot PLC).

SIMATIC DP are modules installed on site at the machine or in the plant and are
connected to the master station via PROFIBUS DP and/or PROFINET IO. Many
SIMATIC CPUs feature an integrated PROFIBUS or PROFINET interface, which
greatly facilitates the connection of distributed I/O. Since operation on the

2 SIMATIC Controllers – the Hardware Platform

20

PROFIBUS and PROFINET is standardized independent of the vendor, it is also pos-
sible to connect third-party devices to a SIMATIC controller.

2.1 Components of a SIMATIC Station

A complete programmable controller including all I/O modules is referred to as a
“station”. The core is the CPU, which is expanded with I/O modules if needed.

The following list shows the components a SIMATIC station can consist of:

b Racks
These accommodate the modules and form the basis for central and expansion
units. The S7-1200 and S7-300 use a simple mounting rail; its length is deter-
mined by the number and width of the modules. The S7-400 uses an aluminum
rack that has a defined number of slots with backplane bus and bus connectors.

b Power supply (PS)
It provides the internal supply voltage; the input voltage is either 120/230 V AC
voltage or 24 V DC voltage.

b Central processor unit (CPU)
This stores and processes the user program; communicates with the program-
ming device and any other stations over the MPI bus; controls the central and
distributed I/O modules; and can also be a DP slave on PROFIBUS DP or IO Device
on PROFINET IO.

b Interface modules (IM)
These connect the racks with each other.

b Signal modules (SM)
These adapt the signals from the controlled plant to the internal signal level or
control contactors, actuators, lights, etc. Signal modules are available as input
and output modules for digital and analog signals and can also be used to con-
nect sensors and actuators located in hazardous areas of zones 1 and 2.

b Function modules (FM)
These handle complex or time-critical processes independently of the CPU,
e.g. counting, position control, and closed-loop control.

b Communications processors (CP)
These connect the SIMATIC station with the subnets such as Industrial Ethernet,
PROFIBUS FMS, AS-Interface, or a serial point-to-point connection.

The distributed I/O modules connected to a station are also part of this station. If
the distributed I/O system is connected over PROFIBUS DP, a DP master controls
“its” DP slaves and thus the field units; if the connection is over PROFINET IO, an
IO-Controller controls the IO-Devices. The DP slaves or IO-Devices are integrated
in the address area of the centralized I/O system and are principally treated just
like the I/O modules installed locally in the central and expansion racks.

2.2 The Micro PLC SIMATIC S7-200

21

2.2 The Micro PLC SIMATIC S7-200

The SIMATIC S7-200 is a compact micro PLC that replaces relay and contactor con-
trol arrangements and increasingly also specific electronic circuits in mechanical
and system engineering applications. It can be used as a stand-alone system or in
a network with other control systems. Various expansion modules for the connec-
tion to the machine or plant are available. STEP 7 Micro/WIN is used for program-
ming a SIMATIC S7-200.

Compact-type basic modules and expansion modules

There are various S7-200 basic modules graded by configuration and performance
capability. The basic module contains the CPU and – in different types and num-
bers for each basic module – integrated inputs and outputs at 24 V DC, 100 V
AC/120 V to 230 V AC, as well as relay outputs. Fast alarm and counter inputs en-
hance the real-time performance. A digital value can be set without a program-
ming device using a screwdriver via a potentiometer on the basic module.

You can increase the number of inputs/outputs by connecting an expansion mod-
ule. Such modules are available for both digital and analog inputs/outputs. The ex-
pansion modules are snapped onto the rail (e.g., standard DIN rail) next to the ba-
sic module and electrically connected by means of a bus connector.

Fig. 2.1 Setup and expansion options for an S7-200 station

Setup of an S7-200 station

Expansion options

S

2 SIMATIC Controllers – the Hardware Platform

22

Operating modes of a CPU 200

A CPU 200 has two operating modes, STOP and RUN, which are indicated by LEDs
on the front of the CPU. The user program is not executed in STOP mode. The CPU
must be in STOP mode to load the user program or the hardware configuration. In
RUN mode, the CPU executes the control functions in the user program. To switch
between modes, use the mode switch on the CPU or the programming device in
online operation.

User memory in a CPU 200

The user memory of a CPU 200 consists of the program memory and the data
memory. When loading the user program to the CPU with a programming device,
the program code and the data are stored in an EEPROM memory, where they are
protected against power outages. The current data is then copied to the RAM area
where it is processed during runtime.

The user program can also be transferred via a memory module that can be
plugged into the CPU. Additional data such as recipes, data log configurations,
and documentation files in any format can be stored on this memory module. This
additional data can also be loaded from a programming device to the CPU if the
memory module is plugged in.

On a CPU 200, you can use a program to store a variable value in the failsafe
EEPROM memory area. Note that – due to the physical limitations of the medium –
only a limited number of write operations is allowed. Excessive writing, for exam-
ple with every program cycle, reduces the lifespan of the EEPROM memory. The
data on any plugged-in memory module is not changed.

Table 2.1 Quantity structure of the S7-200 CPUs

CPU Integrated I/O
Input/output channels

Expandable with
Expansion
modules (EM)
of the S7-22x series

Memory configuration
Data memory /
program memory /
with active RunTime Edit

Counter
Number /
frequency

DI DO AI *)

CPU 221 6 4 1 cannot be expanded 2 KB/ 4 KB 4/30 kHz

CPU 222 8 6 1 Max. 2 EMs 2 KB/ 4 KB 4/30 kHz

CPU 224 14 10 2 Max. 7 EMs 8 KB/ 12 KB/ 8 KB 6/30 kHz

CPU 224 XP 14 10 2 Max. 7 EMs 10 KB/ 16 KB/ 12 KB 2/200 kHz
4/30 kHz

CPU 226 24 16 2 Max. 7 EMs 10 KB/ 24 KB/ 16 KB 6/30 kHz

*) Analog potentiometer with 8-bit resolution

2.2 The Micro PLC SIMATIC S7-200

23

Retentive behavior

Part of the data memory is reserved for retentive data defined by the user. Reten-
tive data is even retained if the supply voltage is interrupted. A high-performance
capacitor or an optional battery module bridges the loss of voltage.

If, when the power supply is switched on, the high-performance capacitor and – if
present – the optional battery module do not exhibit errors, the values of the re-
tentively configured variables (bit memories, timers, counters) are not changed
and the non-retentive memory areas are cleared.

If the contents of the RAM cannot be buffered, the CPU 200 deletes all user data,
retrieves the user program from the EEPROM memory area, and restores the first
14 bytes of the bit memories from the non-volatile memory, as long as these bytes
have previously been configured as retentive.

Communication capability just like a “large” station

Depending on its design, a CPU 200 hasone or two RS-485 interfaces, which as
point-to-point interfaces (PPI) permit the connection of programming and HMI
devices and allow linking to another CPU 200. As multi-point interfaces (MPI), they
permit the operation of a CPU 200 as MPI slave on an MPI master, e.g. a CPU
300/400. This interface can also be used as a freely programmable interface with
interrupt facility for serial data exchange with third-party devices such as barcode
readers using the ASCII protocol.

Various supplementary modules expand the communication possibilities, such as
the EM 241 modem for remote maintenance and diagnostics, the EM 277 DP mod-
ule for operation of a CPU 200 as PROFIBUS DP slave, and the CP 243-2 (AS-Inter-
face master), CP 243-1 (connection to Industrial Ethernet), and CP 243-1 IT (Indus-
trial Ethernet with IT communication) communications processors.

Operator control and monitoring with S7-200

For the S7-200 controllers, the Micro Panels are the ideal operator control and
monitoring devices. They are connected to the interface of the CPU by means of a
supplied cable. For a description of these HMI devices, refer to chapter 7.5 "Micro
Panels" on page 259.

Configuring and programming with STEP 7-Micro/Win

STEP 7-Micro/Win is the engineering software for the controllers of the S7-200 se-
ries and runs under Windows 2000 and Windows XP. A CPU 200 can be pro-
grammed with the statement list (STL), ladder logic (LAD), and function block dia-
gram (FBD) programming languages. These programming languages for S7-200
differ in function and handling from the programming languages for the other
SIMATIC S7 automation systems.

2 SIMATIC Controllers – the Hardware Platform

24

2.3 The SIMATIC S7-1200 Modular Micro Controller

The youngest member of the controller family is the SIMATIC S7-1200. An S7-1200
automation system consists of a central processing unit which – depending on the
CPU version – can be expanded with digital and analog input and output modules.
Using the PROFINET interface, the central processing unit can be connected to In-
dustrial Ethernet. S7-1200 is configured and programmed inside TIA Portal using
STEP 7 Basic/Professional.

Compact design for S7-1200

Three central processing units with different performance capability in each of the
variants DC/DC/DC, DC/DC/relay, and AC/DC/relay are offered. The first specification
refers to the supply voltage (24 V DC, 85 to 264 V AC), the second to the signal volt-
age of the digital inputs (24 V DC), and the third to the type of digital outputs (24 V
DC electronic or relay outputs 5 to 30 V DC, 5 to 250 V AC). Table 2.2 shows the ex-
pandability and the memory configuration. Rapid counters with counting fre-
quencies of up to 100/200 kHz are integrated with the central processing unit,
which in connection with a pulse generator and the “Axis” technology object can
control a stepper motor or a servomotor with pulse interface.

Fig. 2.2 Setup and expansion options for an S7-1200 station

Expansion options

Setup of an S7-1200 station

S

x
x

2.3 The SIMATIC S7-1200 Modular Micro Controller

25

A two-tier design is possible using a 2-meter long extension cable. But the number
of modules that can be used is not changed as a result.

Operating modes of the CPU

The CPU 1200 has the operating modes STOP, STARTUP, and RUN. In STOP, the us-
er program is not processed, but the CPU is capable of communication and can,
for example, be loaded with the user program. If the supply voltage is switched on,
the CPU is first in STOP mode, then switches to STARTUP mode, in which it param-
eterizes the modules and passes through a user start-up routine, and after an er-
ror-free start reaches RUN mode. Now the main user program is processed. In the
case of a “serious” error, the CPU switches from STARTUP or RUN mode back to
STOP mode.

The modes are switched with the programming device in online operation. A
mode switch is not provided.

The user memory consists of a load memory and a work memory

The user program is located on the CPU in two areas: in the load memory and
work memory. The load memory contains the entire user program including con-
figuration data; it is integrated into the CPU or available on a plug-in memory
card. The work memory in the CPU is integrated fast RAM that contains the execu-
tion-relevant program code and user data.

The programming device transfers the entire user program, including configura-
tion data, to the load memory. The operating system interprets the configuration
data, and parameterizes the CPU and – during startup – the I/O modules. The exe-
cution-relevant program code and user data are copied into the work memory.

Retentivity without backup battery

Retentivity means that the contents of a memory area remain after the supply volt-
age is switched off and on again. With a CPU 1200, this behavior makes possible a
retentive memory for bit memories and data variables and non-volatile load mem-
ory for the user program, so it does not require a backup battery. During runtime,
data areas such as recipes can be read from the load memory with a user program,
and other data areas such as archives can be written to the load memory.

Table 2.2 Quantity structure of the S7-1200 CPUs

CPU Onboard
input/output channels

Expandable with
SB = signal board
SM = signal module
CM = comm. module

Memory configuration
Load memory/
work memory /
retentive memory

digital analog

CPU 1211C 6 DI/4 DO 2 AI/- 1 SB, 3 CM 1 MB/25 KB/2 KB

CPU 1212C 8 DI/6 DO 2 AI/- 1 SB, 2 SM, 3 CM 1 MB/25 KB/2 KB

CPU 1214C 14 DI/10 DO 2 AI/- 1 SB, 8 SM, 3 CM 2 MB/50 KB/2 KB

2 SIMATIC Controllers – the Hardware Platform

26

A memory card expands the load memory

The memory card for S7-1200 is an SD Card that has been
pre-formatted by Siemens. The memory card can be set as a
program card or a transfer card. As a program card, the
memory card replaces the integrated load memory and
must be inserted during operation of the CPU. As a transfer
card, the memory card allows the user program to be trans-
ferred without a programming device. It is also possible to
update the CPU firmware with a transfer card.

The signal board extends the onboard I/O

The signal board (SB) expands the onboard I/O without
changing the dimensions of the CPU. The associated slot is
located on the front of the CPU.

Signal boards are available with 24 V and 5 V digital inputs
and outputs, which can be operated at a frequency of up to
200 kHz. The frequency of the high-speed counters (HSC)
and pulse generators integrated into the CPU can thus be
increased.

Voltage transmitters (± 10 V), current transmitters (0 to 20
mA), thermocouples (type J or K), or resistance thermome-
ters (PT 100 or PT 1000) can be connected to a signal board
with analog input module. The signal board with analog
output module is available for ± 10 V output voltage or 0 to
20 mA output current.

High-speed counter

A high-speed counter (HSC) is a high-speed hardware counter in the CPU. The CPU
1211 contains three counters, the CPU 1212 has four counters, and the CPU 1214
has six counters. A high-speed counter as up/down counter has a counting range
of ±231. There are special counter inputs on the CPU to capture the pulse train out-
put; these allow a maximum frequency of 100 kHz. If a signal board with fast in-
puts is used, the maximum counting frequency increases to 200 kHz.

Pulse generators

A pulse generator generates pulses at a special output channel. If the output chan-
nel to the onboard I/O belongs to the CPU, the maximum pulse frequency is 100
kHz. If the output channel is on the signal board, the maximum achievable fre-
quency increases to 200 kHz. Each CPU 1200 has two pulse generators. The pulse
generators have two modes of operation: PTO (pulse train output) and PWM
(pulse width modulation).

Fig. 2.3 SIMATIC
Memory Card

Fig. 2.4 Signal
Board 1223

2.3 The SIMATIC S7-1200 Modular Micro Controller

27

“Axis” technology object

The axis technology object controls a stepper motor or a servomotor with pulse in-
terface. It forms the interface between the motion control instructions in the user
program and the drive. Motion profiles of the drive can be created using the job
table technology object.

A maximum of two axis technology objects can be set up in each CPU 1200. Each
axis technology object requires a pulse generator in PTO mode, an HSC, and a rap-
id pulse output channel.

“PID controller” technology object

The PID controller technology object is available in two versions: as a universal
controller (PID_Compact) for technical processes with continuous I/O signals and
as a controller for motor-operated devices such as valves (PID_3STEP) that use dig-
ital signals to open and close.

A PID controller requires an analog input channel for the actual value and an ana-
log output channel for the (analog) manipulated variable. Digital output channels
are required if the manipulated variable is issued as a pulse width modulated sig-
nal (PID_Compact) or as a close/open signal (PID_3STEP). The PID controller tech-
nology object calculates the PID shares independently during the self-adjustment
at initial start. Further optimization is possible by means of fine adjustment dur-
ing operation.

Peripheral expansion with digital and analog modules

The onboard peripherals of a CPU 1212 or CPU 1214 can be expanded with two or
eight signal modules (SM). Digital modules are available with 8 or 16 binary chan-
nels for 24 V input and output voltage or with relay outputs. Voltage transmitters,
current transmitters, thermocouples, or resistance thermometers can be connect-
ed to an analog input module with 8 or 16 analog channels. The analog output
module is available with 2 or 4 analog channels for ± 10 V output voltage or 0 to 20
mA output current. Which properties are important in the selection of I/O modules
can be seen in chapters 2.10 "Process Connection with Digital Modules" on page 47
and 2.11 "Process connection with analog modules" on page 48.

Communication for S7-1200

The PROFINET interface connects a CPU 1200 with other devices via Industrial
Ethernet. This can be a programming device, a Basic Panel, or another PLC. Open
User Communication performs the data exchange between the programmable
controllers. If only one device is connected, this can be done directly with a stan-
dard or crossover cable. The connection of multiple devices requires an interface
multiplier, for example, the CSM 1277 compact switch module, to which up to
three additional stations can be connected.

2 SIMATIC Controllers – the Hardware Platform

28

A CPU 1200 may be the IO Controller in a PROFINET IO system. Additional infor-
mation on PROFINET IO is available in chapter 6.12 "Distributed I/O with PROFINET
IO" on page 225.

The CM 1241 communication module permits a point-to-point connection based
on RS232 or RS485. With a CB 1241 communication board – plugged into the front
of the CPU – a point-to-point connection based on RS485 can be set up without
changing the dimensions of the CPU. The following standard protocols are avail-
able: ASCII protocol, MODBUS protocol with RTU format, and USS drive protocol.

The CM 1242-5 (DP slave) and CM 1243-5 (DP master) communication modules
permit the connection of a CPU 1200 to a PROFIBUS DP master system. Further in-
formation on PROFIBUS DP can be found in chapter 6.15 "Distributed I/O with
PROFIBUS DP" on page 242.

Operator control and monitoring with S7-1200

The Basic Panels are the ideal operator control and monitoring devices for the
S7-1200 controllers. They are connected via the PROFINET interface and config-
ured with WinCC Basic, which is supplied with STEP 7 Basic/Professional V1x in-
side TIA Portal. The HMI devices for S7-1200 are described in chapter 7.2 "Basic
Panels" on page 255.

Configuring and programming with STEP 7 inside TIA Portal

A CPU 1200 is configured and programmed with the STEP 7 Basic/Professional en-
gineering software inside TIA Portal. Programming in ladder logic (LAD), function
block diagram (FBD), and structured control language (SCL) is possible with ver-
sion V11 of STEP 7 Basic and V2.x of the CPU firmware.

STEP 7 inside TIA Portal contains all functions for hardware configuration, net-
working with PROFIBUS and PROFINET, and programming and testing the user
program. The engineering software is described in chapter 3.4 "Editing projects
with STEP 7 inside TIA Portal" on page 70.

2.4 The SIMATIC S7-300 modular mini controller

SIMATIC S7-300 is the modular mini controller system for the lower and medium
performance ranges. Possible applications include the control of packaging, tex-
tile and special-purpose machinery. An S7-300 station consists of a central con-
troller and – as required – up to four expansion devices.

Central unit

The central controller contains the CPU and up to 8 I/O modules. The CPU requires
a supply voltage of 24 V DC, which, for example, can be drawn from one of the
power supplies on the mounting rail to the left of the CPU. A serial backplane bus
that transfers both the I/O signals and the parameterization data connects the mod-

2.4 The SIMATIC S7-300 modular mini controller

29

ules to one another. The bus is routed from module to module via bus connectors. It
is only available where modules are inserted.

The slots in the rack are numbered: Slot 1 is reserved for the power supply, even if
there is no power supply, slot 2 is assigned to the CPU, and slot 3 is assigned to the
interface module (even if there is no interface module). Slots 4 to max. 11 are in-
tended for the I/O modules, which are plugged in without gaps. The slot number is
independent of the module width.

Expansion unit

If a single-tier configuration is not enough, with the CPU 314 and above you can
choose either a two-tier configuration (IM 365) or up to a four-tier configuration
(IM 360/IM 361) with up to 32 additional I/O modules.

The IM module is inserted between the CPU and the first I/O module. Like the cen-
tral rack, the expansion rack consists of a mounting rail with snapped-on mod-
ules. The receiver IM, which establishes the connection to the central rack, occu-
pies slot 2; a send IM leading to another rack occupies slot 3, and additional I/O
modules are inserted without gaps into the slots 4 to max. 11.

Fig. 2.5 Setup and expansion options for an S7-300 station

Multiple-tier configuration

Single-tier configuration

Setup of an S7-300 station

S S

Expansion options

PS PS

CRCR

ER

IM

IM

2 SIMATIC Controllers – the Hardware Platform

30

Broad field of application

A broad range of standard CPU 300s covers the lower and middle performance
range in the manufacturing industry. With a comprehensive range of modules and
flexible networking capability, the requirement is met for optimum adaptation to
the machine or plant to be controlled.

In addition to the equipment for standard CPUs, the 3xxC compact CPUs also con-
tain technological functions (counting, measuring, closed-loop control, position-
ing) with integral inputs/outputs, thus making compact design of mini controllers
possible.

The 3xxF failsafe CPUs permit the construction of a failsafe automation system
for plants with increased safety requirements. Failsafe and standard I/O modules
can be operated both in centralized and distributed configurations.

The 3xxT technology CPUs combine control functions with simple motion control
functions. The control component is designed like a standard CPU; it is config-
ured, parameterized, and programmed using STEP 7 V5.x. The technology objects
and the motion control component require the S7 Technology option package,
which is integrated in the SIMATIC Manager following installation.

Operating modes of a CPU 300

The CPU 300 has the operating modes STOP, STARTUP, HOLD, and RUN. After
switching on the power supply, the CPU is initially in STOP mode. The user pro-
gram is not processed, but the CPU is still capable of communication, i.e. the user
program can be loaded or the diagnostic buffer can be read, for example.

The CPU is switched into RUN mode with the mode switch on the CPU or with a
programming device in online mode. Here, the STARTUP mode is executed in
which the modules are parameterized and a user start-up routine is executed. The
main user program is executed in RUN mode.

Table 2.3 Quantity structure of standard S7-300 CPUs

CPU Address ranges Memory configuration
Load memory /
work memory /
retentive memory

Peripherals

(bytes)

Process image

(bytes) *)

Bit
memory

(bytes)

SIMATIC
timers

SIMATIC
counters

312 1024 1024 / 128 256 256 256 8 MB/32 KB/32 KB

314 1024 1024 / 128 256 256 256 8 MB/128 KB/64 KB

315-2 DP 2048 2048 / 128 2048 256 256 8 MB/256 KB/128 KB

315-2 PN/DP 2048 2048 / 128 2048 256 256 8 MB/384 KB/128 KB

317-2 DP 8192 2048 / 256 4096 512 512 8 MB/512 KB/256 KB

317-2 PN/DP 8192 8192 / 256 4096 512 512 8 MB/1024 KB/256 KB

319-3 PN/DP 8192 8192 / 256 8192 2048 2048 8 MB/2048 KB/700 KB

*) maximum/preset (both for inputs and outputs)

2.4 The SIMATIC S7-300 modular mini controller

31

In the operating modes STARTUP and RUN, test functions can be performed that
lead to the HOLD mode. The execution of the user program is stopped at predeter-
mined points in the program. The outputs to the machine to be controlled are
switched off or set to a pre-defined value for safety reasons.

The user memory consists of a load memory and a work memory

The user program is located on the CPU in two areas: in the load memory and
work memory. The load memory contains the entire user program including con-
figuration data; it is located on a plug-in Micro Memory Card. The work memory
in the CPU is integrated fast RAM that contains the execution-relevant program
code and user data.

The programming device transfers the entire user program, including configura-
tion data, to the load memory. The operating system interprets the configuration
data, and parameterizes the CPU and – during startup – the I/O modules. The exe-
cution-relevant program code and user data are copied into the work memory.

Retentivity without backup battery

Retentivity means that the contents of a memory area remain after the supply volt-
age is switched off and on again. With a CPU 300 this behavior enables retentive
memory for bit memories, data variables, and timer and counter functions for
SIMATIC. The user program is also stored in non-volatile form in the load memory
on the Micro Memory Card so that a backup battery is not needed. During run-
time, data areas such as recipes can be read from the load memory with a user
program, and other data areas such as archives can be written to the load memory.

The load memory is a Micro Memory Card

With a CPU 300, the load memory is located on the Micro
Memory Card, with the result that a Micro Memory Card
must always be plugged in to operate a CPU 300. The Micro
Memory Card can also be used to transfer the user program
without a programming device to the CPU or to perform a
firmware update of the CPU.

Signal modules are the interface to the process

There is a wide range of signal modules available for the S7-
300. Different digital input modules with 8, 16, 32, or 64 bi-
nary channels record signals with voltages of 24 V DC with
sourcing or sinking output, 24 to 48 V DC or AC, 48 to 125 V
DC, and 120 V or 230 V AC. Depending on the design, the
digital output modules are available with 8, 16, 32, or 64 bi-
nary channels for 24 V output voltage with sourcing or sinking output, for 48 to
125 V DC, for 120 V or 230 V AC, and for relay outputs.

Fig. 2.6 SIMATIC
Micro Memory Card

2 SIMATIC Controllers – the Hardware Platform

32

Voltage transmitters, current transmitters, thermocouples, or resistance ther-
mometers can be connected to an analog input module with 2, 6, or 8 analog chan-
nels. The analog output module is available with 2, 4, or 8 analog channels for
±10 V output voltage or 0 to 20 mA output current.

Which properties are important in the selection of I/O modules can be seen in
chapters 2.10 "Process Connection with Digital Modules" on page 47 and 2.11 "Pro-
cess connection with analog modules" on page 48.

Function modules relieve the CPU

A function module (FM) is a signal-preprocessing, “intelligent” module that pre-
pares and processes signals coming from the process independently from the
CPU, and either returns them to the process or makes them available at the CPU's
internal interface. Function modules handle functions that the CPU cannot usual-
ly execute quickly enough, such as counting pulses and positioning or control-
ling drives. The function modules available for S7-300 are listed in chapter 2.12
"FM modules relieve the CPU" on page 49.

Communication for S7-300

Each CPU 300 has an MPI to connect a programming device and for data exchange
with another CPU with MPI. With the CPU 316-2 PN/DP and above, this interface is
implemented as a combined MPI/DP interface. A CPU with a DP interface can be ei-
ther DP master or DP slave on PROFIBUS DP. Additional information on PROFIBUS
DP is available in chapter 6.15 "Distributed I/O with PROFIBUS DP" on page 242.

A CPU with PN interface can be both an IO controller and an IO device on
PROFINET IO. Further information on PROFINET IO can be found in chapter 6.12
"Distributed I/O with PROFINET IO" on page 225.

Communication processors to connect to PROFIBUS, Industrial Ethernet, AS-Inter-
face, and for point-to-point coupling are also available, as described in chapter
2.13 "Bus connection with communication modules" on page 50.

Operator control and monitoring with S7-300

The entire range of HMI devices and operator panels, as described in chapter 7
"Operator control and monitoring" on page 252, is available for the S7-300 control-
lers.

Configuration and programming with STEP 7

A CPU 300 can be configured and programmed with full functional scope (and
even for older modules) with STEP 7 V5.x. The programming languages for the us-
er program – ladder logic (LAD), function block diagram (FBD), and statement list
(STL) – are integrated in STEP 7. The Continuous Function Chart (CFC) graphical
program editor, the GRAPH sequence control, and the HiGraph state control are

2.5 Technological functions of a CPU 300C

33

available as option packages for the structured control language (SCL) program-
ming language.

Configuration and programming with STEP 7 Professional inside TIA Portal ac-
counts for the modules which are currently being delivered. The programming
languages for the user program – ladder logic (LAD), function block diagram
(FBD), and statement list (STL), structured control language (SCL), as well as the
GRAPH sequence control – are integrated in STEP 7 Professional V11.

2.5 Technological functions of a CPU 300C

A compact CPU 300C contains technological functions in the operating system
that are used via integral system function blocks (SFBs) in the user program. The
technological functions are permanently assigned to the digital and analog in-
puts/outputs on the CPU. Some of the assignments overlap, and therefore some-
times not all technological functions can be used together.

In the case of open-loop positioning with analog output, the actual value is ac-
quired with asymmetric 24 V incremental encoders. The drive (power section) is
controlled using an analog output in the range ±10 V (voltage signal) or ±20 mA
(current signal). SFB 44 ANALOG is called in the user program. This SFB allows jog
mode, reference point approach, relative and absolute incremental mode, set ref-
erence point, delete distance to go, and linear measurement.

In the case of open-loop positioning with digital output, the actual value is ac-
quired with asymmetric 24 V incremental encoders. The drive (power section) is
controlled using four digital outputs that switch the direction of travel and the ve-
locity levels (rapid traverse or creep speed). SFB 46 DIGITAL is called in the user
program. This SFB allows jog mode, reference point approach, relative and abso-
lute incremental mode, set reference point, delete distance to go, and linear mea-
surement.

Depending on the CPU used, counting is performed at a frequency of up to 60
kHz using a permanently assigned 24 V digital input. SFB 47 COUNT is called in
the user program. This SFB allows continuous counting, single-shot counting, and
periodic counting. The gate function can start, stop, or interrupt counting. A com-
parator can force a digital output or trigger a hardware interrupt when a preset
count value has been reached.

In the case of a frequency measurement, the CPU counts the pulses within an
adjustable time window. The time window can be set within the range 10 ms to
10,000 ms in steps of 1 ms. Depending on the CPU used, a frequency of up to 60 kHz
can be measured. In the user program, you call SFB 48 FREQUENC. The gate func-
tion starts or stops the measurement. If the frequency reaches a lower or upper
limit, a digital output can be forced or a process interrupt can be triggered.

Pulse width modulation converts a numeric value into a pulse train with the
relevant pulse/pause ratio and outputs this at a digital output. The output fre-

2 SIMATIC Controllers – the Hardware Platform

34

quency is up to 2.5 kHz and the minimum pulse duration is 200 µs. Pulse width
modulation is integrated into the user program with SFB 49 PULSE. The gate
function starts or stops output of the pulse train.

Depending on the CPU used, the ASCII, 3964(R) and RK512 protocols are available
for point-to-point connection. Up to 1024 bytes can be transferred at a data rate
of 19.2 kbit/s (full duplex) or 38.4 kbit/s (half duplex). SFBs 60 and 65 form the in-
terface to the user program.

Depending on the CPU used, the ASCII, 3964(R) and RK512 protocols are available
for point-to-point connection. Up to 1024 bytes can be transferred at a data rate
of 19.2 kbit/s (full duplex) or 38.4 kbit/s (half duplex). SFBs 60 and 65 form the in-
terface to the user program.

The closed-loop control functions are software controllers implemented with
SFB 41 CONT_C (PID controller with continuous manipulated variable output,
suitable for two-step or three-step controls), SFB 42 CONT_S (PI controller with
binary manipulated variable output without position feedback), and SFB 43
PULSEGEN (PID two-step or three-step controller with pulse width modulation).

Fig. 2.7 Performance features of a compact CPU 314C-2 PN/DP

Compact CPU 314C

Technological functions

•

•

•

2.6 SIMATIC S7-400 for demanding tasks

35

2.6 SIMATIC S7-400 for demanding tasks

SIMATIC S7-400 is the highest-performance SIMATIC S7 controller. As an automa-
tion platform for system solutions in production and process engineering, the
S7-400 is characterized primarily by its modularity and performance reserves. An
S7-400 station consists of a central controller and – as required – of up to 21 ex-
pansion devices.

Fig. 2.8 Setup and expansion options for an S7-400 station

Setup of an S7-400 station

CR ER

ER

ER

ER

ER

Expansion options

CR Central rack
ER Expansion rack
IM Interface module

Max. 21 expansion racks can be connected to a central rack.

2 SIMATIC Controllers – the Hardware Platform

36

Central rack

The S7-400 mounting rack, an aluminum DIN rail of a fixed length with backplane
bus and bus connectors, can be used as a central rack (CR), an expansion rack (ER),
or as a combination of both (UR, universal rack).

For the S7-400 there are central racks available with 18, 9, or 4 slots (UR1, UR2, or
CR3) of fixed mounting widths. The power supply unit and the CPU also occupy
module slots, possibly even 2 slots or more per module. Typically, the module ar-
rangement begins on the left side with the power supply, followed by the CPU and
the I/O modules, where the slots can be freely chosen, even with gaps. On the
right-hand side of the rack are the interface modules to any expansion racks. The
backplane bus, consisting of the parallel P bus for the I/O signals and the serial
C-bus for the transmission of parameter and diagnostic data sets, connects the
slots to each other.

The CR2 segmental rack allows you to use two CPUs on a common power supply.
The CPUs exchange data over the communication bus, but each uses its own I/O
bus to communicate with its I/O modules. The left segment provides 10 module
slots, the right segment 8 module slots.

The UR2-H segmental rack consists of 2 segments with 9 module slots each. You
can use it as a central rack or as an expansion rack in standard S7-400 stations or
high-availability S7-400H stations. Each segment requires its own power supply;
I/O bus and communication bus are separate.

Fig. 2.9 Central rack for S7-400

CPUPS

CPU CPUPS

CPU CPUPS PS

P bus P bus

P bus P bus

P bus

C bus C bus

C bus

C bus

Backplane bus in an S7-400 central rack

Universal rack UR2-H

Central rack CR2

Universal rack UR1

2.6 SIMATIC S7-400 for demanding tasks

37

Expansion racks

If there is insufficient space for the I/O modules in the central rack, or if you want
to install modules at a distance, you supplement the station with one or more ex-
pansion units. Universal racks and expansion racks can be used as expansion
units, with up to 21 on one central rack. The send and receive interfaces that are
used in pairs transmit the signals over various distances:

The ER1 and ER2 expansion racks with 18 or 9 slots are intended for “simple” sig-
nal modules which do not trigger process alarms, do not require a 24 V DC sup-
ply over the P bus nor a backup supply, and are not equipped with a communica-
tion bus interface. The UR1 and UR2 racks are equipped with a communication
bus if they are used either as central racks or expansion racks with the ID num-
bers 1 to 6.

Connection of SIMATIC S5 modules

The IM 463-2 interface module is used for connecting SIMATIC S5 expansion units
(EG 183U, EG 185U, EG 186U, ER 701-2 and ER 701-3) to an S7-400 station. These
expansion units can again be expanded in a centralized arrangement. An IM 314
interface module in the S5 expansion unit establishes the connection. In such an
arrangement you can use any of the digital and analog modules listed for the spec-
ified expansion units. In a decentralized setup, you can connect up to 16 S5 expan-
sion units to one S7- 400 station.

If you want to use a single S5 module in an S7-400 station, you have to make use of
an adapter module.

Versatile application

A broad range of standard CPU 400s covers the middle and upper performance
range in the manufacturing and process engineering. With a comprehensive
range of modules and flexible networking capability, the requirement is met for
optimum adaptation of the plant or process to be controlled.

The 4xxF failsafe CPUs permit the construction of a failsafe automation system
for plants with increased safety requirements. The failsafe I/O modules offer dis-
tributed connection to the failsafe PROFIsafe bus protocol via PROFIBUS DP or
PROFINET IO.

Interface pair in central controller
in expansion unit

IM 460-0
IM 461-0

IM 460-1
IM 461-1

IM 460-3
IM 461-3

Max. distance 5 m 1.5 m 102 m

Max. number of connectable expansion units 8 2 8

Transmitting buses (P = peripheral bus, C = communications bus) P + C P P + C

Supply voltage is transferred No Yes No

2 SIMATIC Controllers – the Hardware Platform

38

The fault-tolerant 4xxH CPUs are used in control systems in which two CPUs –
one “master” and the other “hot standby” – control a system in parallel. If the mas-
ter system fails, the reserve CPU can smoothly take control of the system.

Enhanced performance with multiprocessing

You can convert the S7-400 station into a multiprocessing controller by inserting
several CPUs (4 max.). Make sure you select CPUs that are specified for this type of
operation which is also called “multicomputing.” As soon as you install more than
one CPU, the programmable controller will automatically assume multiprocessing
operation. All CPUs have the same operating mode. This means they start together
and also all of them go to STOP if one of the CPUs fails. Each CPU executes its own
user program independently of the other CPUs.

Each I/O module is assigned to one specific processor. This includes its address
and alarms. All I/O modules are located in the same I/O bus segment. This means
that you must give them different addresses even though they refer to different
CPUs. The same rule applies to distributed I/O modules. Although each CPU can
operate one or several DP master systems independently from the other proces-
sors, each centralized and distributed module must have its unique address (I/O
bus addresses) in the overall system.

Operating modes of a CPU 400

The CPU 400 has the operating modes STOP, STARTUP, HOLD, and RUN. After
switching on the power supply, the CPU is initially in STOP mode. The user pro-
gram is not processed, but the CPU is still capable of communication, i.e. the user
program can be loaded or the diagnostic buffer can be read, for example.

Table 2.4 Quantity structure of standard S7-400 CPUs

CPU Address ranges Memory configuration
Load memory FEPROM /
Load memory RAM integrated
**) /
work memory ***)

Peripher-
als

(bytes)

Process
image

(bytes) *)

Bit
mem-
ory

(bytes)

SIMATIC
timers

SIMATIC
coun-
ters

412-1

412-2

412-2 PN

4096 4096 / 128 4096 2048 2048 64 MB/512 KB/144 KB

64 MB/512 KB/256 KB

64 MB/512 KB/512 KB

414-2

414-3

414-3 PN/DP

8192 8192 / 256 8192 2048 2048 64 MB/512 KB/0.5 MB

64 MB/512 KB/1.4 MB

64 MB/512 KB/2 MB

416-2

416-3

416-3 PN/DP

16 384 16 384 / 512 16 384 2048 2048 64 MB/1 MB/2.8 MB

64 MB/1 MB/5.6 MB

64 MB/1 MB/8 MB

417-4 16 364 16 384 / 1024 16 384 2048 2048 64 MB/1 MB/15 MB

*) maximum / preset (both for inputs and outputs)

**) A RAM load memory on the memory card has the same size as a FEPROM load memory

***) Each for both program and data

2.6 SIMATIC S7-400 for demanding tasks

39

The CPU is switched into RUN mode with the mode switch or with a programming
device in online mode. Here, the STARTUP mode is executed in which the modules
are parameterized and a user start-up routine is executed. The main user program
is executed in RUN mode.

In the operating modes STARTUP and RUN, test functions can be performed that
lead to the HOLD mode. The execution of the user program is stopped at predeter-
mined points in the program. The outputs to the machine to be controlled are
switched off or set to a pre-defined value for safety reasons.

The user memory consists of a load memory and a work memory

The user program is located on the CPU in two areas: in the load memory and
work memory. The load memory contains the entire user program including con-
figuration data; it is integrated with the CPU and can be expanded with a memory
card. The work memory is fast RAM that contains the execution-relevant program
code and user data.

The programming device transfers the entire user program, including configura-
tion data, to the load memory. The operating system interprets the configuration
data, and parameterizes the CPU and – during startup – the I/O modules. The exe-
cution-relevant program code and user data are copied into the work memory.

A memory card expands the load memory

The size of the RAM load memory integrated on the CPU is
sufficient for smaller user programs. For large user pro-
grams, the load memory card be expanded with a RAM
memory card. If the user program has to be stored failsafe, a
FEPROM memory card is used.

The FEPROM memory card can also be used to perform a
firmware update of the CPU.

Voltage buffering of an S7-400

The RAM load and work memory is buffered with a backup
battery in the power supply module. It is also possible to
connect the CPU to an external backup voltage. Bit memo-
ries, SIMATIC timers and counters, and data blocks can be included in the buffered
memory area.

Signal modules are the interface to the process

For the S7-400, various digital input modules are available with 16 or 32 binary
channels. They can record the signals with voltages of 24 V DC, 24 to 60 V or 120 V
DC or AC, and 120 V or 230 V AC. Depending on the model, the digital output mod-
ules are available with 16 or 32 binary channels for 24 V output voltage and for
120 V or 230 V AC.

Fig. 2.10 SIMATIC
RAM memory card

2 SIMATIC Controllers – the Hardware Platform

40

Voltage transmitters, current transmitters, thermocouples, or resistance ther-
mometers can be connected to an analog input module with 8 or 16 analog chan-
nels. The analog output module is available with 8 analog channels for ±10 V out-
put voltage or 0 to 20 mA output current.

Which properties are important in the selection of I/O modules can be seen in
chapters 2.10 "Process Connection with Digital Modules" on page 47 and 2.11 "Pro-
cess connection with analog modules" on page 48.

Function modules relieve the CPU

A function module (FM) is a signal-preprocessing, “intelligent” module that pre-
pares and processes signals coming from the process independently from the
CPU, and either returns them to the process or makes them available at the CPU's
internal interface. Function modules handle functions that the CPU cannot usually
execute quickly enough, such as counting pulses and positioning or controlling
drives. The function modules available for S7-400 are listed in chapter 2.12 "FM
modules relieve the CPU" on page 49.

Communication for S7-400

Each CPU 400 has an MPI to connect a programming device and for data exchange
with another CPU with MPI. A CPU with a DP interface can be either DP master or
DP slave on PROFIBUS DP. On the CPU 414-3, 416-3, and 417-4, an interface mod-
ule (or two on the CPU 414-4) can be plugged in to allow an additional DP interface
with DP master or DP slave functionality. Additional information on PROFIBUS DP
is available in chapter 6.15 "Distributed I/O with PROFIBUS DP" on page 242.

A CPU with PN interface can be both an IO controller and an IO device on
PROFINET IO. Further information on PROFINET IO can be found in chapter 6.12
"Distributed I/O with PROFINET IO" on page 225.

In addition, communication processors to connect to PROFIBUS, Industrial Ether-
net, and point-to-point coupling are also available, as listed in chapter 2.13 "Bus
connection with communication modules" on page 50.

Operator control and monitoring with S7-400

The entire range of HMI devices and operator panels, as described in chapter 7
"Operator control and monitoring" on page 252, is available for the S7-400 control-
lers.

Configuration and programming with STEP 7

A CPU 400 can be configured and programmed with full functional scope (and
even for older modules) with STEP 7 V5.x. The programming languages for the us-
er program – ladder logic (LAD), function block diagram (FBD), and statement list
(STL) – are integrated in STEP 7. The Continuous Function Chart (CFC) graphical
program editor, the GRAPH sequence control, and the HiGraph state control are

2.7 High Availability with SIMATIC

41

available as option packages for the structured control language (SCL) program-
ming language.

Configuration and programming with STEP 7 Professional inside TIA Portal ac-
counts for the modules which are currently being delivered. The programming
languages for the user program – ladder logic (LAD), function block diagram
(FBD), and statement list (STL), structured control language (SCL), as well as the
GRAPH sequence control – are integrated in STEP 7 Professional V11.

2.7 High Availability with SIMATIC

For slow processes: software redundancy with standard components

The standard SIMATIC S7-300/400 components allow you to build a redundant sys-
tem based on software. In such a redundant setup, a standby station assumes con-
trol of the process if the master station breaks down. High availability through
software redundancy is suitable for slow processes as the switchover to the stand-
by station could take up to several seconds depending on the configuration of the

Fig. 2.11 Example of a setup with software redundancy

Software redundancy

Redundant link

P
R

O
F

IB
U

S
D

P

S

S7-400 (master CPU)

S7-300 (reserve CPU)

2 SIMATIC Controllers – the Hardware Platform

42

PLCs. During this period, all process signals are “frozen”. The standby station
then continues processing with the most recent valid data from the master sta-
tion.

Both participating CPUs exchange the current data over a (random) subnet. Exist-
ing communication links can also be used. Single-channel redundancy of the in-
put/output modules is implemented with distributed I/O (ET 200M with IM 153-2
interface module for redundant PROFIBUS DP). Each CPU can also independently
control non-redundant I/O, both in central and distributed configurations.

The “Software Redundancy” option package is available for configuration.

High availability using hot standby: SIMATIC S7-400H

SIMATIC S7-400H is a highly available programmable logic controller using a re-
dundant configuration with two CPUs 4xxH or 4xxF/H, each equipped with a syn-
chronization module for data synchronization via fiber-optic cable. Both devices
work in “hot standby” mode with automatic, bumpless switchover to the standby
unit, which takes over full control of the user program if the primary unit fails.

The high-availability system can comprise either two separate central racks UR1 or
UR2 or one split rack UR2-H. Alongside the always redundant power supplies and
CPUs, you can connect peripherals with normal or high availability (Fig. 2.12).

A high-availability S7 connection over an Industrial Ethernet or PROFIBUS subnet
can consist of up to four subordinate connections depending on the configura-
tion. Of these, two are always established (active) in order to retain the communi-
cation in the event of a fault.

The required software “S7 H Systems” is included in STEP 7 V5.3 or higher. The li-
brary “Redundant IO (V1)” supports you when scanning and controlling the redun-
dant I/O.

2.8 Safety Integrated with SIMATIC S7

For increased safety requirements: safety-related SIMATIC

Failsafe automation systems control processes and machines with the aim of re-
ducing the hazards to personnel and the environment as far as possible without
restricting production more than is absolutely necessary. The safety-related
SIMATIC systems are used in cases where the safe state can be achieved by imme-
diate shutdown. They comply with the following safety requirements: Safety In-
tegrity Level SIL1 to SIL3 in accordance with IEC 61058 and Category 1 to Category
4 in accordance with EN 954-1.

The enhanced safety functions are essentially achieved by means of a safety-relat-
ed user program in an appropriately designed CPU (F-CPU), by means of failsafe
I/O modules (F modules), and by the higher-level PROFIsafe safety profile with the
PROFIBUS DP or PROFINET IO “standard” bus systems.

2.8 Safety Integrated with SIMATIC S7

43

Fig. 2.12 Process I/O designs in a SIMATIC S7-400H system

Single-channel single-sided configuration

Redundant single-sided configuration Redundant switched configuration

Single-channel switched configuration

SIMATIC S7-400H

2 SIMATIC Controllers – the Hardware Platform

44

Failsafe I/O

The F modules required for safety operation are available in different versions. In
the S7-300 design, F modules are provided for centralized use in a failsafe S7-300
station or for distributed use in an ET 200M station. Failsafe power modules and
electronic modules are used centrally and in distributed configurations in an ET
200S station. Using S7 Distributed Safety, you can also connect failsafe PROFIBUS
DP standard slaves.

F modules can also be used in standard operation with increased diagnostics re-
quirements. You can have standard operation and safety-related operation com-
bined in the same automation system, and on the S7-400FH even with fault toler-
ance.

Focusing on machine control application: S7 Distributed Safety

S7 Distributed Safety comprises a failsafe CPU
and failsafe modules connected to the F CPU via
PROFIBUS DP or PROFINET IO. Here, the PRO-
FIsafe bus profile guarantees failsafe transmis-
sion. Currently available as F CPUs are the CPU
3xxF-2 for the S7-300, the CPU 416F-2 for the
S7-400, and the IM151-7 F CPU basic module
for the ET 200S.

Together with the F modules, the following con-
figurations are available: Centralized configu-
ration with failsafe modules on the S7-300 with
CPU 3xxF-2 and on the ET 200S with IM 151-7
F-CPU, distributed configuration with ET 200M,
ET 200S, ET 200eco or ET 200pro stations with
failsafe modules as well as failsafe DP standard
slaves and failsafe IO standard devices connect-
ed to a centralized S7-300/400 station with F-
CPU.

The safety-related program section is programmed with the languages F LAD and
F FBD with a limited operation set and fewer data types than the basic languages.
Both languages are included in the “S7 Distributed Safety” option package that
you require for configuring and programming the safety mode. The option pack-
age also contains a block library for the safety program with F blocks and tem-
plates.

Focusing on the process industry: S7 F/FH Systems

S7 F/FH Systems is based on the S7-400 automation system in the version with
normal availability and in the fault-tolerant version. The F modules required for
safety operation are connected to the S7-400 station via PROFIBUS DP with the
PROFIsafe bus profile. The following are used: ET 200M stations with F modules of

Fig. 2.13 CPU 315F-2 PN/DP

2.8 Safety Integrated with SIMATIC S7

45

S7-300 design, ET 200S stations with safety-related power and electronics mod-
ules, and ET 200eco F modules.

In the fault tolerant version S7-400FH, ET 200M stations are controlled via a re-
dundant PROFIBUS. If a detected fault results in STOP of the master CPU on the
S7-400FH, the system performs a reaction-free switchover to the hot standby CPU.

An F-Runtime license must be loaded onto each CPU to operate the S7-400F/FH.
STEP 7 V5.1 or higher is required for configuration. The option package “S7 F Sys-
tems” is required for configuring the F modules and programming the failsafe pro-
gram section. Also required are the option package “CFC” from V5.0 SP3, the option
package “S7-SCL” from V5.0, and for the fault-tolerant functions the option pack-
age “S7 H Systems” from V5.1.

With CFC (Continuous Function Chart), you interconnect special function blocks
from the supplied F library. As well as functions for programming safety func-
tions, the blocks also contain functions for detecting and responding to faults. In
the event of failures and faults, the F system can thus be maintained in a safe state

Fig. 2.14 Design versions for S7 Distributed Safety and S7 FH Systems

S7 Distributed Safety S7 FH systems

Safety Integrated for SIMATIC S7

ET 200M

ET 200S

ET 200S
IM 151-xF CPU

PROFIBUS DP
with PROFIsafeP

R
O

F
IN

E
T

IO
P

R
O

F
IB

U
S

D
P

w
it

h
 P

R
O

F
Is

a
fe

ET 200M

ET 200M

S7-4xxFHS7-4xxF

S

ET 200proET 200eco
S

S

S7-3xxF
S

2 SIMATIC Controllers – the Hardware Platform

46

or changed to a safe state. If a fault is detected in the safety program, the F section
of the plant is switched off, whereas the remaining part can continue to operate.

2.9 Use Under Difficult Conditions: SIPLUS

“SIPLUS extreme” is the product range with hardened components for use in
harsh environments. Standard devices that have been specially converted and re-
fined for the respective application are used as the basis for the SIPLUS compo-
nents.

Harsh environmental conditions can include:

b Ambient temperature range from
–40/–25 °C to +60/+70 °C

b Condensation, increased humidity,
increased degree of protection (dust,
water)

b Extreme loading by media
(conformal coating), e.g. toxic
atmospheres

b Increased mechanical load, increased
electrical immunity

b Voltage ranges deviating from the
standard

b Ambient conditions on rail vehicles

SIPLUS modules are manufactured on re-
quest for the environmental conditions
specified. Please therefore observe the technical specifications of the respective
module.

SIPLUS modules are available for SIMATIC programmable controllers in all de-
signs: S7-200, S7-1200, S7-300, S7-400, ET 200, and for other Siemens device fami-
lies. SIPLUS modules include power supplies; CPUs, signal, function and commu-
nication modules, and numerous special modules.

Configuring of SIPLUS modules

The functionality of a SIPLUS module is the same as that of the corresponding
standard module; the Order No. (MLFB, machine-readable product code) begins
with 6AG1. SIPLUS modules are not included with their order numbers in the
hardware catalog of STEP 7.

Since the SIPLUS modules have the same functions as existing modules, you can
use the corresponding equivalent type (the standard module) when configuring.

Fig. 2.15
SIPLUS CPU 1214C DC/DC/DC,
6AG1 214-1AE30-0XB0
based on 6ES7 214-1AE30-0XB0

2.10 Process Connection with Digital Modules

47

This equivalent type (“based on 6ES7 … ”) can be found on the device's nameplate,
in the SIPLUS data sheets, and on the Internet in the Siemens Industry Mall.

2.10 Process Connection with Digital Modules

Digital modules are signal converters for binary process signals. The CPU of the
SIMATIC station receives information about the operating modes of the process
through digital input modules and intervenes in the process through digital out-
put modules. The digital signals between backplane bus and process are isolated
by means of optocouplers.

Digital modules are available with one, two, four, or eight bytes corresponding to
8, 16, 32 or 64 signals. Digital modules are preferably addressed in the process im-
age so that the signal states can be processed bit by bit. User-friendly digital mod-
ules supply diagnostic information about the state of the module.

Fig. 2.16 shows digital input
modules with the various de-
signs of the SIMATIC automa-
tion families in approximately
the same scale. From left to
right, these are the modules

b EM 221
(S7-200: DI 8 × 24 V DC)

b SM 1221
(S7-1200: DI 16 × 24 V DC)

b SM 321
(S7-300: DI 16 × 24 V DC)

b SM 421
(S7-400: DI 32 × 24 V DC).

The same designs (appearance,
proportions) apply for the entire module range of signal modules (SM), function
modules (FM), and communication modules (CP).

Digital input modules

Digital input modules convert the external signal voltage, usually 24 V DC or 120
V/230 V AC, into the internal signal level. The connected sensor must be within the
permissible voltage range and provide the required input current with the signal
status “1” so that the module can switch reliably. In addition, the input signals are
filtered, i.e. interference on the lines is suppressed and glitches eliminated. The
filtering results in the input signals being delayed. For digital input modules with
hardware interrupt triggering, you can reduce the input delay. A compromise

Fig. 2.16
I/O modules in different
designs

2 SIMATIC Controllers – the Hardware Platform

48

must be found here between interference resistance (long delay) and fast signal
recording (short delay).

Digital output modules

To be able to intervene in the process, the CPU requires signal converters which
convert the internal signal states to the voltage and current levels used in the
plant or process. The digital output modules are equipped with a data memory
which stores the received data and then passes this information on to an amplifi-
er. The amplifier provides the required switching capacity. For d.c. voltage amplifi-
ers, short-circuit protection is implemented electronically, whereas a.c. voltage
amplifiers are protected by means of fine-wire fuses.

When you select a digital output module, you consider its switching capacity, its
total permissible load and the residual current. The residual current at signal
state “0” must not fall below the permitted limit, otherwise the activated device
will not respond to a stop signal.

In the operating modes STOP and HALT, and also during the start-up period lead-
ing to program execution, an output disable signal (OD signal) disables all digital
output modules. In this state, they either do not supply any voltage, supply a de-
fined substitute value, or maintain the value set last.

Explosion-proof digital modules

SIMATIC explosion-proof digital modules are “associated electrical equipment”
with “intrinsically safe” protection ([EEx ib] IIC acc. to DIN EN 50020). They are ap-
proved for the connection of intrinsically safe electrical devices located in zone 1
or 2. The modules are installed outside hazardous areas. The load voltage of 24V
DC is routed through the LK393 cable duct. Explosion-proof modules are used in
S7-300 stations or as distributed I/O in ET 200M stations. You use STEP 7 to config-
ure these modules.

2.11 Process connection with analog modules

Analog modules are signal converters for analog process signals. Analog input
modules convert the analog signals coming from the process or plant to digital
signals which can be processed by the CPU of the SIMATIC station. Analog output
modules convert the digital signals from the SIMATIC station to analog signals for
the process, such as setpoint values for actuators. Each analog quantity, such as a
measuring or setpoint value, occupies a “channel” on the module. Analog mod-
ules are available with 4, 8 or 16 channels which correspond to 8, 16 or 32 bytes. A
digitized analog value is internally represented as a 16-bit integer (data type INT).
Advanced analog modules supply diagnostic information about the state of the
module or limit value information.

2.12 FM modules relieve the CPU

49

Analog modules are preferably addressed outside of the process image table, espe-
cially if they are read from or written to directly. This is the case, for example, in
closed-loop control circuits whose processing cycle is independent of the main
program.

Analog input modules

Analog input modules use an integration method to convert the analog quanti-
ties received from the process (voltage, current, resistance) to digital values. De-
pending on the interference voltage suppression (for 400/60/50/10 Hz), the con-
version takes 2.5/20/20/100 milliseconds. The resolution is correspondingly high
(9/12/12/15 bits + sign). You set the basic current/voltage ranges mechanically, by
means of coding switches. Use the STEP 7 tool HW Config to set the range to
more precise values.

Analog output modules

Analog output modules convert internal digital values to analog voltages and cur-
rents required by the process. Different modules for different voltage and current
ranges are available. Internal and external signals are electrically isolated. The
digital values received from the CPU are stored in a data memory on the module.
From here they are passed on to the digital-to-analog converter which converts the
signals to analog quantities within 0.8/1.5 milliseconds. They are then transmitted
to the process.

Explosion-proof analog modules

SIMATIC explosion-proof analog modules are “associated electrical equipment”
with “intrinsically safe” protection ([EEx ib] IIC acc. to DIN EN 50020). They are ap-
proved for the connection of intrinsically safe electrical devices located in zone 1
or 2. The modules are installed outside hazardous areas. The load voltage of 24V
DC is supplied by means of the LK393 cable duct. Explosion-proof modules are
used in S7-300 stations or as distributed I/O in ET 200M stations. You use STEP 7 to
configure these modules.

SIMATIC S7-HART analog modules are also of the “intrinsically safe” type and can
be used in the ET 200M distributed I/O station. The modules take over the task of a
HART master allowing the connection of two HART field devices acting as slaves.
Data communication is based on the HART protocol, version 5.4.

2.12 FM modules relieve the CPU

Function modules (FM) are signal-preprocessing, “intelligent” modules that pre-
pare and process signals coming from the process independent of the CPU, and
either return them to the process or make them available at the CPU's internal in-
terface. They handle functions that the CPU cannot usually execute quickly
enough, such as counting pulses, positioning, or controlling drives (Table 2.5).

2 SIMATIC Controllers – the Hardware Platform

50

The FM modules are generally parameterized with HW Config. Just like the load-
able standard blocks for the user program, the required configuration filters are
part of the scope of supply and are included automatically when STEP 7 is in-
stalled. Diagnostic screens for testing and commissioning are available.

2.13 Bus connection with communication modules

Communication processors (CPs), for S7-1200: communication modules (CM), or
communication boards (CB) relieve the CPU of communication tasks. They estab-
lish the physical connection to the network, take over establishment of the connec-
tion and data transport via the network, and provide the required communication
services for the CPU and the user program (Table 2.6).

Table 2.5 Selection of FM modules with functions and properties (S7-300/400)

FM 350, FM 450

Fast
count
up/
down

FM 350-1: 1 channel
FM 450-1: 2 channels

Count up to 500 kHz with ± 31 bits.

FM 350-2: 8 channels

Count up to 20 kHz with ± 31 bits,
also suitable for NAMUR encoder.

b Connection of 5 V/24 V incremental-
encoders

b Gate control, also directly with digital-
input on the FM

b At zero point or when a comparison value
is reached: direct control of digital output
or generation of hardware interrupt

FM 351, FM 451

Positioning for
rapid and creep
speed drives

Adjustment of 2 or 3 independent axes with
4 digital outputs per axis for controlling con-
tactors or frequency converters.

Position detection can be carried out either
incrementally or synchronous-serially.

b Set up (traversing in inching mode)
b Incremental feed mode, absolute and rel-

ative
b Reference point approach
b Zero offset
b Set reference point
b Delete distance-to-go

FM 352, FM 452

Electronic cam con-
trol

32 cam tracks with 32/64/128 cams and
parameterizable cam characteristics
(e.g. position-based or time-based cams)
control
13 or 16 digital outputs.

Position detection can be carried out either
incrementally or synchronous-serially.

b Length measurement
b Set reference point
b On-the-fly actual value setting
b Zero offset
b Change cam edges
b Simulation operation

FM 353, FM 453

Positioning for
stepper motors

FM 354, FM 453

Positioning for ser-
vomotors

Positioning of one (FM 353/354) or up to
three (FM 453) drives,
can be used for linear and rotary axes.

The modules handle both simple point-to-
point positioning as well as complex travers-
ing profiles.

b Set up (traversing in inching mode)
b Incremental mode
b Automatic following block/single block
b Length measurement
b Start/stop via direct digital inputs
b Jerk limit
b On-the-fly actual value setting

FM 455

Control unit for
pressure, tempera-
ture and flow rate
control

PID control algorithm or self-optimizing
temperature control algorithm with
16 channels

FM 455C: continuous controller
FM 455S: step or pulse controller

On failure or STOP of the CPU, the
FM 455 enters backup mode.

Pre-configured controller structures for
e.g.:
b Fixed setpoint control
b Cascade control
b Ratio control
b 3-component control

Sampling time at a resolution of
b 12 bits: 20 ms at 50 Hz
b 14 bits: 100 ms at 50 Hz

2.13 Bus connection with communication modules

51

The communication modules are parameterized with HW Config. Just like the
loadable standard blocks for the user program, the required configuration filters
are part of the scope of supply and are included automatically when STEP 7 is in-
stalled. Diagnostic screens for testing and commissioning are available.

The communication modules for connecting to PROFIBUS and PROFINET or Indus-
trial Ethernet supplement the corresponding interfaces on the CPU – in part with
additional functions. With these communication modules, additional PROFIBUS
DP master systems or PROFINET IO systems can be created in the PLC station.

Table 2.6 Selection of communications processors with functions and properties

CM 1241,
CB 1241,
CP 340, CP 341,
CP 440, CP 441

Point-to-point con-
nection

Serial point-to-point connection
with one interface (CP 441-2 with two
interfaces).

The interfaces of CP 341 and
CP 441-2 are designed for non-resident
customer-specific drivers.

Physical transmission properties:
b RS 232C (V.24) (not with CP 440, CB 1241)
b 20 mA (TTY) (not with CP 440, CM/CB 1241)
b RS 422/RS 485 (X.27)

Implemented protocols:
b ASCII driver
b 3964(R) (not with CM/CB 1241)
b RK 512 (with CP 341 and CP 441-2)
b Printer driver (CP 341 and CP 441-2)

CM 1243-2,
CP 343-2P

AS-i master

AS-Interface master for connection of up
to 62 AS-Interface slaves.

With configuration support of the
AS-Interface network

CM 1242-5,
CM 1243-5,
CP 342-5,
CP 443-5 Ext.

PROFIBUS DP

PROFIBUS DP master
(CM 1243-5, CP 342-5, CP 443-5 Ext.),

PROFIBUS DP slave
(CM 1242-5, CP 342-5).

Communication services:
b PROFIBUS DP

With CP 342-5 and CP 443-5 Ext. also:
b S7 communication
b S5-compatible communication

CP 343-5,
CP 443-5 Basic

PROFIBUS FMS

Connection to PROFIBUS FMS. Communication services:
b PROFIBUS FMS
b S7 communication
b S5-compatible communication

CP 343-1 Lean

Industrial Ethernet

Connection to Industrial Ethernet with
integrated 2-port switch.
Can be used as PROFINET IO device.

Communication services/connections:
b S7 communication
b S5-compatible communication
b IE communication (TCP/IP and UDP)

CP 343-1,
CP 443-1

Industrial Ethernet

Connection to Industrial Ethernet with
integrated 2-port switch.
Can be used as PROFINET IO controller,
CP 343-1 also as PROFINET
IO device.

Communication services/connections:
b S7 communication
b S5-compatible communication
b IE communication (TCP/IP and UDP)
b PROFINET CBA

CP 343-1 Adv.
CP 443-1 Adv.

Industrial Ethernet

Connection to Industrial Ethernet.
Can be used as PROFINET IO controller
with real-time capabilities, CP 343-1 Adv.
also as PROFINET IO device.

With one Gigabit interface.

Communication services/connections:
b S7 communication
b IE communication (TCP/IP and UDP)
b PROFINET CBA
b IT communication (HTTP communication, e-

mail client, FTP communication, access to
data blocks via
FTP server)

2 SIMATIC Controllers – the Hardware Platform

52

2.14 SIMATIC PC-based Automation

The PC-based automation gives you the functionality of a PLC on a personal com-
puter (PC). You can then connect this with PC applications, e.g. for data process-
ing, communication, and visualization. Several industry-standard PCs support
you in the use of PC-based Automation.

WinAC – the software PLC for the PC

SIMATIC WinAC (Windows Automation Center) combines the functions of open-
loop control, technology, data processing, visualization, and communication on
one personal computer (PC) and is the first choice if you have to handle PC appli-
cations in addition to classic PLC tasks. WinAC controllers are configured and pro-
grammed exactly like S7 controllers using the standard STEP 7 software.

SIMATIC WinAC RTX is the SIMATIC software controller for PC-based automation
solutions and permits real-time capable, deterministic control functions to be car-
ried out on the PC. In the failsafe WinAC RTX F version, the software controller is
sufficient in addition to the safety requirements up to SIL 3 (IEC 61508). WinAC
RTX 2010 is executable under the operating systems Windows XP SP2 and SP3 as
well as Windows 7 (32-bit).

A real-time response means that the system processes external events within a de-
fined period. If it reacts in a predictable manner, it is referred to as deterministic.
With WinAC RTX 2008, the control program is executed in a fixed cycle, and can also
interrupt the Windows applications being carried out in parallel. It is possible to de-
fine the priority of the control program compared to the Windows applications.

The process I/O is connected via PROFIBUS or PROFINET. Suitable PCI adapters are
available for this purpose. Here, WinAC RTX is the DP master or the IO controller.
Isochronous mode is supported in both cases, that is the synchronous reading in,
processing, and output of I/O signals in a fixed time pattern (constant bus cycle
time).

SIMATIC WinAC ODK (open development kit) permits the control program to
flexibly use all resources of the PC. WinAC ODK V4.2 provides three interfaces for
this purpose: Custom Code Extension Interface (CCX) for calling own programs in
C/C++ from the control program of WinAC, Shared Memory Extension Interface
(SMX) for fast data exchange between WinAC and Windows applications, and Con-
troller Management Interface (CMI) for integrating the WinAC panel functionality
into a Windows application.

Industrial PC – the hardware platform for PC-based automation

The industrial PCs are available as Rack PCs in a 19” enclosure, Box PCs in a com-
pact, space-saving enclosure, and Panel PCs with a display for use in control cabi-
nets, consoles, and switchboards directly on-site (see chapter 7.10 "SIMATIC Panel
PC" on page 264).

2.14 SIMATIC PC-based Automation

53

Rack PCs are flexible, fault-tolerant industrial PC systems for high-performance
applications in a space-optimized 19” enclosure with depth of only 500 mm for in-
stallation in control cabinets. The front side or front door can be locked. Rack PCs
are designed for 24-hour continuous operation. Dust protection thanks to the
overpressure ventilation concept with fan on the front and dust filter.

Three device classes are available for various requirements:

b SIMATIC IPC 547 – performance at an attractive price

b SIMATIC IPC 647 – high compactness with high industrial functionality

b SIMATIC IPC 847 – high expandability with high industrial functionality

The processors are available in several versions (see table 2.7), as is the mass stor-
age: Serial ATA 3.5” hard drive with NCQ technology or Serial ATA 2.5” solid-state
drive (SSD) with SLC technology, each for internal installation or in a swap frame
on the front (“hot swap”: replacement of the hard drive possible during opera-
tion). For increased data security through mirror disks, the Rack PCs can be
equipped with a RAID1 system, and the IPC 547D can also be equipped with a
RAID5 system (block striping with distributed parity). The optical drive is either a
DVD-ROM or a DVD ±/-R/RW.

Box PCs are particularly robust industrial PC systems for high-performance appli-
cations in a space-optimized enclosure. Box PCs are designed for 24-hour continu-
ous operation. Mass storage with CompactFlash or Solid-State Drive (SSD) ensure
robust data storage.

Fig. 2.17 Overview of Rack PCs and Box PCs

Overview of industrial PCs

Rack PCs Box PCs

2 SIMATIC Controllers – the Hardware Platform

54

Table 2.7 Selected specifications for Rack PCs (basic configuration)

Type IPC 547D IPC 647C IPC 847C

Processors
(versions)

Intel Core i7-2600
(4C/8T, 3.40 GHz, 8 MB Last
Level Cache)

Intel Core i7-610E
(2C/4T, 2.53 GHz, 4 MB
cache)

Intel Core i7-610E
(2C/4T, 2.53 GHz, 4 MB
cache)

Intel Core i5-2400
(4C/4T, 3.10 GHz, 6 MB Last
Level Cache)

Intel Core i5-520E
(2C/4T, 2.4 GHz, 3 MB
cache)

Intel Core i5-520E
(2C/4T, 2.4 GHz, 3 MB
cache)

Intel Pentium Dual Core
G850 (2C/2T, 2.90 GHz,
3 MB Last Level Cache)

Intel Core i3-330E
(2C/4T, 2.13 GHz, 3 MB
cache)

Intel Core i3-330E
(2C/4T, 2.13 GHz, 3 MB
cache)

Main memory config-
uration

1 GB to 32 GB,
DDR3 1333 SDRAM

From 1 GB to 8 GB,
DDR3 1066 SDRAM

From 1 GB to 8 GB,
DDR3 1066 SDRAM

Graphic Onboard, Intel HD 2000 inte-
grated in processor,
up to 2560 x 1600 pixels,
60 Hz, 32-bit colors

Onboard, Intel GMA HD
integrated in processor,
up to 2048 x 1536 pixels,
60 Hz, 16-bit colors

Onboard, Intel GMA HD
integrated in processor,
up to 2048 x 1536 pixels,
60 Hz, 16-bit colors

Hard drives
(variants)

Internal installation

1 x 500 GB

1 x 1 TB

RAID1, 2 x 1 TB

1 x 50 GB SSD (SLC)

1 x 32 GB SSD in single level
cell (SLC) architecture

1 x 250 GB HDD

1 x 32 GB SSD in single level
cell (SLC) architecture

Installation at the
front in the swap
frame

1 x 500 GB

2 x 500 GB

RAID1, 2 x 1 TB

RAID5, 3 x 1 TB

1 x 50 GB SSD (SLC)

RAID1, 2 x 1 TB
 + 1 x 50 GB SSD (SLC)

1 x 250 GB

1 x or 2 x 500 GB

RAID1, 2 x 500 GB

1 x 250 GB

1 x or 2 x 500 GB

RAID1, 2 x 500 GB

RAID5, 3 x 500 GB

1x 32 GB SSD (SLC)

Slots for drives

On the front

1 x 3.5”;

3 x 5.25” or 1 x 3.5”;

1 x 5.25”;

3 x HDD swap frames (low
profile)

2 x HDD swap frames (low
profile);

1 x optical drive (slimline)
or 1 x CF drive

1 x 3.5”;

3 x 5.25” or 1 x 3.5”;

1 x 5.25”;

3 x HDD swap frames (low
profile)

internal 2 x 3.5” 2 x 3.5” *) 2 x 3.5” *)

Ports 2 x Gbit LAN (RJ45)

11 x USB 2.0 (8 x rear,
4 x front, 1 x internal)

2 x PS/2

1 x DisplayPort, COM1, DVI-I
each

2 x Gbit LAN (RJ45)

9 x USB 2.0 (4 x rear, 2 x
front, 1 x internal)

2 x PS/2

1 x COM1, COM2, LPT1,
DVI-I each

2 x Gbit LAN (RJ45)

9 x USB 2.0 (4 x rear, 2 x
front, 1 x internal)

2 x PS/2

1 x COM1, COM2, LPT1,
DVI-I each

Free slots

(all long)

4 x PCI

1 x PCI Express x16

1 x PCI Express x16 (4 lanes)

1 x PCI Express x8 (1 lane)

1 x PCI

1 x PCI Express x16

1 x PCI Express x8 (4 lanes)

7 x PCI

1 x PCI Express x16

3 x PCI Express x4

*) in optional, shock and vibration-damped disk-drive support as an alternative to swap frames

2.14 SIMATIC PC-based Automation

55

Table 2.8 Selected specifications for Box PCs (basic configuration)

Type IPC 227D (Nanobox) IPC 427C (Microbox) IPC 627C (Box PC)
IPC 827C (Box PC)

Processors
(optional versions)

Intel Atom E660 1.3 GHz,
2 GB RAM

Intel Core2 Duo 1.2 GHz,
800 MHz FSB, 3 MB SLC

Intel Core i7-610E processor
(2C/4T, 2.53 GHz,
4 MB cache)

Intel Atom E640 1.0 GHz,
1 GB RAM

Intel Core2 Solo 1.2 GHz,
800 MHz FSB, 3 MB SLC

Intel Core i3-330E processor
(2C/4T, 2.13 GHz,
3 MB cache)

Intel Atom E620 600 MHz,
512 MB RAM

Intel Celeron M 1.2 GHz,
800 MHz FSB, SLC 1 MB

Intel Celeron P4505 proces-
sor (2C/2T, 1.86 GHz,
2 MB Cache)

Main memory config-
uration

(see above under Proces-
sors)

1 GB to 4 GB,
DDR3 1066 SDRAM

1 GB to 8 GB,
DDR3 1066,
ECC memory 2/4/8 GB,
DDR3 1066

Graphic Onboard: DVI (digital, reso-
lution up to 1920 x 1200
pixels)

Onboard, on AGP bus:
VGA (analog, resolution up
to 1920 x 1200 pixels/true
color/60 to 120 Hz)
and DVI (digital, resolution
up to 1920 x 1200 pix-
els/true color)

Onboard (resolution 1600 x
1200 Pixel, 85 Hz, 32-bit
colors)

Mass storage
(optional versions)

Serial ATA hard disk, 2.5”,
250 MB

Serial ATA hard disk, 2.5”,
>250 GB

SATA hard disks:
250/500 GB, 3.5”;
RAID1 2 x 250 GB, 2.5”

Solid-state drive (SSD)
50 GB in SLC technology

Solid-state drive (SSD)
32 GB in SLC technology

Solid-state drive (SSD)
32 GB in SLC technology

CompactFlash drive
(replaceable, accessible):
2/4/8 GB

CompactFlash drive
(replaceable, accessible):
256 MB, 2/4/8 GB

Additionally for IP 627C:
optional second Compact-
Flash drive (internal)

CompactFlash drive (inter-
nal, not accessible): 256
MB, 2/4/8 GB

Ports 2 x Gbit LAN (RJ45)
4 x USB V2.0
1 x COM1 (RS232)

2 x Gbit LAN (RJ45)
4 x USB V2.0
1 x COM1 (RS232)

2 x Gbit LAN (RJ45)
DVI-I graphics interface
4 x USB 2.0
1 x serial (COM1)

Free slots – In expansion rack:
3 x PCI104-Plus cards

IPC 627C:
2 x PCI (175/265 mm) or
1 x PCI-Express x16 (175

mm) and
1 x PCI (265 mm)

IPC 827C:
2 x PCI (290 mm),
1 x PCI (240 mm),
1 x PCIe x16 (240 mm) and
1 x PCIe x4 (185 mm)

2 SIMATIC Controllers – the Hardware Platform

56

Four device classes are available for different requirements:

b SIMATIC IPC 227D – the new Nanobox PC with maximum flexibility – absolutely
maintenance-free

b SIMATIC IPC 427C – ultra-compact and maintenance-free: the flexible Microbox
PC

b SIMATIC IPC 627C (Box PC) – high performance in the most restricted space

b SIMATIC IPC 827C (Box PC) – high performance with high expandability

The processors are available in several versions (see table 2.8), as is the mass stor-
age: Hard disks Serial ATA 3.5”, Solid-State Drive (SSD) Serial ATA 2.5” with SLC
technology or CompactFlash drive. For increased data security through mirror
drives, the IPC 627C and IPC 827C can be equipped with a RAID1 system.

I/O modules are connected via PROFIBUS or PROFINET (not with IPC 227D). IPC
427C can be equipped with up to four expansion frames that contain binary or an-
alog inputs and outputs, depending on version.

Optical drives can be connected via USB for the IPC 227D and IPC 427C. IPC 627C
and IPC 827C include an optical DVD drive.

The devices can be supplied without operating system, with a standard operat-
ing system, or with an embedded operating system. The IPC 227D and IPC 427C
are available as preinstalled turnkey bundles with the WinAC RTX PLC software
and/or WinCC flexible/RT HMI software.

Embedded controllers in S7-300 design

SIMATIC S7-mEC (modular embedded controller)
is an embedded controller in S7-300 design and
can be expanded by up to 32 I/O modules (SM) in
S7-300 design in several tiers. The most important
field of use is in the construction of special and se-
ries machines. Programming, diagnostics, and
commissioning are carried out with STEP 7.

The processor is an Intel Core Duo 1.2 GHz, the
memory comprises 1 GB RAM and 4 GB Flash Disk.
The controller has interfaces for 10/100 Mbit/s
Ethernet RJ45 (PROFINET) and USB. The operating
system is Microsoft Windows XP embedded. The
software packages WinAC RTX 2010 and SIMATIC Softnet-S7 Lean, including
SIMATIC NET OPC Server, are pre-installed in the RTX version.

There are extension modules available for additional PC interfaces (DVI-I, USB,
Gigabit Ethernet and serial interfaces, memory card and PCI-104 slots).

Fig. 2.18 SIMATIC S7-mEC

2.15 ET 200 distributed I/O system

57

2.15 ET 200 distributed I/O system

ET 200 is the device family for the distributed I/Os on PROFIBUS DP and PROFINET
IO. Depending on their use (locally on the machine or in the process), the mechan-
ical properties can be highly different, especially the degree of protection: IP 20
for installation in a control cabinet and IP 65 for mounting directly on the ma-
chine.

The range of ET 200 stations extends from a simple compact station practically
corresponding to an I/O module, to a station with modular design and several
modules, up to the “intelligent” station, which can execute a user program with its
own CPU.

ET 200L

ET 200L is a very small and compact I/O
device with IP 20 degree of protection
and is preferably used for the lower
performance range and where only
limited space is available.

The maximum data transfer rate on the
PROFIBUS is 1.5 Mbit/s. ET 200L con-
sists of a terminal block to which the
wiring is connected and an electronics
block containing the digital inputs and
outputs. ET 200L is available with 16 or
32 channels and cannot be expanded.
The ET 200L with 16 digital inputs is also available in a hardened SIPLUS version.

ET 200M

ET 200M is a modular I/O system with
IP 20 degree of protection and is par-
ticularly suitable for individual and
complex automation tasks. Depending
on the interface module, up to 8 or 12
modules from the S7-300 range can be
used (the High-Feature version also al-
lows the use of function and communi-
cation modules).

The internal bus signals are passed on
from module to module via a bus con-
nector. If active bus submodules are
used onto which the modules are snapped, the modules can be replaced during
running operation (hot swapping).

Fig. 2.19 ET 200L for PROFIBUS DP

Fig. 2.20 ET 200M with IM 153-4 PN

2 SIMATIC Controllers – the Hardware Platform

58

The maximum data transfer rate on the PROFIBUS DP is 12 Mbit/s and 10 or 100
Mbit/s on the PROFINET IO. With the integral 2-port switch, a linear topology can
be implemented with the ET 200M as IO device without external devices.

The ET 200M is also available in a hardened SIPLUS version, and can be used to-
gether with S7-300 modules possessing the same characteristics in environments
with increased demands.

ET 200M can also be used in fault-tolerant systems for redundant operation. The
failsafe S7-300 modules can be used in the ET 200M – also mixed with standard
modules. Together with Ex digital and analog modules, intrinsically-safe sensors
and actuators can be connected from zones 1 and 2 of hazardous plants.

ET 200S

ET 200S is a versatile I/O system with
degree of protection IP 20 whose bit-
modular design allows exact adapta-
tion to the automation task. Digital in-
put/output modules, analog input/out-
put modules, technology modules,
motor starters, and frequency convert-
ers are available. Up to 63 I/O modules
can be connected to the ET 200S inter-
face module. The I/O modules can be
replaced during ongoing operation;
they are snapped onto terminal mod-
ules which contain the wiring. ET 200S
is available with a PROFIBUS DP inter-
face (maximum data transfer rate 12 Mbit/s) or a PROFINET IO interface (maxi-
mum data transfer rate 100 Mbit/s).

Together with the IM 151-7 CPU interface module, ET 200S can be used as a mini
PLC. In association with the DP master module, the IM 151-7 CPU also has DP mas-
ter functionality. The PLC functionality corresponds to that of a CPU S7-314. ET
200S with the IM 151-8 PN/DP CPU interface module can additionally be operated
as an IO controller on PROFINET IO.

ET 200S is available with integral safety technology, where standard modules and
failsafe modules can be used together. A failsafe mini PLC can be implemented
with the IM 151-7 F-CPU interface module and the S7 Distributed Safety option
package.

The ET 200S is also available in a hardened SIPLUS version as a PROFIBUS-DP slave
with digital inputs and outputs.

ET 200S COMPACT is a range of interface modules with onboard I/O, either with 32
digital inputs or with 16 digital inputs and outputs. Up to 12 ET 200S I/O modules
(except F modules) can be connected to these interface modules so that a station
can have up to 128 channels (mixed digital and analog).

Fig. 2.21 ET 200S with IM 151 CPU

2.15 ET 200 distributed I/O system

59

ET 200S can also be used in fault-tolerant systems following a Y-Link (bus coupler
for transition from redundant to single-channel PROFIBUS DP).

ET 200iSP

ET 200iSP is an intrinsically-safe I/O
system with degree of protection IP 30
for use in hazardous gas and dust ar-
eas, i.e. in zones 1 and 2 as well as 21
and 22, with connection of intrinsical-
ly-safe signals from zones 0, 1 or 2 and
20, 21, or 22.

The ET 200iSP consists of a power sup-
ply module, an interface module and
up to 32 electronics modules for the
digital and analog inputs and outputs.
The modules are snapped onto terminal modules, and hot swapping is possible.

To achieve intrinsically-safe operation of an ET200iSP, the bus segment must also
have an intrinsically-safe design. This is achieved using an RS 485-IS coupler
(6ES7 972-0AC80-0XA0) as isolating transformer. The maximum data transfer rate
is 1.5 Mbit/s. The ET 200iSP can also be used for redundant operation in fault-tol-
erant systems.

ET 200R

ET 200R is available as a handling or
welding module with IP 65 degree of
protection in a metal enclosure for en-
vironments with high electromagnetic
interference. The module has 16 chan-
nels, of which 8 channels are digital
outputs and 8 channels can be individ-
ually parameterized as digital inputs
or outputs. The maximum data trans-
fer rate on the PROFIBUS is 12 Mbit/s.

ET 200eco

ET 200eco with IP 65/67 degree of pro-
tection is the low-cost solution for pro-
cessing digital signals at machine lev-
el.ET 200eco comprises a basic module
and a connection block of different designs. Modules are available with 8 or 16
digital inputs, 8 or 16 digital outputs, 8 digital inputs and outputs each, and in fail-
safe versions with 4 or 8 digital inputs.

Fig. 2.22 ET 200iSP with redundant IM 152-1

Fig. 2.23 ET 200R (left) and ET 200eco with
ECOFAST connection

2 SIMATIC Controllers – the Hardware Platform

60

The maximum data transfer rate on PROFIBUS is 12 Mbit/s. During commissioning
and servicing, the modules can be disconnected interruption-free from the
PROFIBUS and reconnected.

ET 200eco PN is the compact block I/O for processing digital, analog and IO-Link
signals for connection to the PROFINET IO bus system. The design of the digital
input and output modules is as with the PROFIBUS version of ET 200eco. Addition-
ally available are an analog input module with 8 channels (4 × U/I, 4 × TC/RTD), an
analog output module with 4 channels (U/I), and an IO-Link master with 4 IO-Link
signals, 8 digital inputs, and 4 digital outputs.

ET 200eco PN is equipped with a 2-port switch so that a linear topology can be set
up without additional devices. The maximum data transfer rate on the PROFINET
is 100 Mbit/s.

ET 200pro

ET 200pro is a modular I/O system with
IP 65/67 degree of protection for use
without a control cabinet. It consists of
a module support and connection
modules which accommodate the in-
terface module for the bus connection
and the electronic modules. Power
modules for the load power supply
combine the electronic modules into
potential groups.

The electronic modules are digital inputs/outputs and analog inputs/outputs. They
can be replaced during ongoing operation. A frequency converter and motor start-
er (direct-on-line and reversing starter) as well as a pneumatic interface module
with 16 outputs for the FESTO CPV 10 valve terminal are also available in this de-
sign.

Interface modules are available for ET 200pro with a PROFIBUS DP interface (maxi-
mum data transfer rate 12 Mbit/s) or a PROFINET IO interface (maximum data
transfer rate 100 Mbit/s) with the facility for wireless connection to a PROFINET IO
controller. The PROFINET interface module has a 2-port switch for easy configura-
tion of a linear topology.

Together with the IM 154-8 PN/DP CPU interface module, ET 200pro can be used as
a mini PLC on site. Operation as a DP master or DP slave is possible on the
PROFIBUS DP and as an IO controller on the PROFINET IO. The PLC functionality of
the interface module corresponds to that of a CPU 315-2 PN/DP.

Fig. 2.24 ET 200pro with digital modules

2.16 The SIMATIC programming device

61

2.16 The SIMATIC programming device

The Field PG M3 is a mobile, industry-standard notebook for the commissioning,
service, and maintenance of automation plants. It features high-performance Intel
Core i processor technology, a 15.6” widescreen display, long battery life, fast
work memory, and all standard interfaces for industrial applications.

Either Windows XP Professional English Multilanguage (32-bit) or Windows 7 Ulti-
mate (32-bit, available soon: 64-bit) is pre-installed as operating system; English,
German, French, Spanish, or Italian can be selected as language.

The engineering software is also pre-installed (status in 2011): STEP 7 (V5.5 with
option packages for S7-GRAPH, S7-SCL and S7-PLCSIM), STEP 7 Professional (TIA
Portal, V11.0), WinCC flexible Advanced, WinCC Advanced (TIA Portal) and – un-
der Windows XP also – STEP 7-Micro/Win and STEP 5.

The pre-installed software must be ac-
tivated. Every Field PG M3 is delivered
as standard with a license that is limit-
ed to 14 days. The following licenses
can also be acquired:

b STEP 7 Professional license (in-
cludes licenses for STEP 7 Basic/Pro-
fessional TIA Portal, WinCC flexible
Advanced, STEP 7-Micro/Win and –
optionally – STEP 5)

b STEP 7 Professional Power Pack li-
cense for upgrading from STEP 7 to
STEP 7 Professional (TIA Portal)

b Upgrade license for STEP 7 for users who already own older versions of the re-
spective software

Available as an accessory, the Image & Partition Creator V3.1 data backup software
allows the creation of a backup image of a drive and the restoration of a drive
from a backup image.

The programming device can be ordered as a standard or premium version. The
Premium/S5 version also has an integrated S5 online interface and an S5 EPROM
adapter. All SIMATIC Memory Cards can be programmed (interfaces for memory
card and Micro Memory Card).

The integral wireless LAN (in accordance with IEEE 802.11 a/b/g/n) is approved for
operation in Europe (CE), the USA (FCC), Canada (IC), and China (CCC).

Fig. 2.25 Field PG M3

3 STEP 7: Engineering Tool for SIMATIC

62

3 STEP 7: Engineering Tool for SIMATIC

STEP 7 is the engineering tool for SIMATIC and runs on a standard PC under the
Microsoft Windows operating systems. STEP 7 is available in different versions.

A “generation change” is currently underway. In addition to the standard V5.x
versions of STEP 7 (“STEP 7 with SIMATIC Manager”), there are now also the new
STEP 7 V1x versions (“STEP 7 inside TIA Portal”). The most important new fea-
tures are an improved user interface and integration into the TIA Portal with
cross-application data management in combination with other automation tools
such as WinCC, the engineering tool for HMI devices.

3.1 Overview of STEP 7 variants

STEP 7 V5.5

STEP 7 is the basic software for the SIMATIC S7-300/400, SIMATIC ET 200 CPU, and
SIMATIC WinAC programmable logic controllers. As the central tool, SIMATIC Man-
ager manages any generated automation data and all tools required for process-
ing this data. With STEP 7, you configure the hardware of the SIMATIC controllers,
set the module addresses and parameters, and configure the network connec-
tions. Last but not least, STEP 7 provides the programming languages ladder logic
(LAD), function block diagram (FBD), and statement list (STL), with which you can
write the user program for the controller.

STEP 7 is supplied with support for five languages (English, German, French, Ital-
ian, and Spanish). Versions in Japanese and Chinese are also available. In version
V5.5 with SP1, STEP 7 requires the operating system MS Windows XP Professional
with SP2 or SP3, MS Windows Server 2003 SP2 standard edition as a workstation,
MS Windows 7 32/64-bit Ultimate, Professional, and Enterprise (standard installa-
tion, not with XP mode), or MS Windows Server 2008 R2 64-bit. STEP 7 requires up
to 2 GB on the hard disk, depending on the scope of installation and on the operat-
ing system used. A swap file is also necessary and its size must be at least twice
that of the main memory.

You require a license (user authorization) in order to use STEP 7. It is supplied on
a USB flash drive. You will be requested to provide authorization after installing
STEP 7 if a license key is not yet present on the hard disk. You can also provide the
authorization at a later time. If you lose the authorization, e.g. due to a defective
hard disk, you can revert to the trial license delivered with STEP 7, which is valid
for a limited duration until you acquire a new authorization.

3.1 Overview of STEP 7 variants

63

STEP 7 Professional

STEP 7 Professional comprises STEP 7 and the option packages S7-GRAPH, S7-SCL,
and S7-PLCSIM. In addition to the PLC languages known from STEP 7, ladder logic
(LAD), function block diagram (FBD), and statement list (STL), STEP 7 Professional
thus also supports the remaining IEC languages GRAPH and structured control
language (SCL). S7-PLCSIM furthermore permits an offline simulation of the user
program.

The requirements to install and operate STEP 7 Professional are the same as with
STEP 7.

STEP 7 Lite

STEP 7 Lite is a low-cost alternative for simple stand-alone applications with
SIMATIC S7-300, ET 200S, and ET 200X. With STEP 7 Lite you configure the hard-
ware for SIMATIC S7-300 including the distributed I/O. The programming lan-
guages ladder logic (LAD), function block diagram (FBD), and statement list (STL)
are fully supported. User programs created with STEP 7 Lite can be further pro-
cessed under STEP 7. The option packages S7-PLCSIM and TeleService can be used
in combination with STEP 7 Lite. In version V3.0 with SP4, STEP 7 Lite runs under
the operating systems MS Windows XP Home with SP2 and SP3 and MS Windows
XP Professional with SP2 and SP3, with MS Internet Explorer 6.0 or above.

STEP 7 Micro/Win

STEP 7 Micro/WIN is the engineering software for SIMATIC S7-200. It permits you
to create the user program, optimized for processing in an S7-200 CPU, in the
form of a statement list or graphically as an LAD or FBD representation. The user
program consists of one singular block that can contain subprograms. The func-
tional scope of the S7-200 contains, among others, binary operations, timer and
counter functions, fixed point and floating point arithmetic, comparison func-
tions, PID control, and data transfer. STEP 7 Micro/Win V4.0 with SP4 runs under
the operating systems MS Windows 2000 with SP3 and MS Windows XP Home/Pro-
fessional.

STEP 7 V11 (TIA Portal)

STEP 7 Basic/Professional inside TIA Portal is supplied in five languages: English,
French, German, Italian, and Spanish. You require a license (user authorization)
in order to use STEP 7. It is supplied on a USB flash drive. You will be requested to
provide authorization after installing STEP 7 if a license key is not yet present on
the hard disk. You can also provide the authorization at a later time. If you lose
the authorization, e.g. due to a defective hard disk, you can revert to the trial li-
cense delivered with STEP 7, which is valid for a limited duration until you acquire
a new authorization.

A dual-core processor with 2.2 GHz or similar is recommended. The main memory
should be 2 GB of DDR2 RAM. STEP 7 Basic requires approx. 2 GB on the hard disk.

3 STEP 7: Engineering Tool for SIMATIC

64

STEP 7 Basic V11 (TIA Portal)

STEP 7 Basic (TIA Portal) is the tool for programming the SIMATIC S7-1200 pro-
grammable controller. With STEP 7 Basic, you configure the hardware of the
S7-1200 controller, parameterize the modules, and configure the data communi-
cation between S7 stations and to HMI stations.

The control program is created in the programming languages Ladder Logic
(LAD), Function Block Diagram (FBD), and Structured Control Language (SCL).
STEP 7 Basic also supports you in testing, commissioning, service, and in config-
uring the integrated motion and technology functionality in a CPU 1200. Further-
more, STEP 7 Basic contains the engineering tool WinCC Basic for configuring the
PROFINET-based SIMATIC HMI Basic Panels.

In version V11 with SP 2, STEP 7 Basic requires the operating system MS Windows
XP (Home with SP3 or Professional with SP3) or MS Windows 7 (Home Premium,
Professional, Enterprise, or Ultimate) 32 and 64-bit.

STEP 7 Professional V11 (TIA Portal)

STEP 7 Professional (TIA Portal) is the tool for programming the automation sys-
tems SIMATIC S7-300/400, SIMATIC S7-1200, SIMATIC ET 200 CPU and SIMATIC PC
systems (SIMATIC WinAC). With STEP 7 Professional, you configure the hardware
of the SIMATIC controllers, parameterize the modules, and configure the data
communication between S7 stations and to HMI stations.

The control program is created in the programming languages Ladder Logic
(LAD), Function Block Diagram (FBD), and Structured Control Language (SCL). In
addition, statement list (STL) and GRAPH sequence control are available (not for
S7-1200). The simulation software PLCSIM is integrated in STEP 7 Professional for
testing the user program in offline mode. STEP 7 Professional also supports you in
testing, commissioning, service, and in configuring the motion and technology
functionality integrated in a CPU. Furthermore, STEP 7 Professional contains the
engineering tool WinCC Basic for configuring the PROFINET-based SIMATIC HMI
Basic Panels.

STEP 7 Professional V11 with SP 2 requires as operating system MS Windows XP
(Professional with SP3), MS Windows 2003 Server R2 (SP2 standard edition), MS
Windows 7 (Ultimate, Professional or Enterprise) 32-bit and 64-bit, or MS Win-
dows 2008 Server (SP2 standard edition).

3.2 Automating with STEP 7

STEP 7 is the central automation tool for SIMATIC controllers. It contains all re-
quired editors for creating and managing automation data. All the data arising in
automation is collected in a so-called “project”, where it is available in a hierarchi-
cal structure and can be processed. The following basic procedure applies to the
processing of automation data:

3.3 Editing projects with STEP 7 V5.5

65

b Creating a new project
The first step is to create a new project. You give the project a name and deter-
mine the storage location in the file system on the hard disk of the program-
ming device.

b Adding a station
The next step is to add a station (a device). For example, this can be a SIMATIC
station or an HMI device.

b Configuring the hardware
After the SIMATIC station is added, you specify its hardware setup. Depending
on the station type, you specify the central rack and “equip” it with modules. If
needed, you set the parameters of the modules, such as the runtime properties
of the CPU or the user data addresses of the signal modules. If necessary, you
can add expansion racks, connect them with the central rack, and equip them
with modules.

b Networking the stations
A project may contain several stations. With the network configuration, you cre-
ate links between the stations to exchange data between them.

b Giving names to the I/O connections
Before creating the control program, assign the I/O signals symbolic names.

b Creating the control program
The control program consists of individual sections called “blocks”. You pro-
gram the blocks with one of the available programming languages, and by so
doing you specify the processing order of the blocks.

b Placing the control program in operation
You connect the programming device with the SIMATIC station that controls the
machine or process, load the control program into the CPU, and test the correct
sequence with the help of STEP 7.

After commissioning, you create the final documentation and archive the project.

3.3 Editing projects with STEP 7 V5.5

SIMATIC Manager

With SIMATIC Manager, you work with objects in the STEP 7 world. These “logical”
objects represent the “real” objects in your plant. A project contains the entire
plant, a station corresponds to a programmable controller. In a station there is a

SIMATIC Manager is the central tool in STEP 7 V5.5; af-
ter installation, you will find its icon on the Windows
desktop. A double-click on the icon starts SIMATIC
Manager and thus STEP 7. Alternatively, you can also
start it via the taskbar:
Start > SIMATIC > SIMATIC Manager

3 STEP 7: Engineering Tool for SIMATIC

66

Fig. 3.1 Object hierarchy in a project created with STEP 7 V5.5

< Project >

< S7 program >

CPU xxx

Sources

Blocks

MPI

PROFIBUS

...

Hardware

...

...

Connections

Symbols

Sources

OB n

FB n

FC n

DB n

UDT n

SFC n

SFB n

System data

VAT n

User program

Folder for all data of a programmable controller

Folder for all data of a SIMATIC 300/400 station

Folder for all data of a further SIMATIC 300/400 station

S7 program which is not assigned to any hardware

Folder for the connections and the user program

Folder for all data of the user program

Folder for the source programs

Folder for all data of the user program

Project structure with STEP 7 V5.5

< SIMATIC Station >

S7 program

< SIMATIC Station_1 >

3.3 Editing projects with STEP 7 V5.5

67

CPU containing a program, in our case an S7 program. This program in turn con-
tains “folders” for further objects such as the Blocks object, which contains com-
piled blocks among other things. Fig. 3.1 shows the main parts of the program
structure.

To start programming, you open an existing project or create a new one. The in-
cluded sample projects are intended as an introduction. If you open such a project
with File > Open, you will see the partitioned project window: On the left is the
project tree (the object hierarchy); on the right is the content of the selected object
(Fig. 3.2). Click on the box with the plus sign in the left pane to open further struc-
ture levels.

Opening objects on the lowest hierarchical level, e.g. double-clicking the OB1 icon
in the right half of the window, opens the tool belonging to the object, in this ex-
ample the program editor.

Creating a project

The STEP 7 wizard helps you to create a new project. In SIMATIC Manager, select
the command File > Wizard 'New Project'. In the dialog window that appears (Fig.
3.3), you specify in steps the CPU, the planned organization blocks, and the pro-
gramming language for the blocks.

The wizard then creates a project with an S7 station and the selected CPU, as well
as an S7 Program folder, a Source Files folder and a Blocks folder with the selected
organization blocks. Clicking on Preview shows the project structure created up to
the present step.

Fig. 3.2 Example of a project window in SIMATIC Manager

3 STEP 7: Engineering Tool for SIMATIC

68

If you would like to create a project manually or expand a project, start SIMATIC
Manager and open an existing project with File > Open or create a new project with
File > New.

Adding a SIMATIC station

To add a SIMATIC station, select the project in the project tree (in the left part of
the project window) and select Insert New Object > … from the shortcut menu, or
in the SIMATIC Manager select Insert > Station > … . The SIMATIC Manager adds the
selected station to the project tree under the project. To configure the station, se-
lect the station and choose Open Object from the shortcut menu or Edit > Open Ob-
ject from the main menu. The hardware configurator editor opens. The further op-
eration is described in chapter 3.5 "Configuring a SIMATIC station" on page 74.

Libraries

Libraries are used to save reusable program components. Libraries are also struc-
tured hierarchically: They can contain S7 programs, which in turn may contain a
user program (a folder for compiled blocks), a folder for source programs, and a
symbol table. With the exception of online connections (no testing ability), when
creating a program or program part the same functionality is available to you in a
library as in a project. The STEP 7 scope of delivery contains the Standard Library,
which includes the programs Organization Blocks (templates for the startup infor-
mation in the temporary local data) and System Function Blocks (call interfaces for
the SFC system functions and SFB system function blocks).

Fig. 3.3
STEP 7 wizard for creating
a new project

3.3 Editing projects with STEP 7 V5.5

69

Managing, reorganizing and archiving projects

SIMATIC Manager manages projects and libraries in project lists or library lists.
With File > Manage, SIMATIC Manager displays all known projects with name and
storage path. You can now delete projects from the list that you do not want to dis-
play any longer (“hide”) or accept new projects into the project list (“display”). You
manage the libraries in the same manner.

If you select File > Rearrange, SIMATIC Manager removes the gaps created due to
the deletion of objects and optimizes the data storage on the hard disk similar to a
defragmenting program. Rearranging can take a long time, depending on the data
movement.

You can also archive a project or library by choosing File > Archive. The SIMATIC
Manager stores the selected object in compressed form in an archive file (the proj-
ect directory or library directory with all underlying directories and files). During
archiving, stop editing the project or the library and make sure that all windows
are closed.

Projects and libraries cannot be processed in the archived (compressed) state.
Choose File > Retrieve to unpack an archived object and edit it again. The retrieved
objects are automatically accepted in the project or library management.

Multi-projects make working with large projects easier

Multi-projects combine projects and libraries into a single unit. In multi-projects,
communication links between projects such as S7 connections can be processed
across projects. The individual projects can then be scaled down, made more man-
ageable, and processed in parallel if necessary. Multi-projects are treated like proj-
ects, e.g. for administration, archiving, and retrieving.

Help functions

The SIMATIC Manager's online help supplies you with information during the pro-
gramming session without the need to consult manuals. You need Microsoft Inter-
net Explorer to use the online help. You select the help topics using the Help menu
item. Under Help > First Steps, for example, the online help provides a brief over-
view of working with the SIMATIC Manager.

Help > Contents starts the central help function for STEP 7 from any application.
This help function provides fundamental information. Help > Context-sensitive
help F1 gives you help that is dependent on the context, i.e. it displays information
about an object that is selected with the mouse or about a current error message if
you press the F1 key.

In the toolbar, there is a button with an arrow and a question mark. If you click on
this button, the mouse pointer is also given a question mark. With this “Help”
mouse pointer, you can now click on an object on the screen, e.g. an icon or a
menu command, and receive the associated online help.

3 STEP 7: Engineering Tool for SIMATIC

70

3.4 Editing projects with STEP 7 inside TIA Portal

TIA Portal

STEP 7 inside TIA Portal provides two views: the Portal view and the Project view.

The Portal view (Fig. 3.5) is task-oriented. In the Start portal you create a project
or open an existing project. A project includes all data of the automation project,
both the controller and HMI device data. First steps shows you the procedure for
solving an automation task and Help opens an information system in which all
SIMATIC automation issues are explained in detail.

In the Devices & networks portal, you start the hardware and network configura-
tion. The PLC programming portal offers an overview of the program blocks that
have already been programmed; from here, you can also open the editors to create
the control program, the cross-reference list, and the program structure. The Visu-
alization portal provides the most important tools for configuration of PROFINET-
based Basic Panels. The Online & Diagnose portal allows you to select the target
system for the online connection and to start online operation.

Project view supports object-oriented work (Fig. 3.4). The processed object is in
the working window in the center, with further windows that supply supporting in-
formation arranged around it. The properties of the object selected in the working
window are displayed and edited in the inspector window at the lower edge of the
screen. To the left of the working window is the project tree, which contains all the
objects of a project, and all editors required to process it, in a hierarchical struc-
ture.

Fig. 3.6 shows the main parts of the project structure in the graphic. On the right
hand side of the project view, a task window makes the available automation ob-
jects available: for HW Config, for example, the hardware catalog; for the PLC pro-
gramming, the instructions catalog and the block libraries; for the visualization
configuration, the catalog with the process image objects; and in online mode, the
online tools.

As in Microsoft Windows, the size of all windows can be changed. The windows at
the edge of the screen can also be minimized to create room for the working win-
dow. In addition, the working window can be separated from the window arrange-
ment and maximized as a separate window.

The TIA Portal is the framework software in which the
engineering tool STEP 7 V11 is integrated. After in-
stallation, the icon can be seen on the Windows desk-
top. A double-click on the icon starts the TIA Portal
and thus STEP 7. Alternatively, you can also start it via
the task bar:
Start > Siemens Automation> TIA Portal V11

3.4 Editing projects with STEP 7 inside TIA Portal

71

Fig. 3.4 Project view for STEP 7 inside TIA Portal

Fig. 3.5 Portal view for STEP 7 inside TIA Portal

3 STEP 7: Engineering Tool for SIMATIC

72

Fig. 3.6 Object hierarchy in a project created with STEP 7 (TIA Portal)

Program blocks

Watch and force table…

PLC data types

Technology objects

External sources

PLC variables

< Technology object_1

Device configuration

...

Add new device

Add new block

New watch table …

Add new data type

< PLC data type_1 >

Add new object

Add new external file...

< External program source >

Display all variables

Add new variable table…

Standard variable table [n]

< Variable table [n] >

Online & diagnostics

Devices & networks

Main [OB1]

< Block_2 >

< Block_1 >

< Watch table_1 >

Force table

Text lists

PLC messages

Program information

Folder for all data of a PLC station

Folder for all data of a further PLC station

Folder for all data of an automation system

Folder for all blocks of the user program

Folder for all watch and force tables

Folder for all PLC data types

Folder for all technology objects

Folder for the system blocks used

Folder for the program sources

Folder for all PLC variables

Project structure with STEP 7 V11

< Project >

< PLC station >

< Group_1 >

System blocks

< PLC station >

3.4 Editing projects with STEP 7 inside TIA Portal

73

Creating a project inside TIA Portal

To create a project, open the TIA Portal and select Create new project in the Start
portal. Assign a name to the project and set a path in which the project is to be
saved. After clicking the Create button, the project is created and the next steps are
displayed in the Start portal for selection (see also Fig. 3.5 on Seite 71):

b Configuring a device
STEP 7 changes to the Devices & networks portal in which you can insert a new
PLC station (SIMATIC station) into the project and open it for editing.

b Creating a PLC program
STEP 7 changes to the PLC programming portal in which you can edit the Main
block (organization block OB 1) or insert a new block and open it for editing.
Select a PLC station if applicable. This can also be an “unspecified CPU” which
you can later replace with a CPU from the hardware catalog.

b Configuring an HMI screen (if WinCC is installed inside TIA Portal)
STEP 7 changes to the Visualization portal in which you can create a new HMI
station (HMI device) or configure an existing one. From this portal you start the
configuration of the process images, editing of HMI variables and messages,
and the HMI simulator.

b Opening the project view
STEP 7 changes to the project view, in which you can carry out the next steps
(insert and configure PLC station, insert and program block, or insert and con-
figure HMI station).

In the project view, select Project > New to create a new project or open an existing
one with Project > Open.

If during project editing you want to save a block, for example, you must always
save the entire project with Project > Save. Project > Save As… saves the project un-
der another name or path.

Libraries

Libraries are used to save reusable program components. These can include sta-
tions, blocks, PLC variable tables, process images, or picture elements, for exam-
ple. The libraries are displayed in a task card in the task window. A project library
and global libraries are available.

A project library which you can fill with objects is automatically created when you
create a project. You can structure the contents of the library using folders. A proj-
ect library is always opened, saved, and closed together with the project.

Objects which can be used in multiple projects are saved in global libraries. There
are global system libraries which are supplied with STEP 7, and global user librar-
ies which you create yourself. A global library is opened, saved, and closed inde-
pendent of the project. If you wish to use a global library simultaneously with oth-
er users, the library must be opened in read-only mode.

3 STEP 7: Engineering Tool for SIMATIC

74

Migrating projects

Automation projects that have been created using STEP 7 V5.4 SP5 or later can be
migrated into the TIA Portal. The target project resulting from the original project
can then be edited further inside TIA Portal using STEP 7. The migration tool is
delivered together with STEP 7 or can be downloaded from the Internet.

The prerequisite for migration is the installation of all applications with which the
original project was created. This also includes the option packages and the Hard-
ware Support Packages (HSP). If these applications are installed together with the
TIA Portal on the programming device, you can migrate the original project di-
rectly. Otherwise you install the migration tool on the programming device which
contains the original project with the required applications, create an intermedi-
ate project with the file extension .am11 from the original project, transfer this in-
termediate project to a programming device with the TIA Portal, and then migrate
the project.

Help information system

To call the help function, click on Help in the portal view or select the Help > Dis-
play help command in the main menu in the project view. A window appears with
the help information system. The online help is roughly divided according to the
project processing steps: Configuration, parameterization, and networking of de-
vices, structuring and programming of the user program, visualization of pro-
cesses, and utilization of the online and diagnostics functions. Readme provides
general information on STEP 7 and further information which could no longer be
included in the online help. A comprehensive description of all available instruc-
tions, including extended instructions, can be found under PLC programming and
References.

3.5 Configuring a SIMATIC station

You plan the hardware configuration of your programmable logic controller with
HW Config. Configuration is carried out offline without a connection to the CPU.
The prerequisite for work with HW Config is an open project with a PLC station. As
a result of the hardware configuration you are given an image of your plant's “re-
al” automation system.

General procedure

In a rack depicted in tables or graphically, “plug” the desired module into a per-
missible slot. Then hold down the mouse button to “drag” the module from the
hardware catalog, which contains all available modules, to the slot in the rack and
“drop” the component into place. When plugging in the modules, follow the slot
rules of the automation system you are using. A “no stopping” icon shows that
you cannot place the module you have just selected in the desired slot.

The hardware catalog shows all currently available modules in a hierarchical
structure. Using filter settings, you can reduce the number of displayed objects.

3.5 Configuring a SIMATIC station

75

Click down through the folder structure until you reach the desired object. If you
select an object in the hardware catalog, the most important object properties are
shown.

A module is placed in the slot with the default properties. STEP 7 also automatical-
ly sets the address of the modules. If necessary, you can later change the module
properties and the addresses to meet your requirements.

If you add expansion units to an S7-300/400 station, the procedure is the same as
with the central controller. Drag the rack from the hardware catalog to the work-
ing window, add the modules to the expansion rack, and connect the interface
modules in the central controller and expansion unit to each other.

You can save the configuration data any time. If the hardware configuration is
complete, compile it in a form that can be read by the relevant controller. You can
only load a hardware configuration to a CPU if the compilation is without errors.

Arranging the modules using STEP 7 V5.5

Start HW Config for the selected station with Edit > Open Object or by double-click-
ing on Hardware in the open SIMATIC 300/400 Station folder. After opening, HW
Config displays the working window and the hardware catalog. In the upper part,
the working window shows the racks with the slot assignment, and the lower part
it shows the selected rack as a configuration table (Fig. 3.7).F

Fig. 3.7 Example of a HW Config working window with STEP 7 V5.5

3 STEP 7: Engineering Tool for SIMATIC

76

You can display and hide the hardware catalog via View > Catalog. It contains all
available racks, modules, and interface modules that STEP 7 recognizes. Using Op-
tions > Edit Catalog Profiles, you can make up your own hardware catalog, which –
in the structure of your choice – only displays the modules with which you want to
work.

Now you can select the desired modules from the Hardware Catalog and, keeping
the left mouse button pressed, drag them to the slot in the rack. Drag another rack
from the hardware catalog to an empty space in the working window.

After configuration, Station > Check Consistency shows you whether all entries are
error-free. Station > Save stores the configuration tables with all parameterization
data in your project to the hard drive. Station > Save and Compile simultaneously
compiles and saves the configuration tables and stores the compiled data in the
System Data object in the offline Blocks folder.

Parameterizing and addressing the modules using STEP 7 V5.5

You define the properties of a module by assigning parameters to it. Assigning pa-
rameters is only necessary if you want to change the default parameters. A prereq-
uisite for assigning parameters is that you arrange the module in a rack. Double-
click the module in the rack or select the module and choose Edit > Object Proper-
ties. A dialog appears with module-specific tabs that show the adjustable parame-
ters. If you assign parameters to a CPU in this manner, you set the execution
properties of the user program (Fig. 3.8).

Fig. 3.8 Parameterizing modules with STEP 7 V5.5, example for a CPU

3.5 Configuring a SIMATIC station

77

When arranging the modules, STEP 7 automatically assigns a module start ad-
dress. You can see this address in the configuration table in the bottom part of the
station window or in the object properties of the respective module. That is the
address of the peripheral inputs/outputs. Further details on address areas can be
found in chapter 4.8 "Global address areas" on page 143. Addressing is described
in chapter 4.9 "Absolute and symbolic addressing" on page 149.

When assigning the module start address, you can also make the assignment to a
process image partition depending on the CPU used. If more than one CPU is in-
serted in the central rack of an S7-400, multiprocessor mode is automatically set
and you must assign the module to a CPU.

Choose View > Address Overview to open a window that shows all module address-
es used for the selected CPU.

Arranging the modules using STEP 7 inside TIA Portal

You start HW Config by double-clicking on Device configuration in the project tree
underneath the PLC station. After opening, HW Config displays the working win-
dow and the hardware catalog. In the Device View tab in the upper part of the rack,
the working window shows the racks with the slot assignment, and the lower part
shows the selected rack as a configuration table (Fig. 3.9).

Fig. 3.9 Example of a HW Config working window inside TIA Portal

3 STEP 7: Engineering Tool for SIMATIC

78

The hardware catalog contains all available racks, modules, and interface modules
that STEP 7 recognizes. If you check the Filter checkbox, only the objects are shown
that can be placed in the current context.

Now you can select modules from the hardware catalog and, keeping the left
mouse button pressed, drag them to the slot in the rack. Drag additional racks
from the hardware catalog to an empty space in the working window.

You save the configured PLC station by saving the entire project: Choose Project >
Save from the main menu or click on the Save Project icon in the toolbar.

Parameterizing and addressing the modules using STEP 7 inside TIA Portal

You define the properties of a module by assigning parameters to it. Assigning pa-
rameters is only necessary if you want to change the default parameters. A prereq-
uisite for assigning parameters is that you arrange the module in the rack. Dou-
ble-click the module in the rack or select the module and choose Edit > Properties.
In the inspector window, the parameterizable module properties are shown in the
Properties tab. If you assign parameters to a CPU in this manner, you set the execu-
tion properties of the user program (Fig. 3.10).

When arranging the modules, STEP 7 automatically assigns a module start ad-
dress. You can see this address in the configuration table in the bottom part of the
working window or in the properties of the respective module. That is the address
of the peripheral inputs/outputs. Further details on address areas can be found in
chapter 4.8 "Global address areas" on page 143. Addressing is described in chapter
4.9 "Absolute and symbolic addressing" on page 149.

Fig. 3.10 Parameterizing modules inside TIA Portal; example for a CPU

3.6 Tools for programming

79

When assigning the module start address, you can also make the assignment to a
process image partition depending on the CPU used. Under Overview of addresses
in the rack properties, all module addresses in use for the selected CPU are shown.

3.6 Tools for programming

The user program consists of individual sections known as “blocks”. You can read
about what blocks are and what kinds of blocks there are in chapter 5.16 "Over-
view of user blocks" on page 193 and the following. In these blocks, you program
the control functions such as AND, the related addresses such as inputs whose sig-
nals must be linked, and the output containing the result of this link.

Symbol table and PLC variable table

The addresses can be addressed via their location in memory, for example I 1.0
(bit 0 in byte 1 in the Inputs memory area). It is much easier to understand if you
give the memory location a name and then address it with this name, such as Mo-
tor ON. The assignment between memory location (absolute address) and name
(symbolic address) is made by STEP 7 V5.5 in the symbol table and by STEP 7 in
the variable table in TIA Portal.

Program editor

With the program editor you program the user program block-by-block. You have
a choice of several programming languages, as described in chapter 4 "The pro-
gramming languages" on page 119. You can select the programming language to
best implement the control function for each block. You install SCL and GRAPH in
STEP 7 V5.5 as an option package for the SIMATIC Manager.

For direct program input (incremental program input), enter the program in steps
directly into the block. The STEP 7 V5.5 program editor expects an error-free, syn-
tactically correct program before it will save the block and simultaneously compile
it in a form that can be read by the CPU. The STEP 7 program editor inside TIA Por-
tal also allows a block to be saved if the program contains errors. The compilation
process is started separately.

You can use source-oriented program input for blocks with the programming lan-
guages STL and SCL. Here, the user program is written – likewise in blocks – with
any text editor and then imported into STEP 7 and compiled.

Help in program creation

Additional tools simplify the creation of the user program. The cross-reference list
shows the points in the user program where addresss and blocks are used. The as-
signment list shows the inputs, outputs, and bit memories in use. The call structure
describes the call hierarchy of the blocks in the user program, the dependency
structure shows each block's dependency on other blocks.

3 STEP 7: Engineering Tool for SIMATIC

80

3.7 Giving the addresses a name

The control program links signal states or calculates with values that can be ad-
dressed via their memory location (absolute address) or via a name (symbolic ad-
dress). A channel from an analog input module, for example, occupies word 12 in
the memory area of the inputs. The absolute address is thus “IW 12”. You can as-
sign this input word a name such as “temperature”, and then address the analog
channel with this symbolic address. Further information about addresses and
their addressing can be found in chapters 4.8 "Global address areas" on page 143
and 4.9 "Absolute and symbolic addressing" on page 149.

The definition of a symbol also includes the data type. It defines certain properties
of the data associated with the symbol, basically the representation of the data
content. For example, the BOOL data type describes a binary variable and the INT
data type describes a digital variable, the contents of which are represented by a
16-bit integer. The possible data types for STEP 7 are described in chapter 4.11 "El-
ementary data types" on page 153 and the following chapters.

In symbolic addressing, we distinguish between local symbols and global symbols.
A local symbol is only known in the block in which it was defined. You can use the
same local symbols in various blocks for different purposes. A global symbol is
known throughout the entire user program and has the same meaning in all
blocks. You define global symbols with STEP 7 V5.5 in the symbol table and with
STEP 7 inside TIA Portal in the variable table.

Working with the symbol table in STEP 7 V5.5

When adding a CPU to a SIMATIC station, the SIMATIC Manager also creates the
symbol table. To edit the symbol table, in the SIMATIC Manager navigation, open
the CPU folder and then the S7 Program folder. In the right-hand part of the win-

Fig. 3.11 Example of a symbol table for STEP 7 V5.5

3.8 Programming a logic block

81

dow, double-click on the Symbols object and open the symbol table. Now you can
assign the desired names to the absolute addresses (Fig. 3.11). There can always
only be one symbol table under a CPU.

Working with the variable table for STEP 7 inside TIA Portal

When creating a PLC station, STEP 7 also creates a PLC variables folder with the
standard variable table. You open the variable table by double-clicking. In the Tags
tab, you can now assign the desired names to the absolute addresses (Fig. 3.12).
There can only ever be one (complete) variable table under a PLC station. Howev-
er, you can structure this into several (partial) tables and thus improve the over-
view in very extensive assignments. Double-clicking on Show All Tags shows all im-
plemented assignments.

3.8 Programming a logic block

Organization blocks, function blocks, and functions contain the user program
code. An organization block is the “start block” for a program type (for a “priority
level”): For a start event – startup, main program, interrupt handler, or error pro-
gram – the CPU's operating system calls the relevant organization block. The pro-
gram in this organization block can be structured by function blocks and/or func-
tions. Each logic block consists of a block interface and an instruction part. The
block-specific variables (temporary and static local variables and block parame-
ters) are declared in the block interface; the block program is in the instruction
part. Further details can be found in chapter 5.16 "Overview of user blocks" on
page 193 and the following.

Fig. 3.12 Example of a PLC variable table for STEP 7 inside TIA Portal

3 STEP 7: Engineering Tool for SIMATIC

82

General procedure when programming a logic block

To program a block, add a module to the user program, give it a name and possi-
bly a different number, specify the programming language, and open it.

To the extent that the local block variables have already been defined, enter them
into the block interface. The block interface can be amended or modified at any
time when the block program is created.

When the block program is created, first place the program elements in the graph-
ical languages by dragging them with the mouse from the Program Elements cata-
log to the working area. The program elements, such as contacts or function box-
es, are then supplied with the necessary variables. In the text languages, you write
the statements line by line. Complex functions are also retrieved from the Pro-
gram Elements catalog by dragging them with the mouse.

If the program input is completed, save the block.

Programming a logic block using STEP 7 V5.5

You begin programming a block by opening it, either with a double-click on the
block in the project window of SIMATIC Manager or with File > Open in the pro-
gram editor. If the block does not exist, generate it

b either in SIMATIC Manager: In the left pane of the project window, select the
Blocks folder and generate a new block (more precisely: a new block object that
you then open for editing) with Insert > S7 Block > …

b or in the program editor: Choose File > New to open a dialog in which you speci-
fy the desired block under Object Name.

The program editor starts when the block is opened. It shows the block interface
with the block parameters and local data in the upper part of the working window
and the block program in the lower part of the working window (Fig. 3.13).

You define the block-specific variables in the block interface. These are variables
that you work with in the block: the temporary and the static local data as well as
the block parameters, divided according to input, output and in-out parameters.
Not every type of variable can be programmed in every logic block (see table 5.12
"Variable types in the block interface" on page 199). If you do not use a type of vari-
able, the respective declaration subsection remains empty.

In the working window, you can see – depending on the default setting of the pro-
gram editor – the fields for the block title and block comment, as well as for the
first network the fields for the network title, network comment, and the field for
the program input. In the program section of a logic block, you control the display
of comments and symbols with the menu options View > Display…. Choose View >
Zoom In, View > Zoom Out and View > Zoom Factor to change the size of the display.
You define the size of the graphic in the Editor Properties.

An LAD/FBD program is divided into networks that each represent a current path
or a link. The division into networks is optional in an STL program; an SCL pro-

3.8 Programming a logic block

83

gram does not use networks. The program editor automatically numbers the net-
works starting from 1. You can assign a title and a comment to each network. Dur-
ing editing you can directly choose each network with Edit > Go To >…. Choose In-
sert > Network to program a new network. The program editor then inserts an
empty network after the currently selected network.

Input of the program depends on the programming language. In the graphic lan-
guages LAD and FBD, you select program elements such as contacts or boxes from
the Program Elements catalog and place them in the working window, either in a
current path (LAD) or at the input or output of a box (FBD). For STL and SCL, you
enter the program line by line, statement by statement.

If the Program Elements catalog is not visible, you can display it on the screen by
choosing View > Overviews. The Program Elements catalog is found in its own win-
dow, which you can “attach” to the edge of the Editor window and also release
again (each time by double-clicking on the title bar of the catalog window).

Enter the required addresses and variables either with the absolute address or
with the symbolic address. You can use a global variable with its symbolic address
if it is assigned to an address in the symbol table. A local variable must be declared
in the block interface. Variables that are not available can be defined during pro-
gram entry and used immediately.

The program editor of STEP 7 V5.5 checks the input immediately for correct for-
mat (syntax). Only an error-free block can be stored. When saving, the block is im-
mediately compiled into a code that the CPU can read.

Fig. 3.13 Example of the program editor's working window in STEP 7 V5.5

3 STEP 7: Engineering Tool for SIMATIC

84

You can assign each logic block in the symbol table a name: Open the symbol table
and assign a symbol name to the logic block (OB n, FB n, FC n). The absolute ad-
dress (OB n, n FB, FC, n) of a logic block is in the Data type column.

Programming a logic block using STEP 7 inside TIA Portal

The blocks of the user program are in the project tree in the Program Blocks folder
under the PLC station. To program a block, open it by double-clicking. If the block
does not exist, generate it by double-clicking on Add new block.

In the dialog that opens, select the type of the block and give it a name. You can
also select the programming language and assign the block number individually.
After the dialog is closed, the program editor starts. The program editor shows the
block interface with the block parameters and local data in the upper part of the
working window and the block program in the lower part of the working window
(Fig. 3.14).

You define the block-specific variables in the block interface. These are variables
that you work with in the block: the temporary and the static local data as well as

Fig. 3.14 Example of the program editor's working window in STEP 7 inside TIA Portal

3.9 Programming a data block

85

the block parameters, divided according to input, output and in-out parameters.
Not every type of variable can be programmed in every logic block (see Table 5.12
"Variable types in the block interface" on page 199). If you do not use a type of vari-
able, the respective table section remains empty.

In the working window, you can see – depending on the default setting of the pro-
gram editor – the fields for the block title and block comment, as well as for the
first network the fields for the network title, network comment, and the field for
the program input. Click the icons in the function bar of the working window to
control the display of comments and addresses as well as the size of the display.

An LAD/FBD program is divided into networks that each represent a current path
or a link. The division into networks is optional in an STL program; an SCL pro-
gram does not use networks. The program editor automatically numbers the net-
works starting from 1. You can assign a title and a comment to each network. Dur-
ing editing you can directly choose each network with Edit > Go To >…. Choose In-
sert > Network to program a new network. The program editor then inserts an
empty network after the currently selected network.

Input of the program depends on the programming language. In the graphic lan-
guages LAD and FBD, you select program elements such as contacts or boxes from
the Program Elements catalog and place them in the working window, either in a
current path (LAD) or at the input or output of a box (FBD). For STL and SCL, you
enter the program line by line, statement by statement.

If the Program Elements catalog is not visible, you can display it on the screen by
opening a block and choosingView > Task Card. The Program Elements catalog is
found in the task window, which you can “attach” to the right edge of the working
window and also release again.

Enter the required addresses and variables either with the absolute address or
with the symbolic address. You can use a global variable with its symbolic address
if it is assigned to an address in the PLC variable table. A local variable must be
declared in the block interface. Variables that are not available can be defined dur-
ing program entry and used immediately.

The program editor of STEP 7 inside TIA Portal allows you to save a block at any
time, even if it is still incomplete or contains syntax errors. A block must only be
error-free when it is compiled in the CPU-readable code. You save a block by sav-
ing the entire project.

3.9 Programming a data block

Data blocks contain the data of the user program. You can create a data block in
several ways: As a global data block that contains the data variables in a freely se-
lectable structure; as a type data block whose data structure is based on a data
type; and as an instance data block that contains the data of a function block or
system function block. Further details can be found in chapter 5.16 "Overview of
user blocks" on page 193 and the following.

3 STEP 7: Engineering Tool for SIMATIC

86

General procedure when programming a data block

To program a data block, add it to the user program, give it a name and possibly a
different number, and specify the type of data block.

With a global data block, now enter the data variable with a name and data type in
the order you desire. If the data block is based on a data type or a function block,
the data type or the function module must already be available. Any number of
data blocks can be based on a specific data type and for each call of a function
block (for each application of the function block) you can create a separate in-
stance data block.

The data variables in a data block are initialized with a default value as standard.
With a global data block, this is the default value of the data type of the variable;
with a type or instance data block, the value entered in the data type or function
block is accepted as the default value.

The data variables have a second value, the initial value. This is the value that is
transmitted online to the CPU and with which the user program begins to work.
The default value is the initial value as standard. However, you can also specify an
individual initial value and thus use different initial values to differentiate multi-
ple data blocks that are based on a data type or a function block. The value that a
data variable in the user memory of the CPU has and can be changed by the user
program is called the actual value.

Programming a data block using STEP 7 V5.5

You begin programming a block by opening it, either with a double-click on the
block in the project window of SIMATIC Manager or with File > Open in the program
editor. If the block does not exist, generate it

b either in SIMATIC Manager: In the left pane of the project window, select the
Blocks folder and generate a new block (more accurately: a block object that you
then open for editing) with Insert > S7 Block > Data Block

b or in the program editor: Choose File > New to open a dialog in which you enter
the desired block under Object name.

When inserting a new data block, you specify the type of the data block. Click one
of the three following options to select it:

b Data block or Global DB
Create as global data block; with this you declare the data addresses when pro-
gramming the data block

b Data block with assigned user-defined data type or DB of the type
Create as data block with user-defined data type; with this you declare the data
structure as user-defined data type UDT

b Data block with assigned function block or instance DB
Create as instance data block; with this, the data structure is used that you de-
clared when you programmed the associated function block.

3.9 Programming a data block

87

With a global data block, now enter the data variable with a name and data type in
the order you desire. The default value of the variables is in the Initial Value col-
umn. Data blocks based on a data type or a function block already have a specified
variable structure that can no longer be changed in the data block. However, an
individual initial value can be specified for each data variable.

The Program Editor displays the contents of a data block in two views:

b In the Declaration View (View > Declaration View) you define the data addresses
and you see the variables just as you have defined them, e.g. an array or a user-
defined data type as one single variable.

b In the Data View (View > Data View), the program editor displays every variable
and every component of an array or a structure individually. Now you can see an
additional Actual Value column. Here you can enter the initial value with which
the user program begins. In the online view, in this column you can observe the
actual value which the variable adopts during runtime.

Both views are compared in Fig. 3.15.

Fig. 3.15 Example of the declaration view and the data view in STEP 7 V5.5

3 STEP 7: Engineering Tool for SIMATIC

88

You can assign each data block in the symbol table a name: Open the symbol table
and assign a symbol name to the data block DB n. In the Data Type column, the
absolute address DB n stands for a global data block; the underlying function
block or system block stands for an instance data block; and the underlying data
type stands for a type data block.

Programming a data block using STEP 7 inside TIA Portal

The blocks of the user program are in the project tree in the Program Blocks folder
under the PLC station. To program a block, open it by double-clicking. If the block
does not exist, generate it by double-clicking on Add new block.

In the dialog windows that appears, click the icon for the data block and give the
block a name and possibly a different number. Select the type of the data block from
a drop-down list containing the entry Global DB and the already programmed data
types and function blocks (including system function blocks).

After the dialog window closes, the program editor starts and shows the contents of
the data block in the working window. With a global data block, now enter the data
variables with a name, data type, and possibly initial value and comment, in the or-
der you desire. For a type and instance data block, the data structure is shown but
cannot be changed. Only an individual preassignment with initial values is possible.

With the Expanded Mode icon in the function bar of the working window, you can
open variables with complex data types (fields and structures) and thus supply the
individual components, for example, with an individual initial value.

Fig. 3.16 Example of an opened data block in STEP 7 inside TIA Portal

3.10 Programming a user-defined data type

89

You save a data block by saving the entire project. If you have compiled the data
block in a code that can be read by the CPU, the Offset column of the program editor
shows the data variables' start address which they have in the data block (Fig. 3.16).

3.10 Programming a user-defined data type

A user-defined data type (UDT) is a compilation of any data types into a data struc-
ture, similar to the STRUCT data type. You can use a user-defined data type if you
want to give a data structure a name, if a data structure is commonly found in the
user program, or if you want to set up one or more data blocks with a specific data
structure. The available data types in SIMATIC are described in chapter 4.11 "Ele-
mentary data types" on page 153 and the following.

A user-defined data type is globally valid, i.e. once declared, it can be used in all
blocks.

General procedure when programming a user-defined data type

You add a user-defined data type to a user program, open it and program it as with
a data block. However, the user-defined data type only contains a collection of data
types, and no variables (no memory location and thus no address). When pro-
gramming, enter the names and data types in your preferred sequence and sup-
plement them with an individually specified default value and a comment.

Programming a user-defined data type using STEP 7 V5.5

To program a user-defined data type, open the Blocks folder in SIMATIC Manager
and use Insert > S7 Block > Data Type to add a user-defined data type (UDT with a
number). Double-clicking on the UDT object in the working window opens a decla-
ration table in which you enter the individual (future) variables with name, data
type, default value (in the Inital Value column), and comments (Fig. 3.17).

Fig. 3.17 Example of a user-defined data type for STEP 7 V5.5

3 STEP 7: Engineering Tool for SIMATIC

90

You can also address a user-defined data type symbolically: Open the symbol table
and assign a symbol name to the user-defined data type with the absolute address
UDT n. The absolute address UDT n is entered in the Data Type column.

Programming a user-defined data type using STEP 7 inside TIA Portal

The user-defined data types are in the PLC Data Types folder in the project tree un-
der the PLC station. Double-click on Add New Data Type to start the program edi-
tor. In the working window it shows the declaration table in which you enter the
individual components with name, data type, default value, and comments in the
desired order (Fig. 3.18).

The program editor gives a user-defined data type the name Userdatatype_n as
standard, with n as a consecutive number. You can change the name in the proper-
ties of the user-defined data type: You select the user-defined data type in the PLC
data types folder, select Properties in the shortcut menu, and enter another name
under General.

3.11 Working with program source files

Blocks with the programming languages STL or SCL can be programmed as a text
file with any text editor. These text files are referred to as “source files” or “pro-
gram source files”. A program source file can contain one or several blocks; these
can be logic or data blocks as well as user-defined data types. The assignments of
absolute addresses to symbolic addresses (symbol table or PLC variable table) are
created separately from the program source file as an Excel table and imported.

In the program source file, specific keywords define the properties of blocks and the
program. These keywords should be used in a specific sequence. A logic block be-
gins with the block header in which the block type and the block properties are de-

Fig. 3.18 Example of a user-defined data type for STEP 7 inside TIA Portal

3.11 Working with program source files

91

fined. This is followed by the block interface and the actual program. A keyword for
the block end concludes the programming of a block (Table 3.1).

Table 3.1 Keywords for logic blocks

Section Keyword Description

Block type ORGANIZATION_BLOCK “OB_name”
FUNCTION_BLOCK “FB_name”
FUNCTION “FC_name” : Data type

Start of an organization block
Start of a function block
Start of a function

Header TITLE = block title
//Block comment

Block title in the block properties
Block comment in the block properties

CODE_VERSION1
KNOW_HOW_PROTECT

Only with FB (“not with multi-instance capability”),
only with STL
Know-how protection (cannot be canceled)

NAME : Block name
FAMILY : Block family
AUTHOR : Created by
VERSION : Version

Block property: Block name
Block property: Block family
Block property: Created by
Block property: Block version

Declaration VAR_INPUT
name : Data type := Default setting; *)
END_VAR

Input parameter (not with OB)

VAR_OUTPUT
name : Data type := Default setting; *)
END_VAR

Output parameter (not with OB)

VAR_IN_OUT
name : Data type := Default setting; *)
END_VAR

In/out parameter (not with OB)

VAR
name : Data type := Default setting; *)
END_VAR

Static local data (only with FB)

VAR_TEMP
name : Data type := Default setting; *)
END_VAR

Temporary local data

Program BEGIN Start of block program,
can be omitted with SCL

NETWORK Network start, only with STL

TITLE = Network title Network title, only with STL

//Network comment Network comment; line comment with SCL

Program statement; Termination of each statement with semicolon

//Line comment Line comment up to end of line, also programmable
following statements

(* Block comment *) Block comment, can extend over several lines,
only with SCL

NETWORK Start of next network, only with STL

… … etc.

Block end END_ORGANIZATION_ BLOCK
END_FUNCTION_BLOCK
END_FUNCTION

End of an organization block
End of a function block
End of a function

*) Superimposing of data types with the keyword AT is additionally possible with SCL

3 STEP 7: Engineering Tool for SIMATIC

92

A data block begins with the block header in which the block type and the block
properties are defined. The data addresses and, if the data block is based on a data
type or a function block, the entry of the data type or the function block then fol-
low. A keyword for the block end concludes the programming of a data block
(Table 3.2).

A user-defined data type begins with a keyword for the beginning of the defini-
tion. The components of the data type then follow in the form of a STRUCT data
structure. A keyword for the data type end concludes the programming of a user-
defined data type (Table 3.3).

Table 3.2 Keywords for data blocks

Section Keyword Description

Block type DATA_BLOCK “DB_name” Start of a data block

Header TITLE = block title
//Block comment

Block title
Block comment

KNOW_HOW_PROTECT
UNLINKED
READ_ONLY
NON_RETAIN

Know-how protection (cannot be canceled)
Block attribute: not executable
Block attribute: read-only
Block attribute: non-retentive

NAME : Block name
FAMILY : Block family
AUTHOR : Created by
VERSION : Version

Block property: Block name
Block property: Block family
Block property: Created by
Block property: Block version

Declaration STRUCT
name : Data type := Default setting;
END_STRUCT

for a global data block

Data type_name alternatively for a type data block

FB_name alternatively for an instance data block

Initialization BEGIN
name := Default setting; Assignment with individual initial values

Block end END_DATA_BLOCK End of a data block

Table 3.3 Keywords for user-defined data types

Section Keyword Description

Block type TYPE “Type_name” Start of a user-defined data type

Header TITLE = Data type title
//Data type comment

Data type title
Data type comment

Declaration STRUCT
name : Data type := Default setting;
END_STRUCT

Declaration of data type components

Block end END_TYPE End of the user-defined data type

3.11 Working with program source files

93

If you use objects in the program source file that themselves are only defined in
the program source file – such as call logic blocks or address data variables – you
must arrange these objects before their point of use in the program source file.
When calling a logic block or a complex function with input and output parame-
ters, list the parameters in parenthesis after the call function, in the specified se-
quence and each separated by a comma.

Editing program source files with STEP 7 V5.5

To create programs with the SCL programming language, STEP 7 V5.5 requires the
S7-SCL option package.

The program source files are saved in the Sources folder. The Sources folder is
created under the S7 Program folder when a CPU is added. To add a new program
source file, select the Sources folder in SIMATIC Manager and select Insert >
S7 Software > STL Source or … > SCL Source.

Double-click to open and edit them with the program editor. Choose Insert > Block
Template > … to facilitate the creation of new blocks. With Insert > Object > Block,
the program editor inserts after the cursor an already compiled block as an ASCII
source into the source file.

You also have the option of generating a new program source file from one or sev-
eral compiled blocks using the program editor and the File > Generate Source File
command.

If you have created an STL source file with another text editor, you can fetch it with
Insert > External Source File under SIMATIC Manager into the folder Source Files.
With Edit > Export Source you can copy the selected source file to the hard disk in a
folder of your choice.

You can save the program source file any time during processing even if the pro-
gram is not yet complete. Only when the source file is compiled does the program
editor generate executable blocks, which it stores in the Blocks folder. If you used
global symbols in the program source file, then the completed symbol table must
also be available during compiling. Blocks that have been called must already be
available as compiled blocks in the Blocks folder or in the program source file be-
fore being called.

Choose Options > Customize on the Source Files tab to set the properties of the com-
piler, e.g. whether existing blocks are to be overwritten or if blocks are only to be
created if the entire program source file is error-free. In the Block tab, you can set
the automatic updating of the reference data during the compiling of a block.

You can check the syntax of the program source file with File > Consistency Check,
without compiling the blocks.

You start compilation with the program source file open, using the menu option
File > Compile. All error-free blocks that are found in the program source file are
compiled. Any erroneous blocks are not compiled. If warnings occur, the block is
still compiled; however, execution in the CPU might be faulty.

3 STEP 7: Engineering Tool for SIMATIC

94

Editing program source files with STEP 7 inside TIA Portal

The program source files are in the External Sources folder in the project tree un-
der the PLC station.

You create the program source file outside the TIA Portal with any text editor. Log-
ic blocks programmed with STL are saved in a text file with the extension .awl. For
logic blocks programmed with SCL, the ending is .scl. In both cases, the text file
can contain data blocks and user-defined data types.

To import a program source file, open the External sources folder in the project
tree and double-click on Add new external source. In the dialog window, select the
type of source (STL Sources or SCL Sources), navigate to the storage location, select
the source file, and import it by clicking on the Open button.

You can also edit the source files directly in the External Sources folder if you link
the file extensions .awl and .scl with a text editor in the Windows operating sys-
tem.

To transfer the blocks from the source file to the Program Blocks folder, select the
source file in the External Sources folder and then the Generate blocks command
from the shortcut menu. It is recommendable to compile the blocks imported
from a source file prior to further processing inside TIA Portal.

3.12 Help on Program Creation

STEP 7 supports program creation with display of reference data that you can use
as a basis for corrections or program tests. The tools of the reference data are

b the cross-reference list, which indicates the use of addresses and blocks in the
user program

b the assignment list, which displays the assignment of the address areas inputs,
outputs, bit memories, SIMATIC timers, and SIMATIC counters by the user pro-
gram

b the call structure, which shows the structure of the user program based on the
programmed organization blocks and the blocks called in them

b the dependency structure, which shows which block is called by which other
block.

The reference data are are only shown by the offline data management, even if the
function is called in a block opened online. Fig. 3.19 shows the reference data as it
is presented by STEP 7 V5.5. Fig. 3.20 presents the call structure of STEP 7 inside
TIA Portal.

3.12 Help on Program Creation

95

Fig. 3.19 Example of reference data type for STEP 7 V5.5

Fig. 3.20 Example of a call structure for STEP 7 inside TIA Portal

3 STEP 7: Engineering Tool for SIMATIC

96

3.13 Downloading the user program to the CPU

You create the hardware configuration and the user program “offline” on the pro-
gramming device without a connection to a CPU. The entered data is changed into
a code that the target CPU can process through “compiling”. The compiled project
data must now be transferred to the CPU. This can occur with the help of a memo-
ry card or by connecting a programming device. If you connect a programming
device and switch to online mode, you can not only exchange project data between
the offline data management on the hard drive and the online data in the CPU.
With the programming device, you can also control the CPU, test the user pro-
gram, and find errors in the hardware configuration of the PLC station using diag-
nostic functions.

Connecting the programming device to the CPU

You can connect the programming device to any bus interface of the CPU: MPI, DP
or PN interface. The prerequisite is that the appropriate interface module is
plugged into the programming device. Current units are all supplied with a LAN
adapter that allows connection to Industrial Ethernet and thus to the PN interface
of the CPU.

The connection of a programming device to a CPU is not configured. Only the bus
addresses – depending on the connection type, the MPI, PROFIBUS, or IP address –
must be set appropriately. You set the bus address with the Hardware Config
when parameterizing the CPU.

If the programming device is connected directly to a CPU in a single PLC station,
the assignment to the target device is automatic. If there are several PLC stations
on a bus system, the programming device can be connected to the bus system at
any point and still reach all the PLC stations – even across subnets (“routing”).
First, the nodes on the bus system must receive a unique bus address, such as by
transferring the configuration data to the CPU. If, when connecting to Industrial
Ethernet, a CPU has no IP address, which is the case for brand-new CPUs, they can
be identified by their MAC address and their IP address can also be set in the bus
network.

Plugging in the connecting cable is not sufficient to communicate with the CPU.
The mechanical connection (“networking”) must be expanded by an agreement on
the allowable sequence and meaning of the signals (“connection protocol”). Only
when this “connection” is established can the data exchange begin. The program-
ming device is then in online mode.

Establishing a connection between the programming device and the CPU is done
largely automatically. The manual activities depend on the current situation. If the
assignment to the target CPU is unambiguous, you simply activate online mode. If
the PLC station is located on a bus system, you can let the programming device
show all available nodes, select the desired node (desired PLC stations), and then
use it to commence online operation.

3.13 Downloading the user program to the CPU

97

Activating online mode with STEP 7 V5.5

With the command Target system > Display accessible devices in SIMATIC Manager,
all PLC stations can be displayed that the programming device finds on the select-
ed bus connection. If you open a project that is stored on the hard disk, it will ap-
pear in the offline window. If the project data has already been loaded to the CPU,
you can view it with the command View > Online command in the online window.
In the online window, the heading in the title bar is highlighted and also reads
“ONLINE”. The View > Offline command returns to the offline window.

The figure shows an example of an online window. All system blocks available in
the CPU are displayed in addition to the user blocks in the online Blocks folder.

Activating online mode with STEP 7 inside TIA Portal

With the command Online > Accessible Nodes... in the main menu bar, all PLC sta-
tions are displayed that the programming device finds on the selected bus connec-
tion (Fig. 3.22). For further processing in the project view, select the desired PLC
station and click the View button. Turn on the online mode in the project tree un-
der Online access by double-clicking on the desired PLC station at Online and Diag-
nosis.

If the project data in a PLC station has already been loaded to the CPU, you can
turn on online mode for the selected PLC station with the Connect Online icon. All
the windows displaying online data – that is, data from a connected PLC station –
have an orange title bar. You can use the Cancel Online Connection icon to switch
the PLC station to offline mode again.

Fig. 3.21 Example of an online window for STEP 7 V5.5

3 STEP 7: Engineering Tool for SIMATIC

98

Loading project data

For transferring project data to the CPU, you have two options: transfer with a
memory card or transfer with a connected programming device.

To transfer using a memory card, which retains data even without power supply,
write the compiled project data to the memory card – provided you have the ap-
propriate card programming module on the programming device. Then you in-
sert the memory card into the CPU and turn on the CPU. When starting up, the
CPU imports the project data from the memory card into its own data storage.

When transferring using a programming device, connect the programming device
to the CPU, activate online mode, and transfer the project data to the CPU.

When loading into the CPU unit – whether from a memory card or a programming
device – the complete user program is written to the load memory. The “execu-
tion-relevant” data – the logic and data blocks – is then transferred to the work
memory and executed when you activate RUN mode.

Fig. 3.22 Example of the “Accessible Nodes” display in STEP 7 inside TIA Portal

3.13 Downloading the user program to the CPU

99

Loading the user program with STEP 7 V5.5

To load the project data, select the SIMATIC station in the SIMATIC Manager and se-
lect the command Target System > Load. If the SIMATIC station cannot be assigned
to a node, a table of reachable nodes will be shown, from which you can select the
desired node. Only error-free compiled project data is loaded. When the configura-
tion data is loaded, the CPU must be in STOP mode. When loading is complete, the
SIMATIC station can be switched to RUN mode.

Loading the user program with STEP 7 inside TIA Portal

To load the project data, select the PLC station in the project tree and then select
the Download to the device > All command from the shortcut menu. If the PLC sta-
tion cannot be assigned to a node, a table of reachable nodes will be shown, from
which you can select the desired node. Before loading, the project data is com-
piled. Only project data that has been compiled without errors can be loaded.
STEP 7 shows the further loading procedure in a preview window (Fig. 3.23).
Select the desired action in the Action column and click on the Load button. When
the configuration data is loaded, the CPU must be in STOP mode. When loading is
complete, the PLC station can be switched to RUN mode.

Fig. 3.23 Example of the preview when loading the project data in STEP 7 inside TIA Portal

3 STEP 7: Engineering Tool for SIMATIC

100

3.14 Processing the user program online

With a programming device is connected to the CPU, you can edit both the user
program offline on the hard drive and online in the CPU, for example adding,
changing, deleting, or comparing blocks.

Editing individual blocks offline/online with STEP 7 V5.5

The STEP 7 V5.5 program editor provides two working windows for block process-
ing: the offline window and the online window. The offline window shows the
block that is stored on the hard disk, and the online window shows the block that
is in the user memory of the CPU. To differentiate, the heading in the title bar in
the online window is highlighted and also reads “ONLINE”. Use the Offline/Online
Partners icon in the program editor toolbar to switch between two windows.

Transfer an open block to the hard disk with the File > Save command and to the
CPU with Target System > Load. However, you should ensure that the offline and
online data storage do not diverge. A change in an online block that you have
made for testing should either be repeated in the offline data storage, or rolled
back by reloading the offline block.

You transfer one or more blocks to the CPU by going to the offline window of the
SIMATIC Manager and opening the Blocks folder, selecting the desired block(s),
and selecting the command Target System > Load. If the online window is opened
in parallel, you can also drag the block(s) with the mouse from the offline window
to the online window.

To add a new block to the online user program by going to the online window of
the SIMATIC Manager and selecting Insert > S7 block > [block type] or going to the
program editor and selecting File > New… and activating the option Online in the
dialog window.

To delete a block, select the block in the offline or the online window and select the
command Edit > Delete. The selected block is deleted from the offline and online
data storage.

If a data block is transferred to the CPU, it is saved with the initial values of the
data variables in the load memory and then in the work memory. In the work
memory, the actual values are then derived from the initial values, because the us-
er program can change the values of data variables at runtime so that the contents
of a data block in load memory and in work memory will differ. You can see the
actual values of a data block in the work memory: Open the data block and select
the command View > Data View. The actual values are shown in the Actual Values
column.

To “upload” individual blocks from the CPU to the programming device, select the
block in the online window and choose the command Target System > Load in PG
or “drag” it with the mouse from the online window to the offline window. For da-
ta blocks, the actual value is retrieved from the work memory and used as the ini-
tial value in the offline data storage.

3.14 Processing the user program online

101

Just as with individual blocks, you can also individually transfer only the configu-
ration data to the CPU, for example after a change in the hardware configuration.
In the offline window, select the System Data object in the Blocks folder and choose
Target System > Load. Loading configuration data is only possible in STOP mode. It
is also possible to “upload” the online configuration to the offline data manage-
ment.

You can compare two blocks with each other. To compare, select a block in the
Blocks folder and select the command Options > Compare Blocks…. In the dialog
window, you can compare the offline block with the online block or a block from
another project. If the Perform Code Comparison option is activated, the program
code of the blocks is compared; if the Only Compare Timestamps option is enabled,
only the timestamps of the block interfaces are compared.

Editing individual blocks offline/online with STEP 7 inside TIA Portal

A block is available in two versions for the program editor of STEP 7 inside TIA Por-
tal: the offline version in the programming device and the online version in the
CPU. Only the offline version of the block can be edited.

In the working window, the program editor shows either the offline version, or – if
online mode is activated – the online version of the block. To differentiate, the
window with the online version has an orange title bar. If you want to change the
program of the online block, the program editor switches to the offline version.
Here you can change the block and then transfer the changed block to the CPU. In
this way, the offline and the online version of a block remain identical.

Transfer one or more blocks to the CPU by selecting the blocks in the Program
Blocks folder in the project tree and select the command Download to the device >
Software from the shortcut menu or Online > Download to the device from the main
menu.

You add a new block to the online user program by creating a new block in the
offline data management, programming it, and transferring it to the CPU.

To delete a block, select the block in the project tree and choose Delete from the
shortcut menu. If the block is available in both the offline and the online version,
you can choose in a dialog whether you want to delete the offline or the online
version or both.

If a data block is transferred to the CPU, it is saved with the initial values of the
data variables in the load memory and then in the work memory. In the work
memory, the actual values are then derived from the initial values, because the us-
er program can change the values of data variables at runtime so that the contents
of a data block in load memory and in work memory will differ. You can see the
actual values of a data block in the work memory: Open the data block in online
mode and then turn on the monitoring mode. The actual values are shown in the
Monitor value column.

3 STEP 7: Engineering Tool for SIMATIC

102

“Uploading” from the CPU to the programming device is not possible for individu-
al blocks. You can “upload” the complete online user program: Create a new proj-
ect with a PLC station and the CPU in use; with an open project, activate online
mode; select the Program blocks folder in the project tree and select Online > Load
from device in the main menu. The user program in the CPU is then loaded to the
project, but without the symbolic addresses and the names of local variables and
blocks. For data blocks, the actual value is retrieved from the work memory and
used as the initial value in the offline data storage (not for S7-1200).

You can compare two blocks with each other. Here, the points in time of a program
change (timestamp) are compared. Two data blocks are considered identical if the
data structure is the same; the contents may vary. To compare the offline with the
online version of a block, you select it in the project tree and select Compare >
Offline/online in the shortcut menu. The Compare > Offline/offline command allows
you to compare the block with a block from another project (Fig. 3.24).

3.15 Controlling the user program with online tools

In online mode, STEP 7 makes functions (“online tools”) available that allow you to
control the PLC station from the programming device and obtain information
about the running user program.

Online tools in STEP 7 V5.5

In online mode, additional information from the CPU can be called. To do this, se-
lect the CPU in the SIMATIC Manager and choose the commands listed below.

Fig. 3.24 Example of a block comparison for STEP 7 inside TIA Portal

3.15 Controlling the user program with online tools

103

b Target System > Diagnostics/Setting > Operating Mode
The current operating mode – such as RUN or STOP – is shown. With buttons
that mimic the mode switch, the operating mode can be changed from the pro-
gramming device.

b Target System > Diagnostics/Setting > Reset
This command performs a CPU reset (see section "Resetting the CPU" on page
104).

b Target System > Diagnostics/Setting > Module Status
The module status contains the CPU properties such as the current utilization
of work and load memory, the processing time of the longest, shortest, and last
program cycle, and the performance data of the CPU. This command also reads
out the diagnostic buffer (see section "Diagnostic buffer" on page 107).

b Target System > Diagnostics/Setting > Set Time
This command sets the CPU-internal clock.

b Target System > CPU Messages
This command displays asynchronous error messages and user-defined mes-
sages in the CPU that are generated in the program with system blocks.

Fig. 3.25 shows the dialog window for setting the CPU clock and the operating
mode to control the CPU with STEP 7 V5.5.

Fig. 3.25 CPU information “Set Time of Day” and “Operating Mode” in STEP 7 V5.5

3 STEP 7: Engineering Tool for SIMATIC

104

Online tools for STEP 7 inside TIA Portal

To activate the online tools, double-click in the project tree under the CPU on On-
line & diagnostics. This opens the diagnostics window that shows the connection
status for the CPU, and the task card with the online tools. If there is not yet any
connection, click the Connect Online icon or the Connect Online button.

The CPU Control Panel pallet displays the status of the LED on the front side of the
CPU and provides the RUN, STOP, and MRES (reset) buttons to control the CPU.
The Cycle Time palette displays the shortest, current, and longest cycle time since
the last power-up. The Memory palette contains the assignment display of the load
memory, work memory, and retentive memory.

In the diagnostics window, under the Functions group, you can set the time of the
CPU, set the device name and IP address for a PROFINET connection, and reset the
CPU to the factory settings (Fig. 3.26).

Resetting the CPU

A memory reset returns the CPU to its “initial state”. The CPU deletes the entire
user program in the work memory and in the RAM load memory. The system mem-
ory with the address areas is also deleted, regardless of the setting for retentive
behavior. The CPU resets the parameters of all modules – including its own – to the
standard settings. The MPI parameters form an exception. These are not changed
so that a reset CPU remains addressable on the MPI bus. The diagnostic buffer, the
real-time clock, and the runtime meters are not reset either. If there is a user pro-
gram in the (F)EPROM load memory, the execution-relevant part is copied into the
work memory and the configuration data is transferred to the CPU.

Fig. 3.26 Setting the time of the CPU with STEP 7 inside TIA Portal

3.15 Controlling the user program with online tools

105

With a CPU 300 and CPU 400, you can trigger a reset using the mode switch on the
front of the CPU: Hold the switch in the MRES position for at least 3 s, release, and
then at the latest within 3 s hold in the MRES position again for at least 3 s.

With a programming device you initiate a reset in the online tools if the CPU is in
STOP mode.

Protection of the user program in the CPU

Access to the user program in the CPU can be protected by a password. Anyone
with knowledge of the password has unlimited access to the user program. You
can define three protection levels for all those who do not know the password:

b Protection level 1 (no protection) is the default setting

b Protection level 2 allows only the user program to be read

b Protection level 3 permits neither read nor write access to the user program

Test functions, such as reading the diagnostic buffer or monitoring variable val-
ues, are possible in every protection level without password. You set the protec-
tion levels in Hardware Config when parameterizing the CPU properties.

Web server

CPUs with an Ethernet interface have a web server that provides information from
the CPU. To read out the information, you require a web browser that displays HT-
ML pages.

The web server is activated with Hardware Config when configuring the CPU prop-
erties. You can set the update interval of the web pages, the project language, and
the authorized users, among others.

If no users are configured, anyone can read all web pages without being logged
on. The (default) user “Everybody” can access all web pages enabled for the user
“Everybody” without being logged on and without a password. Access privileges to
the web pages can be assigned individually to a configured user with password.

To start the web server, enter the IP address of the CPU in the web browser in
the form http://aaa.bbb.ccc.ddd or – if a secure connection is configured –
https://aaa.bbbb.ccc.ddd.

The first page displayed by the web server is the Welcome page. By clicking ENTER,
you come to the start page, which contains general information about the CPU.

The web server can show, for example, the contents of the diagnostic buffer, the
diagnostic status of the CPU, and the configured messages. The state or the value
of variables can be monitored using a variable table. It is also possible to create
your own personalized web pages, to load these to the CPU, and then to display
them using a web browser.

3 STEP 7: Engineering Tool for SIMATIC

106

3.16 Finding hardware faults using diagnostic functions

Hardware diagnostics can detect and report faults in modules, such as a failure of
the load voltage or a wire break on signal modules. An error in the PLC station is
displayed on the front of the CPU with a red error LED. Modules with self-diagno-
sis ability can also signal a detected error by means of a frontal LED.

In online mode, STEP 7 makes extensive functions available to locate a faulty mod-
ule and identify the cause of the fault. The operating system of the CPU provides
additional diagnostic features that can be used with the user program at runtime
(see chapter 5.12 "Synchronous errors with a CPU 300/400" on page 184 and the
chapters following it).

Locating and reading out faulty modules with STEP 7 V5.5

You are given an overview of the faulty modules when you open the project in the
SIMATIC Manager, select the SIMATIC station, and select Target System > Diagnos-
tics/Setting > Diagnose Hardware in the main menu. In the default setting, which
you can change via Options > Settings in the View tab, STEP 7 shows a module over-
view in the “quick view”.

The Module Status button in the quick view gives you detailed diagnostic informa-
tion, depending on the diagnostic capability of the module. You receive the same
information if you open the module in the diagnostics view in Hardware Config,
or in SIMATIC Manager by selecting theSIMATIC station and choosing Target Sys-
tem > Diagnostics/Setting > Module Status. The Module Status window shows the da-
ta loaded by the CPU data in multiple tabs, such as the memory usage of the user
program in the CPU, the current processing cycle time, or the messages from the
diagnostic buffer.

Locating and reading out faulty modules with STEP 7 inside TIA Portal

The inspector window in the Diagnostics > Device Information tab displays the sta-
tus of the devices reported as faulty. A device is considered to be faulty if it is inac-
cessible when establishing the online connection, if it signals a fault, or if it is not
in RUN mode. Via the link in the Details column you can access the Connect online
dialog or the online and diagnostics view of the faulty device (Fig. 3.27). In online

Fig. 3.27 Diagnostics in the inspector window for STEP 7 inside TIA Portal

3.16 Finding hardware faults using diagnostic functions

107

mode, the Hardware Config in the device or network view shows the operating
and diagnostic status using icons at every connected PLC station. The project tree
also uses colored icons to indicate the diagnostic status.

Double-clicking on Online & diagnostics under the PLC station in the project tree
opens the diagnostic window. Under Online access the diagnostic window shows
the connection status and the interface properties. A click on the Connect Online
button establishes a connection to the CPU.

The information read by the CPU is displayed in the Diagnostics group; under
Diagnostics > General e.g. the order number, serial number, and hardware and
firmware version are shown; and Diagnostics > Diagnostic Status shows the diag-
nostic status of the module. You can read out the current cycle processing time
and current memory usage of the user memory. The diagnostic buffer can be read
out with Diagnostics > Diagnostic Buffer.

Diagnostic buffer

All diagnosis events signaled to the CPU's operating system are entered into a di-
agnostic buffer in the sequence of their occurrence with date and time. The diag-
nostic buffer is a buffered memory area in the CPU, which retains its contents even
after a reset. The diagnostic buffer is a ring buffer; its size is CPU-specific. If the
diagnostic buffer is full, the oldest entry is overwritten by the current diagnostic
event.

Fig. 3.28 Example of entries in the diagnostic buffer of the CPU in STEP 7 V5.5

3 STEP 7: Engineering Tool for SIMATIC

108

You can read out the diagnostic buffer with a programming device at any time.
When configuring the hardware, you can select in the CPU properties if you want
extended diagnostic buffer entries (in addition to all of the calls of the organiza-
tion blocks). You can also set whether the last diagnostics entry – before the CPU
goes to STOP mode – is sent to a node logged in for this purpose.

For the diagnostic buffer in STEP 7 V5.5, select the CPU in the SIMATIC Manager,
choose the command Target System > Diagnostics/Setting > Module Status, and
open the Diagnostic Buffer tab.

With STEP 7 inside TIA Portal, double-click in the project tree on Online & diagnos-
tics under the PLC station, activate the online connection, and click Diagnostic Buf-
fer in the Diagnostics group.

In the diagnostic buffer, the most recent message numbered 1 allows you to see
the cause of the stop, e.g. “STOP caused by programming error OB”. The error that
led to this can be found in the previous messages, e.g. “Area length error when
reading”. By clicking on the message number, an extended commentary on the
message is displayed in the underlying display field. If the message concerns a
programming error in a block, you can open and edit the block by clicking Block
Open (STEP 7 V5.5) or Open in Editor (STEP 7 inside TIA Portal).

3.17 Testing with watch tables

An excellent way to test the user program is to monitor and control variables us-
ing watch tables (with STEP 7 V5.5, these are variables tables or VAT). This allows
the signal states or values of variables to be displayed with elementary data types.
If you have access to the user program, you can also control variables, i.e. change
the signal state or assign new values.

General procedure for monitoring and controlling variables

You create a new watch table and list all variables in the table whose values you
wish to monitor and/or control. Here you define the format with which the value
of the variable should be displayed and controlled; this display format does not
have to match the data type of the variable in the user program.

You then specify the point in time – separately for monitoring and control – at
which the CPU reads the values from the system memory or writes to system
memory. For example, if you specify Start of Cycle as the trigger point for modify-
ing, the variables being modified will be given the specified value before cyclic
processing of the program begins. If you specify End of Cycle as the trigger point
for monitoring, the values displayed for the variables will be displayed at the end
of cyclic processing. Monitoring and modifying can take place once only or perma-
nently.

Once you have placed the watch table in online mode, activate the monitoring of
the variables, observe the status value and watch how it changes. If you want to

3.17 Testing with watch tables

109

specify a specific value for a variable, enter the control value and activate control-
ling.

Testing with watch tables with STEP 7 V5.5

To add a new watch table (here: variable table) open the project in the SIMATIC
Manager, select the Blocks folder, and select Insert > S7 Block > Variable Table. Dou-
ble-clicking the VAT icon opens the variable table in a separate window. Now enter
the variables (addresses). The command Variable > Trigger allows you to set the
time – separately for monitoring and control – at which the CPU reads the values
from the system memory or writes to the system memory and whether this should
take place once or permanently. The Target System > Connect To > … command al-
lows you to connect the variable table online to the configured CPU, to the directly
connected CPU, or to another accessible CPU.

Variable > Monitor updates the variable values depending on the set trigger condi-
tions (Fig. 3.29). With Variable > Update Status Value the update takes place once.
The command Variable > Control transfers the predetermined control values to the
CPU depending on the trigger conditions. You first enter the control values in the
Control Value column (only for the variables whose values should be changed). En-
tered values can be commented out with a double slash, and they are then ignored
in controlling. The transfer occurs once with Variable > Activate Control Value.

Fig. 3.29 Example of a variable table for STEP 7 V5.5

3 STEP 7: Engineering Tool for SIMATIC

110

Testing with watch tables with STEP 7 inside TIA Portal

To add a new watch table, open the Watch and force tables folder under the PLC
station in the project tree and double-click on Add New Watch Table. Open the
empty watch table and enter the variables that should be monitored and/or con-
trolled. To set the trigger time, click on the icon for the expanded mode and enter
the trigger condition in the Monitor with trigger column (Fig. 3.30). To modify vari-
ables in the watch table, display the control columns in the table by clicking on the
relevant icon; you can now enter the control value. In expanded mode, you can al-
so specify the trigger conditions in the Modify with trigger column.

The Online > Connect online command in the main menu connects the watch table
with the CPU.

You start the monitoring and modifying with the appropriate icons in the toolbar
of the working window. Monitoring and modifying may occur in dependency on
the set trigger conditions or “once and immediately”.

Forcing variables

Forcing is the preallocation of variables with fixed values. The variables are en-
tered into a force table with the force value entered and transferred to the CPU.
Forcing will remain valid until it is specifically disabled. Interruption of the online
connection or switching the CPU off and on again do not stop the forcing.

In STEP 7 V5.5, you open a variable table (watch table) and select the command
Variable > Show Force Values. This will open a new table into which you enter the
variables to be forced with the force value. The Variable > Force command trans-

Fig. 3.30 Example of the monitoring of variables in expanded mode inside TIA Portal

3.18 Testing the program with the program status

111

fers the force values to the CPU, where they are effective immediately. The Variable
> Delete Force command ends forcing.

For STEP 7 inside TIA Portal, open the force table in the Watch and force tables fold-
er. Enter the variables and the force values. You can start and end forcing by
means of the icons in the function bar of the working window.

Enabling peripheral outputs

In STOP mode, the output modules are usually locked, so they issue the value
“zero” or substitute value. The Enable PQ function allows you to remove the dis-
able signal and also control the output modules in CPU STOP. An application for
this would be checking the wiring of the outputs in STOP mode and without a user
program.

In STEP 7 V5.5, create a variable table (watch table) and enter the peripheral out-
puts to be controlled and the control values. Switch the variable table online and
stop the CPU if applicable. Variable > Enable PQ deactivates the output disable.
With Variable > Activate Control Value you control the peripheral outputs. You can
change the control value and resume controlling. Use the ESC key to switch the
function off. The output disable is active again and the module outputs are reset
to “0” or the substitute value.

In STEP 7 inside TIA Portal, create a watch table and enter the peripheral outputs
to be controlled and the control values. Switch the variable table online and stop
the CPU if applicable. Click the icon for the command output disable to deactivate
the output disable and the “Control once and immediately” icon to control the pe-
ripheral outputs. You can change the control value and resume controlling. Enable
PQ is ended if a CPU operating mode changes or the online connection is deacti-
vated. The output disable is active again and the module outputs are reset to “0”
or the substitute value.

3.18 Testing the program with the program status

The program status shows the current signal states and variable values on the
open block. The block whose program you want to test is located in the user mem-
ory of the CPU, where it is called and processed. Open this block, go to the point in
the program that you want to watch, and turn on the program status.

In STEP 7 V5.5, select the Blocks folder in the SIMATIC Manager and use the View >
Online command to open the online window. Double-click the block to be tested to
open it. Go to the point in the program that you want to test, and use Debug > Mon-
itor to switch on the program status. Now you can monitor the signal flow in the
program. Click again on Debug > Monitor to end the program status.

In STEP 7 inside TIA Portal, open the Program Blocks folder in the project tree and
double-click the block to be tested. In the open block, go to the point in the pro-
gram that you want to test and click on the Monitoring On/Off icon in the toolbar of

3 STEP 7: Engineering Tool for SIMATIC

112

the working window. The online mode is turned on and you can monitor the sig-
nal flow in the program. Click again on Monitoring On/Off to end the program sta-
tus.

In the LAD program status, continuous lines are used to identify contacts, coils,
and the connections between the program elements which have signal state “1”.
Program elements with signal state “0” are identified by dashed lines. The value of
a digital variable is located right at the variable (Fig. 3.31).

In the FBD program status, the boxes of the binary program elements and connec-
tions with signal state “1” are represented by solid lines. Program elements with
signal state “0” are identified by dashed lines. The value of a digital variable is lo-
cated right at the variable (Fig. 3.32).

The STL program status is shown in tabular form to the right of the statements so
that the variable value can be read for each statement line (Fig. 3.33).

In the SCL program status, the variables used in the row are displayed with their
values to the right of the statements so that the value for each variable can be read
(Fig. 3.34).

Monitoring the program status extends the cyclic processing time of the program.
You have a choice of two modes of operation for the test. In Test Operation you can

Fig. 3.31 Example of LAD program status for STEP 7 V5.5

3.18 Testing the program with the program status

113

Fig. 3.32 Example of an FBD program status for STEP 7 inside TIA Portal

Fig. 3.33 Example of STL program status for STEP 7 V5.5

3 STEP 7: Engineering Tool for SIMATIC

114

use all the debugging functions without restrictions, and in Process Operation the
extension of the scan cycle time is kept to a minimum, which may result in restric-
tions.

Testing in single step mode

In the programming languages STL and SCL, you can test the program statement
by statement in single step mode. The CPU is in the HOLD state in this case; the
peripheral outputs should be switched off as a precaution. You can use break-
points to stop the program at any desired position and test step-by-step.

To test in single step mode, set breakpoints in the offline block. If program pro-
cessing is to stop at a breakpoint, you must activate it. You can set any number of
breakpoints, but only activate one quantity that depends on the CPU. When acti-
vated, the breakpoint is transferred to the CPU. Program execution is carried out
in RUN mode up to the first active breakpoint and then stops in HOLD mode. You
can now advance the program execution statement by statement, and monitor the
course of the program with the signal states, variable values, and register con-
tents.

In STEP 7 V5.5 you must open the block to be tested, place the cursor in the appro-
priate statement line, and select Debug > Set Breakpoint. With Debug > Active
Breakpoint, the breakpoint is transferred to the CPU, and the program is executed
up to the breakpoint. With Debug > Perform next statement you can now have the
program process each instruction individually. You exit single step mode by delet-
ing all breakpoints and the command Debug > Resume.

In STEP 7 inside TIA Portal, open the block to be tested, right-click in the gray box
in front of the statement line, and select the command for setting a breakpoint
from the shortcut menu. To activate the breakpoint, select it and choose Activate
Breakpoint from the shortcut menu. The program then executes up to the break-
point. The Skip command executes the current instruction and stops at the next
instruction. To exit single step mode, delete all breakpoints, then click the gray
column before the instruction and the Execute command.

Fig. 3.34 Example of an SCL program status for STEP 7 inside TIA Portal

3.19 Testing user programs offline using S7-PLCSIM

115

3.19 Testing user programs offline using S7-PLCSIM

The S7-PLCSIM optional software permits you to test the user program offline
without additional hardware. S7-PLCSIM simulates a PLC station on the program-
ming device. The CPU is not specified, which means that you can test any user pro-
gram with S7-PLCSIM. It makes no difference which programming language the
blocks are written in. Only one PLC can be simulated at any one time.

For STEP 7 V5.5, S7-PLCSIM is an option package that is incorporated into SIMATIC
Manager after installation. You start the simulation in SIMATIC Manager with Op-
tions > Simulate Modules. For STEP 7 inside TIA Portal, S7-PLCSIM is already inte-
grated, and is started with a selected PLC station using Online > Simulation > Start.

The S7-PLCSIM user interface

The S7-PLCSIM user interface appears in a separate window. Following selection of
a program or Simulation > New PLC, the CPU subwindow is displayed. It shows the
controls and LEDs of a CPU. You just click with the mouse to switch the simulated
CPU to the RUN and RUN-P modes and back to STOP or perform a memory reset on
the CPU. If the simulated CPU goes into STOP mode as a result of a programming
error, for example, this is indicated by the group error LED and the STOP LED.

To simulate the plant to be controlled, there are subwindows for inputs and out-
puts. Each subwindow can represent a bit, byte, word or doubleword address in
different data formats. You can use these subwindows, for example, to simulate
the signal states of inputs (by clicking them with the mouse) and observe how the
outputs are set and reset.

You specify digital values in the correct format for the data type. A slider enables
you to simulate values that are constantly changing, such as analog values. You
can change the position of the sliders using either the mouse or the arrow keys.

You can also monitor and modify internal CPU addresses in separate subwindows.
There are subwindows for bit memories, timers, counters and general variables.
In a variable subwindow (inputs, outputs, bit memories or general variables) you
can enter any shared addresses, including specific data addresses (for example
DB62.DBB15).

You can select Tools > Options > Attach Symbols… to assign a symbol table to
S7-PLCSIM so that you can display symbolic names for the variables (by selecting
the menu commands Tools > Options > Show Symbols). You can also edit the as-
signed symbol table from S7-PLCSIM.

Downloading and running a program

When you start S7-PLCSIM, the creation system is online to an imaginary CPU. You
can now download the user program to the user memory of the CPU by clicking
the menu commands PLC → DOWNLOAD in the SIMATIC Manager – as you would
with a real CPU. If you switch to online view, you will see the blocks that have been
downloaded to the CPU in the online window. Then you click RUN or RUN-P in the
CPU pane, S7-PLCSIM processes the downloaded user program like a real CPU.

3 STEP 7: Engineering Tool for SIMATIC

116

If a program error occurs, e.g. access to an address that does not exist, S7-PLCSIM
responds by calling the synchronous error organization block OB 122. If this is not
present in the program, the CPU goes into STOP mode. The further procedure is as
when testing with a real CPU, for example reading out the diagnostic buffer and
determining the cause of the stop.

You test the user program using the variable table (watch table) and the program
status; for STL and SCL also single-step mode with breakpoints. The CPU simulat-
ed with S7-PLCSIM behaves like a real CPU here, too.

3.20 Documentation in wiring manual format
with DOCPRO

You use the optional software DOCPRO for STEP 7 V5.5 to create and manage your
system documentation. DOCPRO enables you to:

b Put the data to be printed together in any order to produce wiring manuals of
uniform appearance with uniform footers

b Design the layout to DIN 6771 (standard for technical documentation) using the
templates provided or to suit your own individual requirements

Fig. 3.35 Testing programs with S7-PLCSIM

3.20 Documentation in wiring manual format with DOCPRO

117

b Number drawings automatically or manually

b Create document indexes automatically

Examples of data you can document with DOCPRO are program code in the rele-
vant programming language, symbol tables, reference data, configuration tables,
global data table and connection table.

Generating system documentation

After installing DOCPRO, insert an object called Documentation in the project fold-
er with Insert > Project Documentation. Double-click on Documentation to start
DOCPRO. In the left-hand side of the documentation window you will see the
structure of the system documentation in the form of wiring manuals and job lists
and on the right-hand side you will see their contents. The wiring manual wizard
helps you create new system documentation (Fig. 3.36).

You can change the layout and sequence of the documentation at any time. Set the
desired layout by choosing Options > Settings for Print Object Types…. Choose Insert
> Wiring Manual, Insert > Job List, Insert > Print Objects… and Insert > Coversheet to
add items to the documentation. The documentation can consist of several wiring
manuals, which can each contain several job lists, in which the print objects
(e.g. symbol table, compiled blocks, cross-reference list) are listed in the order in
which they are to be printed.

Fig. 3.36 Example of the DOCPRO circuit manual wizard

3 STEP 7: Engineering Tool for SIMATIC

118

When the printing process is completed, a document index is printed. This is a ta-
ble showing the objects that have been printed. You can specify a layout for the
document index in the same way as for any other print object.

Fig. 3.37 shows an example of a wiring manual printout for OB 1 with DIN A4 lay-
out in portrait format with footer. You can also choose DIN A3 in portrait or land-
scape format or design your own layout.

Fig. 3.37 Example of a wiring manual printout using DOCPRO

1 32 4

A

B

C

D

E

F

Zustand Änderung Datum Name

Datum
Bearb.
Gepr.
Norm

15.09.1999
Berger

Publicis-MCD

SIMATIC-Buch

Siemens AG

Nürnberg

Blatt
1

Organisationsbaustein OB1

Programmausdruck

Zeichnungsnummer

Unterlagennummer
Bl.

=
+

W
e
i
t
e
r
g
a
b
e

s
o
w
i
e

V
e
r
v
i
e
l
f
ä
l
t
i
g
u
n
g

d
i
e
s
e
r

U
n
t
e
r
l
a
g
e
,

V
e
r
-

w
e
r
t
u
n
g

u
n
d

M
i
t
t
e
i
l
u
n
g

i
h
r
e
s
I
n
h
a
l
t
s

n
i
c
h
t
g
e
s
t
a
t
t
e
t
,
s
o
-

p
f
l
i
c
h
t
e
n
z
u

S
c
h
a
d
e
n
e
r
s
a
t
z
.

A
l
l
e

R
e
c
h
t
e

v
o
r
b
e
h
a
l
t
e
n
,

i
n
s
b
e
-

s
o
n
d
e
r
e

f
ü
r

d
e
n
F
a
l
l

d
e
r
P
a
t
e
n
t
e
r
t
e
i
l
u
n
g

o
d
e
r
G
M
-
E
i
n
t
r
a
g
u
n
g
.

w
e
i
t
n
i
c
h
t

a
u
s
d
r
ü
c
k
l
i
c
h
z
u
g
e
s
t
a
n
d
e
n
.

Z
u
w
i
d
e
r
h
a
n
d
l
u
n
g
e
n

v
e
r
-

©

OB1 - <offline>
“Cycle” Main program

Cycle Family: S7_Book
Berger Version: 01.01

Block version: 2
Time stamp Code:

Interface:
15.09.99 18:38:59
23.08.96 18:44:39

Lengths (block / code / data): 00218 00098 00026

Declaration Type Comment
0.0 temp OB1_EV_CLASS BYTE Bits 0-3 = 1 (Coming event),

Bits 4-7 = 1 (Event class 1)
1.0 temp OB1_SCAN_1 BYTE 1 (Cold restart scan 1 of OB 1),

3 (Scan 2-n of OB 1)
2.0 temp OB1_PRIORITY BYTE 1 (Priority of 1 is lowest)
3.0 temp OB1_OB_NUMBR BYTE 1 (Organization block 1, OB1)
4.0 temp OB1_RESERVED_1 BYTE Reserved for system
5.0 temp OB1_RESERVED_2 BYTE Reserved for system
6.0 temp OB1_PREV_CYCLE INT Cycle time of previous OB1 scan

(milliseconds)
8.0 temp OB1_MIN_CYCLE INT Minimum cycle time of OB1

(milliseconds)
10.0 temp OB1_MAX_CYCLE INT Maximum cycle time of OB1

(milliseconds)
12.0 temp OB1_DATE_TIME DATE_AND_TIME Date and time OB1 started

Block: OB1 Main program

Call of the blocks for the sample frame.

Network: 1 Generate frame

With positive edge at the input, a message frame is generated from
the identifier, consecutive number, time-of-day and data (first field)
in the send mailbox.

“Generate”

P

“FM_Gen” “T_Generate”

“DB_Generate”

EN

1 ValuesX

ENO

Symbol information
I1.0 Generate Compile start frame
M1.0 FM_Gen Edge memory bit for generate
FB51 T_Generate Compile send frame
DB51 DB_Generate Instance data block to FB 51

Up references
FM_Gen

4 The programming languages

119

4 The programming languages

You use the programming languages to write the user program. You have a choice
of several programming languages and programming methods to suit your partic-
ular needs or preference. STEP 7 V5.5 is supplied with the programming languag-
es LAD, FBD, and STL. SCL and GRAPH are available as option packages. STEP 7
Professional V11 inside TIA Portal is supplied with LAD, FBD, STL, SCL, and GRAPH
(Fig. 4.1).

Every programming language has a certain functional scope that also depends on
the CPU type for which the user program is intended. For example, there are func-
tions for the logic operation of binary signal states, for arithmetic calculations,
and for controlling program execution.

The values manipulated in the user program are located in specific areas of the
memory called address areas. A distinction is made between global addresses,
which are available throughout the user program, and block-specific variables,
which are only “valid” in the specific block. For an address to be addressed, it
needs an address. Absolute addressing uses the storage location as identification,
while symbolic addressing uses a character string (a name). The data types specify
the value range and the internal structure (data storage) of the variable. There are
basic data types that can be edited using the “simple” statements of a program-
ming language, and complex data types that are made up of individual compo-
nents and represent a unit.

Fig. 4.1 The programming languages of STEP 7

STEP 7 V5.5

LAD LAD

FBD FBD

SC L

STL STL

GRAPHS7-SCL

S7-GRAPH

The programming languages of STEP 7

STEP 7 V11

4 The programming languages

120

Overview of programming languages

LAD (ladder logic) emulates a circuit diagram. The series and parallel connection
of contacts allows binary signals to be linked. Timer, counter, and digital functions
are inserted as boxes in the circuit diagram. The signal states of binary signals can
be represented very clearly here as “current flows”.

FBD (function block diagram) represents all the links as boxes, similar to the de-
piction of electronic circuitry. The inputs of the boxes are assigned to the variables
whose signal states and values are to be linked. The result of the link at the box
output is fed to a variable or an input of another box.

STL (statement list) consists of single statements listed line by line. Logic opera-
tions are implemented that process the signal states and values of addresses and
variables. In addition to the linking of binary and digital variables, complex vari-
ables can be edited with STL and addresses and variables can be addressed indi-
rectly.

SCL (Structured Control Language) is a textual programming language for pro-
gramming complex algorithms and handling large quantities of structured data.
The instruction set comprises various types of expressions, with which variable
values are transmitted, compared, and calculated. Control statements control the
processing sequence in an SCL program.

GRAPH is a programming method for sequence control processes, i.e. for control-
ling sequencers. The program is executed step by step. A certain number of con-
trol statements are performed in each step. You can choose to display the step en-
abling conditions for the next step in LAD or FBD. Alternative or parallel branch-
ing extends the scope of the linear execution of consecutive steps.

The user program consists of individual sections known as “blocks”. How the user
program is structured is described in chapter 5 "The user program" on page 161.
You can program each block with the programming language of your choice. LAD
or FBD is well suited if primarily binary signals are linked in the block program,
STL is suitable for processing complex variables with indirect addressing, and SCL
allows you to easily program blocks with program branches and program loops.

A sequence control programmed with GRAPH with all process steps and step en-
abling conditions is implemented in a single function block. A user program can
contain multiple sequence controls, each in a different function block. The rest of
the user program is then in additional blocks programmed with other languages?

The user program in a CPU 1200 can be created with the LAD, FBD, and SCL pro-
gramming languages. The user program in a CPU 300 or CPU 400 can be created
using any programming language.

4.1 Ladder Logic LAD

121

4.1 Ladder Logic LAD

Programming with LAD

In the ladder logic (LAD) programming language, you formulate the control func-
tion by arranging graphical program elements. These are essentially contacts,
coils, and boxes that you connect with each other in the form of a circuit diagram.

With ladder logic you program the program in a block. You set the programming
language with which the block is programmed in the block properties. A block
that is programmed in LAD is divided into sections referred to as “networks”. Each
network contains at least one current path that may also have an extremely com-
plex structure. Each network is terminated by at least one coil or box.

To program, open the block and drag the program element from the Program Ele-
ments catalog to the opened network. Most program elements must be provided
with variables. It is best if you initially place all program elements in a current
path and subsequently label them.

Fig. 4.2 shows the structure of a block with LAD program as represented by STEP 7
inside TIA Portal. The block header (block title) and the block comment are located
at the beginning of the program. Heading and comment are optional. These are
followed by the first network with its number, heading, and comment. Heading
and comment are also optional for the networks.

The first network shows a current path as an example with series and parallel con-
nection of contacts, a memory function within the current path, and two coils as
termination of the current path. The second network shows the processing of box-
es, which can be arranged in series or parallel. A block is not terminated by a spe-
cial network or function, you simply finish the program input.

The LAD editor establishes a network in accordance with the principle of the “main
current path”: This is the highest branch, which commences directly on the left-
hand power rail and must be terminated by a coil or box. All LAD elements can be
positioned within it.

An LAD element must not be “short-circuited” by an “empty” parallel branch, and
“current” must not flow from right to left through a program element. A parallel
branch that does not end “open” must be closed for the branch on which it was
opened.

“Open” parallel branches can lead out from the main current path and need not
lead back to the main current path; these are known as “T branches”. There are
certain limitations in the selection of the permissible program elements in the
case of these parallel branches which do not commence on the left-hand power
rail.

Program elements of ladder logic

Fig. 4.3 shows which types of LAD elements exist. The signal state of a binary vari-
able is queried with a contact. An NO contact takes over the signal state without

4 The programming languages

122

Fig. 4.2 Structure of a block with LAD program for STEP 7 inside TIA Portal

4.1 Ladder Logic LAD

123

change; an NC contact negates the signal state. The arrangement of the contacts in
series and parallel connection corresponds to binary logic operations according to
AND and OR. The result of the logic operation is saved in a coil or processed fur-
ther at the input of a box.

For the “simple” Q boxes, the signal state of the Q output must be linked further.
EN/ENO boxes can be connected in series if the ENO output leads to the EN input of
the following box. These are processed only if the previous box has been pro-
cessed without errors. With a contact at the beginning of the “main current path”
with boxes connected in series, all boxes can be simultaneously turned on and off.

Fig. 4.3 Overview of ladder logic program elements

Function

Binary variable

Binary variable

Function

Block

Q

ENO

ENO

OUT

OUT1

OUT2

IN1

EN

EN

IN2

IN2

IN2

IN1

IN1

Data

Contacts

Coils

Boxes with Q output

Boxes with EN input and ENO output

Block calls

4 The programming languages

124

Examples of LAD representation

Fig. 4.4 shows how STEP 7 V5.5 represents the series and parallel connection of
contacts in combination with a Q box. The example with digital functions in Fig.
4.5 shows how STEP 7 inside TIA Portal displays the ladder logic. Here it is possible
to arrange additional current paths in a network.

Fig. 4.4 Examples of series and parallel connection of contacts with STEP 7 V5.5

Fig. 4.5 Example of programming digital functions with STEP 7 inside TIA Portal

4.2 Function Block Diagram FBD

125

4.2 Function Block Diagram FBD

Programming with FBD

In the function block diagram (FBD) programming language, you formulate the
control function by connecting boxes. FBD makes available function boxes for link-
ing signal states, simple boxes to process the results of logic operation, and com-
plex boxes for non-binary functions.

With FBD you program the program in a block. You set the programming lan-
guage with which the block is programmed in the block properties. A block that is
programmed in FBD is divided into sections referred to as “networks”. Each net-
work contains at least one logic operation, which can also have an extremely com-
plex structure. Each network is terminated by at least one box.

To program, open the block and drag the program element from the Program Ele-
ments catalog to the opened network. Most program elements must be provided
with variables. It is best if you initially positionall program elements in a logic op-
eration and subsequently label them.

Fig. 4.6 shows the structure of a block with LAD program as represented by STEP 7
inside TIA Portal. The block header (block title) and the block comment are located
at the beginning of the program. Heading and comment are optional. These are
followed by the first network with its number, heading, and comment. Heading
and comment are also optional for the networks.

The first network shows a logic operation as example with AND and OR boxes, a
memory function within the logic operation, and two assignments as termination
of the logic operation. The second network shows the processing of EN/ENO boxes,
of which two are arranged in series. A block is not terminated by a special network
or function, you simply finish the program input.

The program editor constructs an FBD network from left to right: Position the first
program element underneath the network comment and insert further program
elements at the inputs and outputs. The boxes with binary logic operations can be
extended by additional inputs. Box outputs cannot be directly connected to each
other.

A logic operation must always be terminated, for example by an assignment. The
assignment controls a binary variable using the result of the logic operation.

“Open” parallel branches can lead out from the top logic operation and not be
“wired back” to the top logic operation; these are known as “T branches”. In these
T branches, there are certain limitations with regard to which permissible pro-
gram elements can be selected.

4 The programming languages

126

Fig. 4.6 Structure of a block with FBD program for STEP 7 inside TIA Portal

4.2 Function Block Diagram FBD

127

Program elements of the function block diagram

Fig. 4.7 shows which types of FBD elements exist. The signal state of a binary vari-
able is queried with an input on a box. An input fed directly to the box imports the
signal state without change; a negation symbol (a small circle) at the box input ne-
gates the signal state. The AND, OR and exclusive OR boxes can be interconnected
as required. The result of the logic operation is further processed at the input of
the next box, for example stored with an assign box in a variable.

For the “simple” Q boxes, the signal state of the Q output must be linked further.
EN/ENO boxes can be connected in series if the ENO output leads to the EN input of
the following box. These are processed only if the previous box has been pro-
cessed without errors.

Fig. 4.7 Overview of program elements of the function block diagram

Function

Function

Function

Function

Block

Q

OUT

OUT1

ENO

OUT2

ENO

IN1

EN

EN

IN2

IN2

IN2

IN1

IN1

Data

Binary functions

Standard boxes

Boxes with Q output

Boxes with EN input and ENO output

Block calls

4 The programming languages

128

Examples of FBD representation

Fig. 4.8 shows how STEP 7 V5.5 represents a Q box with binary logic operations at
the inputs and at the output in a function block diagram. How STEP 7 inside TIA
Portal displays the function block diagram is shown in Fig. 4.9. Here, further (in-
dependent) logic operations can be arranged in a network.

Fig. 4.8 Example of binary functions in FBD for STEP 7 V5.5

Fig. 4.9 Example of digital functions in FBD for STEP 7 inside TIA Portal

4.3 Statement List STL

129

4.3 Statement List STL

Programming with STL

In the statement list (STL) programming language you formulate the control func-
tion by entering STL statements line by line. Each line holds one statement, such
as querying and connecting to an input signal or adding two floating point num-
bers. Block calls require additional lines for the parameter list.

With STL you program the program in a block. You set the programming language
with which the block is programmed in the block properties. A block that is pro-

Fig. 4.10 Structure of a block with STL program for STEP 7 inside TIA Portal

4 The programming languages

130

grammed in STL can be divided into sections referred to as “networks”. Each net-
work can contain any program. Networks are not required for the function of an
STL program, but they do increase clarity: When processing the block program,
you can go directly to any network to open it.

For programming, open the block and use the keyboard to enter the individual
STL statements line by line. You can drag complex functions with multiple inputs
and outputs from the Program Elements catalog to the desired line. Even though
working with the Program Elements catalog can be more complicated than enter-
ing via the keyboard, it gives you an overview of the available functions.

Comments commence with two slashes, either as a line comment or as a statement
comment. You can insert empty lines to structure the sequence of statements.
These and the comments have no effect on the control function.

Fig. 4.10 shows the structure of a block with the STL program. The block header
(block title) and the block comment are located at the beginning of the program.
These are followed by the first network with its number, heading, and comment.
Further networks are optional.

The first network shows a logic operation as example with AND and OR state-
ments, a memory function, as well as an AND function with two assignments as
termination. The second network shows the processing of digital values. Two digi-
tal values with data type DINT are added and the result converted to REAL before
being transferred to a variable. A block need not be terminated by a special func-
tion, you simply terminate the program input.

Structure of an STL statement

The STL program consists of a sequence of individual STL statements. A statement
is the smallest independent unit of the user program. It represents a procedural
specification for the control processor. Fig. 4.11 shows the structure of an STL
statement.

Fig. 4.11 Structure of an STL statement

M001: L %IW 12 //Load analog value 1

Structure of an STL statement

4.3 Statement List STL

131

An STL statement consists of

b A jump label (optional), which must end with a colon.

b An operation that describes what the control processor has to do (e.g. load, que-
ry, logic operation according to AND, compare, etc.).

b An address that contains the information necessary for executing the operation
(e.g. an absolutely addressed address %IW12, a symbolically addressed variable
ANALOGVALUE_1, a constant W#16#F001, a jump label, etc.). The address can
also be omitted depending on the operation.

b A comment (optional), commenced by two slashes and up to the end of the line
(only printable characters, no tabulators).

With a block call, the call operation is followed by the parameter list in round
brackets.

Processing of a binary logic operation, operation step

A binary logic operation consists of scan operations and conditional operations.
The sequence of scan operations and subsequent conditional operations is referred
to as an operation step (Fig. 4.12).

The first scan operation processed following a conditional operation is the first in-
put bit scan. This is of special significance because the control processor directly im-
ports the scan result of this statement as the result of a logic operation. The “old”
result of a logic operation is thus lost. The first input bit scan always represents the
beginning of a logic operation. The logic operation (AND, OR, exclusive OR) speci-
fied in the first input bit scan does not play any role here.

The result of the logic operation is generated by the scan operations. You query the
signal state of a binary address for “1” or “0” and link it according to AND, OR, or
exclusive OR. The result of this logic operation is saved by the control processor as
the new result of logic operation.

Conditional operations are operations whose execution depends on the result of
logic operation. These are operations for assigning, setting and resetting binary
addresses, for starting timers and counters, etc. The conditional operations (apart
from a few exceptions) are executed if the result of logic operation (RLO) is “1” and
not executed if RLO is “0”. They do not change the RLO (apart from a few excep-
tions), and therefore the RLO is the same for several successive conditional opera-
tions.

The example with digital functions and jump functions in Fig. 4.13 shows how
STEP 7 V5.5 displays the statement list.

4 The programming languages

132

Fig. 4.12 Binary logic operation with STL, definition of operation step

Fig. 4.13 STL representation with STEP 7 V5.5

Operation step

= "Fan1"

...

U "Auto_on"

U "Manual_on"

= "Display"

O

...

U "Fan1"

U "Manual mode"

S "Fan2"

...

UN "Manual mode"

U "Enable"

...

...

...

...

...

4.4 Structured Control Language SCL

133

4.4 Structured Control Language SCL

In the SCL programming language you formulate the control function by entering
SCL statements line by line. The SCL statements are essentially expressions for
transmitting, linking, and converting the variable values and control statements
to control program execution.

With SCL you program the program in a block. You set the programming language
with which the block is programmed in the block properties. A further division of
the block program into networks as with LAD, FBD or STL is not possible in SCL.

Programming with SCL in STEP 7 V5.5

In STEP 7 V5.5, the SCL programming language is an option package that is
integrated into SIMATIC Manager during installation. With SCL, your program-
ming is source-oriented: You create a program source file and then compile it into
an executable program code.

You create a new SCL program source file for programming. In the SIMATIC Man-
ager, select the Sources folder under the S7 Program folder and select Insert >
S7 Software > SCL Source. Double-click on the program source file to open it. In a
program source file, you use specified keywords in a specific order for the proper-
ties of blocks and the program. To see how a program source file is structured and
which keywords there are, refer to chapter 3.11 "Working with program source
files" on page 90.

The program editor helps you to enter keywords. Insert > Block Call allows you to
insert the call of a pre-programmed user block or a system block at the cursor in
the source text, Insert > Block Template > … facilitates the creation of new blocks,
and Insert > Control Structure > … allows you to create control statements in the
source text.

Compiling the program source file generates executable blocks. You create the
settings for all compilation processes in the SIMATIC Manager under Options >
Settings in the Compiler tab or with special keywords directly in the program
source file. You start compilation with the program source file open, using the
menu option File > Compile. With a compilation control file, you can compile mul-
tiple program source files in the chosen order on a single event.

Fig. 4.14 shows an example of an SCL program source file that is created with the
program editor of STEP 7 V5.5.

Programming with SCL in STEP 7 inside TIA Portal

For programming, open the block and use the keyboard to enter the individual
SCL statements line by line. Each SCL statement is concluded by a semicolon. You
can write several statements in one line, or one statement can occupy several
lines. You can drag complex functions with multiple inputs and outputs from the
Program Elements catalog to the desired line. Even though working with the Pro-

4 The programming languages

134

gram Elements catalog can be more complicated than entering via the keyboard, it
gives you an overview of the available functions.

You can make the SCL program clearer and easier to read by using comments and
empty lines. Comments and empty lines have no influence on the function of the
SCL program. Line comments commence with two slashes and terminate at the end
of the line. Block comments commence with left parenthesis and asterisk, can ex-
tend over several lines, and terminate with asterisk and right parenthesis.

Fig. 4.14 Example of an SCL program with STEP 7 V5.5

4.4 Structured Control Language SCL

135

Fig. 4.15 shows the SCL program for a FIFO register. With a rising edge at #Write,
this block writes the value present at the #Input parameter into a FIFO register.
With a rising edge at #Read, the value at #Output is output again. The values are
read out in the order in which they were written into the register (FIFO, first in
first out). The register can be emptied using #Delete. The two displays #Full and

Fig. 4.15 Example of a block with SCL program for STEP 7 inside TIA Portal

4 The programming languages

136

#Empty show the status of the register (#Full and #Empty are each set following
writing or reading). The block works with a write pointer and a read pointer.

4.5 S7-GRAPH sequence control

In the case of sequence controls, static assignment of the input signals to the out-
puts does not predominate (as with logic controls), but rather their time se-
quence. The control procedures executed in succession are divided into sequence
steps, or steps for short. A step contains one or more actions such as switch motor
on or off. Only the actions of an active (processed) step are carried out. Progres-
sion to the next step is carried out by means of transitions (step enabling condi-
tions). The transition can be process-dependent, e.g. as a result of signals from the
controlled machine or plant, or time-dependent, e.g. following expiry of a delay
time.

A sequential control, or “sequencer”, starts with an initial step. There can be sever-
al in a sequencer. In a linear sequencer this is followed by alternate transitions and
steps. In addition to the linear sequence – one step followed by another single step
– there are also branches. In an alternative branch (OR branch) only one of the
choice of sub-sequencers is executed, in a parallel branch (AND branch) all the
sub-sequencers are executed.

An interlock condition is specific to a step. If the interlock condition is satisfied, the
instructions depending on the interlock are carried out for the active step. A super-
vision is a monitoring condition that is specific to a step. If the supervision condi-
tion is satisfied, a fault is present. Permanent instructions are program compo-
nents that are processed in every cycle, independent of the status of the sequence
control. Permanent pre-instructions are processed prior to the sequence control,
post-instructions after the sequence control.

Fig. 4.17 shows an example of the working window of the GRAPH Editor in STEP 7
inside TIA Portal. The sequencer is shown in the GRAPH navigation on the left side
and the working area shows step S2 with the transition T2 as selected in the navi-
gation.

A sequence control consists of a function block and a data block. The function
block controls the sequence of the steps and transitions; the data block is the in-
stance data block of the sequencer function block and contains the structure of the
sequencer and the associated data. A sequence control can contain several inde-
pendent sequencers.

Programming a sequence control with STEP 7 V5.5

In STEP 7 V5.5, the GRAPH programming language is an option package that is in-
tegrated into SIMATIC Manager during installation. To program a sequence con-
trol, select the Blocks folder and use Insert > S7 Program > Function Block to create
a function block. In the displayed Properties window, set GRAPH as the program-
ming language. Then double-click the block to start the GRAPH editor.

4.5 S7-GRAPH sequence control

137

The GRAPH editor inserts the first step and the first transition into an empty block.
First create the structure of the sequencer. You have two options: In the Insert >
Direct editing mode, place a sequencer icon, e.g. a step/transition pair, in the
selected location; in the Insert > Preselection editing mode, drag the icon to the
desired location.

You now provide the individual sequence steps with actions, which you insert to
the right of the step under the step description. You specify the address to be con-
trolled and the operation. Examples: S for set, R for reset, N for non holding (the
address is set only as long as the step is active), and D for delay (the address is set
only after a defined time elapses and is reset when the step is deactivated). You
can program the transitions either in ladder logic (LAD) or in a function block dia-
gram (FBD).

Programming a sequence control with STEP 7 inside TIA Portal

Specify the properties of the sequence control prior to programming. Select the
Options > Settings command in the main menu and click on GRAPH in the PLC pro-
gramming group. Now you can set the sequencer properties such as time monitor-
ing for the sequence steps.

To program a sequence control, add a new function block for which you set the
language to GRAPH. The open block then shows the GRAPH navigation with an
overview presentation of the sequencer in the left part of the working window, and

Fig. 4.16 Example for displaying a sequencer in STEP 7 V5.5

4 The programming languages

138

the selected step with the associated step enabling condition in the right-hand
part.

If you click on the Sequence View icon in the working window, you can edit the se-
quence structure. Drag the desired program element – a step with transition, a
jump, or a branch – from the Program Elements catalog to the working area and
create in this way the structure of the sequencer.

To program a step, click the Single Step View icon, select the step, and enter the
actions in a table, for example, setting a binary variable or starting a time func-
tion. The step enabling conditions can be programmed in ladder logic (LAD) or a
function block diagram (FBD) – depending on the settings in the sequencer prop-
erties.

4.6 The function library of LAD, FBD, and STL

The function library of LAD, FBD, and STL is roughly divided into two areas:

b The basic instructions directly manipulate the variable values. Examples of
these are instructions for transferring a variable value from one storage loca-
tion to another, for the logical operation of two signal states, for the compari-
son of two numbers, or for the calculation of a sum.

Fig. 4.17 Example of a step in a sequencer for STEP 7 inside TIA Portal

4.6 The function library of LAD, FBD, and STL

139

b The extended instructions are generally system and standard blocks that, de-
pending on the function, are treated in the programming interface as a simple
instruction or a block call. Among these are functions for technological applica-
tions such as PID controllers and communications functions for data transmis-
sion to other programmable controllers.

Fig. 4.18 shows an overview of the “simple” statements for LAD, FBD, and STL.

Basic functions

The basis functions enable you to program the programmable controller in a cer-
tain “basic functionality” in the functional scope of contactor or relay controllers
or wired logic circuits.

The logic operations AND, OR, and XOR can be simulated in the ladder logic with
the series and parallel connection of contacts. Each control function can be pro-
grammed together with the negation of the signal state or the result of the logic
operation (the “current flow” in the ladder logic). A change in the result of logic
operation or signal state can be detected with an edge evaluation and be linked
further.

Timer and counter functions are implemented by means of system blocks. With a
CPU 300/400, the address areas of the SIMATIC time functions and SIMATIC coun-
ter functions can be used.

Digital functions

The digital functions process variable values (bit pattern, numerical values). The
numerical values are available as fixed-point or floating point numbers, which are
compared to each other, linked, and converted as needed into other data types.
The shift functions and the word logic operations allow digital values (bit pat-
terns) to be manipulated bit by bit.

The “extended” statements provide additional functions for handling time values
and character strings (STRING variables). For example, a period of time can be
added to a time of day or part of a character string can be replaced with another
character string.

Functions for program control

The jump functions and block functions make it possible to exit the linear pro-
gram execution, depending on conditions. The step functions are used in the pro-
gram within a block. Block functions are used to continue or end program execu-
tion in the called block.

Additional functions for statement list

STL is a “machine-level” language, with which the contents of the processor
registers can be manipulated. This applies to the contents of the accumulators
(arithmetic registers) and the data block registers (responsible for opening the

4 The programming languages

140

Fig. 4.18 Function library of the “simple” statements for LAD, FBD, and STL

Basic functions

Digital functions

Program control

STL functions

Overview of the basic instructions for LAD, FBD, and STL

4.7 The function library of SCL

141

data blocks). In addition, STL has statements for determining the memory address
of complex variables and local variables to be able to change the contents of vari-
ables.

4.7 The function library of SCL

The SCL program consists of a sequence of individual statements, which are
shown in Fig. 4.19. A value assignment transfers the result of an expression to a
variable. In an expression, the variable values are linked together through opera-
tors. Control statements guide program execution, for example with program
loops. Block calls are used to continue program execution in the called block.

Operators

An expression represents a value. It can comprise a single address (a single vari-
able) or several addresses (variables) which are linked by operators.

Example: “a + b” is an expression; “a” and “b” are addresses, “+” is the operator.

The sequence of logic operations is defined by the priority of the operators and
can be controlled by parentheses. Mixing of expressions is permissible providing
the data types generated during calculation of the expression permit this.

SCL provides the operators specified in Table 4.1. Operators of equal priority are
processed from left to right.

Expressions

An expression is a formula for calculating a value and consists of addresses (vari-
ables) and operators. In the simplest case, an expression is an address, a variable,
or a constant. A sign or a negation can also be included.

An expression can consist of addresses that are linked together by operators. Ex-
pressions can also be linked by operators. Expression can therefore have a very
complex structure. Parentheses can be used to control the processing sequence in
an expression. The result of an expression can be assigned to a variable or a block
parameter or used as a condition in a control statement. Expressions are distin-
guished according to the type of logic operation into arithmetic expressions, com-
parison expressions, and logic expressions.

SCL functions

For processing digital values, SCL provides transfer functions, comparison func-
tions, arithmetic functions, mathematic functions, conversion functions, shift
functions, word logic operations, and functions for processing time values and
character strings.

In SCL, you can also use each function (each FC block) with a function value as a
“real” SCL function in an expression. Example: The function with the name adder –

4 The programming languages

142

Fig. 4.19 Types of SCL statements

xxx

IF

CASE

FOR

WHILE

REPEAT

END_xxx

END_IF

END_CASE

END_FOR

END_WHILE

END_REPEA T

AND

>=

+

:=

:=

:=

:=

;

;

;

;

;

;

;

;

;

;

;

;

;

//

//

//

//

:

:

:

:

General SCL statement

Value assignment with assignment operator

Control statement

Block call

SCL statement

Value assignment

Control statement

Block call

SCL statements

4.8 Global address areas

143

implemented in the self-written block FC 401 – adds three variable values speci-
fied at the inputs and outputs the sum at the function value. You can use this func-
tion in an SCL expression as follows:

#too_big:= Adder (In1:= #Value1, In2:= #Value2,
In3:= #Value3) > 10_000;

The adder function value is compared with the value 10 000; if it is larger, the vari-
able #too_big is set to TRUE, otherwise to FALSE.

4.8 Global address areas

Fig. 4.20 shows the address areas that are available in a SIMATIC CPU. The address
areas of the SIMATIC time and counter functions are not present in a CPU 1200;
these functions are implemented by calling system blocks.

You can address the variables in the global address areas from anywhere in the
user program, but you can address the variables in the (block-)local address areas
only from the program of each block (see also section "Temporary local data" on
page 200 and section "Static local data" on page 201).

Peripheral inputs

You use the peripheral inputs address area if you read values from the user data
area of the input modules. Part of the address area leads to the process image.
This part always starts at I/O address 0, and the length of the area is CPU-specific.

Table 4.1 Operators with SCL

Logic operation Designation Operator Priority

Parentheses Left parenthesis, right parenthesis (,) 1

Arithmetic Power ** 2

Unary plus, unary minus (sign) +, – 3

Multiplication, division *, /, DIV, MOD 4

Addition, subtraction +, – 5

Comparison Less than, less than-equal to, greater than,
greater than-equal to

<, <=, >, >= 6

Equal to, not equal to =, <> 7

Binary logic opera-
tion

Negation (unary) NOT 3

AND logic operation AND, & 8

Exclusive OR XOR 9

OR logic operation OR 10

Assignment Assignment := 11

“Unary” means that this operator has a fixed assignment to an address

4 The programming languages

144

Directly reading the I/O allows you to address modules whose interface does not
lead to the process image input, such as analog input modules. The signal states of
modules that lead to the process image input can also be read directly. The current
signal state of the input bits on the module terminals is then queried.

In STEP 7 V5.5, the peripheral inputs address area has its own address ID: “PI”.
Example: Peripheral input word 10 has the absolute address PIW10. In STEP 7
inside TIA Portal, a “:P” is appended to the input address if the peripheral inputs
should be addressed. Example: The peripheral input word 10 has the absolute
address %IW10:P.

Peripheral outputs

You use the peripheral outputs address area if you write values to the user data
area of the output modules. Part of the address area leads to the process image.
This part always starts at I/O address 0, and the length of the area is CPU-specific.
Directly writing to the I/O allows you to address modules whose interface does not
lead to the process image output, such as analog output modules. The signal
states of modules that are controlled by the process image output can also be in-
fluenced directly. The signal state of the module bits then changes immediately as
does – in parallel – the signal state of the corresponding outputs.

In STEP 7 V5.5, the peripheral outputs address area has its own address ID: “PQ”.
Example: Peripheral output word 10 has the absolute address PQW10. In STEP 7
inside TIA Portal, a “:P” is appended to the output address if the peripheral out-
puts should be addressed. Example: Peripheral output word 10 has the absolute
address %QW10:P.

Fig. 4.20 Address areas in a SIMATIC CPU

SIMATIC
time functions

SIMATIC
counter functions

Data operands
in global and type

datab locks

Static local data
in instance
data blocks

Output
processi mage

Peripheral
outputs

Input
processi mage

Peripheral
inputs

System memory User memoryInput modules

Output modules

Bit memory

Temporary
local data

Address areas in a SIMATIC CPU
G

lo
b

al
ad

d
re

ss
ar

ea
s

Lo
ca

l
ad

d
re

ss
ar

ea
s

*)

*) not with
S7-1200

*)

4.8 Global address areas

145

Inputs

The inputs address area (short code: I) is identical to the process image of the in-
puts. Each time before program processing begins, the CPU transfers the signal
states of the input modules to the process image and thus to the inputs. During
program execution, the signal state of an input remains unchanged (data consis-
tency for a program run).

Outputs

The outputs address area (short code: Q) is identical to the process image of the
outputs. After each program execution ends, the CPU transfers the output signal
states to the output modules. A change in the output signal state during program
execution remains without effect for the corresponding module output; only the
signal state at the end of the program cycle is transferred.

Bit memory

Bit memories (short code: M) are, so to speak, the “contactor relays” of the control-
ler. They mainly serve to save binary signal states. They can be treated like out-
puts, but are not connected “to the outside”. Bit memories are used if intermediate
results are to be valid beyond block limits and are to be processed in several
blocks. Some of the bit memories can be set “retentive” when parameterizing the
CPU, i.e. this part retains its signal state even when deenergized.

A special feature is the “clock memory byte” and also for a CPU 1200 the “system
memory byte”. A memory byte whose bits are controlled by the CPU can be speci-
fied in the CPU properties for each case (Fig. 4.21).

Fig. 4.21 Clock and system memory byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Assignment of clock memory byte Assignment of the system memory byte

Only with CPU 1200

4 The programming languages

146

SIMATIC time functions

You can use the time functions to implement timing processes in the
program such as waiting and monitoring times, measurement of a time interval,
or the generation of pulses. The time functions are in the system memory of the
CPU, the number of time functions is CPU-specific.

The following responses of a SIMATIC time function are available:

b Pulse timer

b Extended pulse timer

b On-delay timer

b Retentive on-delay timer

b Off-delay timer

You can program a SIMATIC time function with individual elements, and also as a
box in the graphical languages LAD and FBD. The box of a time function contains a
related representation of all time operations in the form of function inputs and
outputs and has the further advantage that you do not have to pay attention to the
correct order of the individual elements to obtain a proper function. The Fig. 4.22
shows the graphic representation (in LAD) and the response patterns.

A time function starts (the time starts running) when the signal state at the start
input changes. A change in signal state is always required to start a time function.
In the case of an off-delay timer, the signal state must change from “1” to “0” (neg-
ative edge), in all other cases the time starts when changing from “0” to “1” (posi-
tive edge). On startup, the time function takes over the specified time period and
counts down – depending on the length of the time value – in a time grid of 10 ms,
100 ms, 1 s, or 10 s. If the time period = 0, the time has expired.

A time function is reset if the reset input has signal state “1”. As long as the time
function is reset, the binary time status has the signal state “0”. Resetting of the
time function sets the time value and the time scale to zero.

The time status with the BOOL data type shows the response of the time function.
The time sequence differs depending on the time response (Fig. 4.22).

The outputs BI and BCD represent the time value in the time function in binary or
BCD code. It is the current value at the time of scanning: With a time function run-
ning, the time value is counted down from the set value to zero.

SIMATIC counter functions

You can use the counter functions to execute counting tasks directly using the
CPU. The counter functions can count up and down; the numerical range extends
over three decades (000 to 999). The counter functions are in the system memory
of the CPU; the number of counter functions is CPU-specific.

The counting frequency of the counter functions depends on the execution time of
the user program. In order to count, the CPU must recognize a change in the sig-

4.8 Global address areas

147

nal state of the input pulse, i.e. an input pulse (or a pause) must be present for at
least one program cycle. The longer the program execution time, the lower the
counting frequency.

You can program a SIMATIC counter function with individual elements, and also as
a box in the graphical languages LAD and FBD. The box of a counter function con-
tains a related representation of all counter operations in the form of function in-
puts and outputs and has the further advantage that you do not have to pay atten-
tion to the correct order of the individual elements to obtain a proper function.
Fig. 4.23 shows the graphic representation (in LAD).

Fig. 4.22 SIMATIC time function

TV

S

R

BI

Q

BCD

SIMATIC timer functions

Representation as box in LAD

Function

Time operand

Name Declaration Data type Description

S INPUT BOOL Start input

TV INPUT TIME Preset duration

R INPUT BOOL Reset input

Q OUTPUT BOOL Time status

BI OUTPUT TIME Binary time value

BCD OUTPUT S5T BCD-coded time value

Time courses

Start as a

Pulse timer

Extended pulse timer

On-delay timer

Retentive on-delay timer

Off-delay timer

Assignment of duration

Start signal

t = set duration

t

t

t

t

t

15 11 7312 84 0

10 010 110 2

.

.

4 The programming languages

148

A counter is set if the signal state changes from “0” to “1” at the set input. To set a
counter, a positive edge is always required. “Set counter” means that the counting
function is set to the initial value specified by the count value. The range of values
is from 0 to 999.

A counter function is reset if the reset input has signal state “1”. As long as signal
state “1” is present, the counter function has the counter status “0”. Resetting the
counter function sets the count value to “zero”. The reset input of the counter box
does not need to be connected.

A counter function is counted up if the signal state changes from “0” to “1” at the
count up input. For counting up, a positive edge is always required. Each positive
edge when counting up increments the count value by one unit until the upper
limit of 999 is reached. Any further positive edges for counting up then have no
effect. Carrying forward does not take place.

A counter function is counted down if the signal state changes from “0” to “1” at
the count down input. Each positive edge when counting down decrements the
count value by one unit until the lower limit of 0 is reached. Any further positive
edges for counting down then have no effect. Counting does not occur with a neg-
ative count value.

LAD and FBD: The three counter boxes S_CUD, S_CU and S_CD differ only in the
type and number of counter inputs. While S_CUD has the inputs for both count di-
rections, S_CU only has the count up input and S_CD only has the count down in-
put.

Fig. 4.23 SIMATIC counter function, using the up/down counter as an example

SIMATIC counter functions

Representation as box in LAD

Assignment of count value

Name Declaration Data type Description

CU INPUT BOOL Count up input

CD INPUT BOOL Count down input

SI NPUT BOOL Set input

PV INPUT WORD Preset count value

RI NPUT BOOL Reset input

Q OUTPUT BOOL Counter status

CV OUTPUT WORD Current count value

CV_BCD OUTPUT WORD BCD-coded count value

CD

PV

CU

S

R

CV

Q

CV_BCD

S_CUD

Counter operand

15 11 7312 84 0

100 010 110 2

4.9 Absolute and symbolic addressing

149

The counter status with data type BOOL shows with signal state “1” that that the
current count value is not zero, and with signal state “0” that the count value is
zero.

The outputs CV and CV_BCD make the count value in the counter function avail-
able in binary or BCD code. It is the current count value at the time of scanning.

Global data addresses

The address area Data is organized in data blocks that are present in the user
memory of the CPU (Figure 4.20 on page 144). To access a global data address, the
data block in which the data address is stored must first be selected before the da-
ta address can be addressed. Depending on the addressing method, the program
editor opens the data block (complete addressing) or the user must program the
opening himself (partial addressing). Further details are described in chapter 4.9
"Absolute and symbolic addressing" on page 149.

4.9 Absolute and symbolic addressing

So that a variable value can be read or written to, it needs an address. Absolute
addressing uses the memory space for identification (more specifically, the rela-
tive address for the beginning of the relevant address area). You can also assign a
name to an absolute address and then work with this symbolic addressing.

This chapter describes the addressing of global address areas. Sections "Temporary
local data" on page 200 and "Static local data" on page 201 provide information
about the addressing of local data.

Absolute addressing of inputs, outputs, and memory bits

The absolute address consists of the short code of the address area, the indication
of the address width, and the relative address in the address area. Example: The
address “IW10” is in the process image of the inputs (I), is of word width (W), and
begins with the tenth byte (10). In STEP 7 inside TIA Portal, the absolute address is
indicated with a leading percent sign (%IW10).

A bit-wide address does not indicate the address width and the byte address is ex-
panded with the bit address. Example: The address M14.2 indicates the second bit
in bit memory byte 14. An address addressed absolutely can be bit-wide, byte-wide
(8 bits, short code: B), word-wide (2 bytes, short code: W), or doubleword-wide
(4 bytes, short code: D). How the memory space is occupied is shown in Fig. 4.24.

Absolute addressing of peripheral inputs and outputs

In STEP 7 V5.5 the address ID for the I/O inputs is PI and for the I/O outputs it is PQ.
The addresses can be byte-wide (PIB, PQB), word-wide (PIW, PQW), or doubleword-
wide (PID PQD).

4 The programming languages

150

For STEP 7 inside TIA Portal, an address from the I/O range is indicated with the
suffix “:P”. Example: The address specification %IW10:P indicates the peripheral
input word from byte 10. The addresses can be byte-wide (%IBy:P, %QBy:P), word-
wide (%IWy:P, %QWy:P), or doubleword-wide (%IDy:P, %QDy:P); with a CPU 1200,
they can also be bit-wide (%Iy.x:P, %Qy.x:P).

Absolute addressing of SIMATIC timer and counter functions

The absolute address of a SIMATIC time and counter function consists of the ad-
dress ID (T, C) and a number. Example: The specification T13 is time function 13,
the specification C25 is counter function 25.

In STEP 7 inside TIA Portal, the absolute address begins with a percent sign (exam-
ple: %T13, %C25).

Absolute addressing of data addresses

With a CPU 1200, absolute addressing of data addresses is only possible if the opti-
mized block access attribute is not selected in the data block.

The data of the user program is saved in data blocks. To address a specific address
in a data block, the data block containing the data address must also be specified,
because the addressing of the data addresses begins at byte 0 in each data block.
The addressing can be done in two ways: complete addressing and partial address-
ing.

With complete addressing, the data block is part of the data address. First, the data
block is indicated and then, separated by a point, the data address. Examples:

DB 10.DBX 2.0 Data bit 2.0 in data block DB 10
DB 11.DBB 14 Data byte 14 in data block DB 11
DB 20.DBW 20 Data word 20 in data block DB 20
DB 22.DBD 10 Data doubleword 10 in data block DB 22.

In STEP 7 inside TIA Portal, the absolute address begins with a percent sign. Exam-
ples: %DB10.DB2.0, %DB11.DBB14, %DB20.DBW20, %DB22.DBD10.

Fig. 4.24 Example of bit and byte assignments

24 25 26 27

Absolute bit and byte addressing

7 7 7 76 6 6 65 5 5 54 4 4 43 3 3 32 2 2 21 1 1 10 0 0 0

4.9 Absolute and symbolic addressing

151

For partial addressing, you must first select (“open”) the desired data block. Then
you can then access individual data addresses. The SCL programming language in
general as well as the CPU 1200 do not understand partial addressing of data ad-
dresses.

Partial addressing is only considered for special applications since, in order to use
partial addressing without errors, it is necessary to know how the program editor
compiles the user program into machine code. There are statements in which the
program editor opens another data block “in the background”, without it being
visible in the programming interface. Complete addressing is recommended, be-
cause it ensures that the data address is always addressed in the “correct” data
block.

A data block can be opened via two data block registers: the DB register and the DI
register. Correspondingly, in partial addressing, there are also two address IDs: DB
for a data address whose data block was opened via the DB register, and DI for a
data address whose data block was opened via the DI register. A data address can
be bit-wide (DBX, DIX), byte-wide (DBB, DIB), word-wide (DBW, DIW), or double-
word-wide (DBD DID).

An example of partial addressing of data addresses, programmed in a statement
list with STEP 7 V5.5:

OPN DB 12 //Open DB 12 via the DB register

OPN DI 18 //Open DB 18 via the DI register

L DBW 20 //Load data word DW 12 in DB 12

T DIW 16 //Transfer to data word DW 16 in DB 18

With complete addressing, the statement sequence is:

L DB 12.DBW 20 //Load data word DW 20 from DB 12

T DB 18.DBW 16 //Transfer to data word DW 16 in DB 18

Symbolic addressing

The symbolic addressing uses a name or a symbol that you define in place of the
absolute address. The name or symbol must be assigned to an absolute address –
an address. A distinction is made between symbols for global addresses and sym-
bols for block-specific addresses (local data).

You declare global symbols with STEP 7 V5.5 in the symbol table and with STEP 7
inside TIA Portal in the PLC variable table (see chapter 3.7 "Giving the addresses a
name" on page 80). Global symbols can be used in the entire program; they must be
unique throughout the program. In the compiled block, the program editor always
shows the global symbols in quotation marks.

Block-specific symbols, which are the names for the local data, are specified in the
declaration part of the corresponding block. The program editor displays local
symbols preceded by a hash/pound sign (#). In STEP 7 inside TIA Portal, special
characters for the block-specific symbols are also allowed, which are additionally
shown in quotation marks.

4 The programming languages

152

In symbolic addressing of data addresses, you assign names for the data addresses
within a data block. You can use the same names for different data addresses in
different data blocks (the data addresses are themselves block-specific variables).
In the symbol table or in the block properties, you then assign the data block a
name that distinguishes it from the other data blocks. Examples of symbolic ad-
dressing are:

“Motor1”.actual value Variable actual value in data block “Motor1”
“Motor2”.actual value Variable actual value in data block “Motor2”

4.10 Indirect addressing

Indirect addressing allows you to address addresses whose address is only defined
during runtime. You can also use indirect addressing to repeatedly execute pro-
gram sections, e.g. in a loop, and use different addresses in each cycle.

The statements required for indirect addressing are available in the Statement List
(STL) and Structured Control Language (SCL) programming languages, which use
different methods.

Indirect addressing with STL

STL distinguishes between memory-indirect and register-indirect addressing:

b Memory-indirect addressing,
example: IW [MD200], the number of the input word is present in the bit memo-
ry doubleword MD200.

b Register-indirect, area-internal addressing,
example: IW [AR1, P#2.0], the number of the input word is present in the ad-
dress register AR1; it is incremented by the offset P#2.0 when the operation is
executed.

b Register-indirect, area-crossing addressing,
example: W [AR1, P#0.0], the address area and the number of the address are
present in the address register AR 1; the number is not incremented when the
operation is executed.

Memory-indirect addressing uses doublewords from the address areas “data”
(DBD and DID), “bit memories” (MD), and “temporary local data” (LD) as “address
registers”. These addresses can be addressed absolutely or symbolically. With
symbolic addressing, the data types must have the required width of 16 bits or 32
bits. Register-indirect addressing uses the two address registers AR1 and AR2.

Indirect addressing with SCL

SCL allows indirect addressing of addresses and arrays:

b With indirect addressing of addresses, SCL considers an address area like an ar-
ray whose elements can be addressed individually. Example: MW(#index), the
number of the bit memory word is present in the #index variable.

4.11 Elementary data types

153

b In the case of a variable with the data type ARRAY, SCL permits a variable as in-
dex. Example: #Array[#index], the number of the array element is present in the
#index variable.

The index variables can be global or local variables addressed absolutely or sym-
bolically. With symbolic addressing, the index variables must be of data type INT.

4.11 Elementary data types

Data types define the properties of data, essentially the representation of the con-
tents of a variable and the permissible ranges. STEP 7 provides predefined data
types that you can also compile as self-defined data types. The data types are glob-
ally available and can be used in any block.

Bit string data types

The bit string data types consist of a bit or a sequence of bits whose position is
unevaluated (Table 4.2). Variables of the BOOL data type are used in conjunction
with binary logic operations, memory functions, and edge evaluations. Variables
with the other bit string data types are mostly handled with comparison functions,
shift functions, and word logic operations.

Fixed-point numbers

Integers are represented with fixed-point data types. The numerical range for
fixed-point numbers with sign includes positive and negative numbers; the nu-
merical range for fixed-point numbers without sign includes only positive num-
bers (Table 4.3). The individual bits are evaluated, and the place value corre-
sponds to a power of two: Bit 0 has the value 20, bit 1 has the values 21, etc. You get
the value of a (positive) fixed-point number when you add the place value of all
bits set to “1”.

Table 4.2 Overview of bit string data types

Data type Present with

Name Width Designation Assignment, area CPU 300/400 CPU 1200

BOOL 1 bit 1-bit binary value 0, 1, FALSE, TRUE × ×

BYTE 8 bits 8-bit binary value 16#00…16#FF × ×

WORD 16 bits 16-bit binary value 16#0000…
16#FFFF

× ×

DWORD 32 bits 32-bit binary value 16#0000 0000…
16#FFFF FFFF

× ×

4 The programming languages

154

Unsigned fixed-point numbers also do not have a bit for the sign. For the fixed-
point numbers with a sign, this is the leftmost bit – depending on data type SINT,
INT, or DINT this is bit 7, 15, or 31. If the sign bit has the value “1”, then the num-
ber is negative and the significance of the bits is represented as a two's comple-
ment. You obtain the value of a negative fixed-point number if the significance of
all bits with the value “1” is added and the sum is added to the negative place val-
ue of the most significant bit (the sign).

Fixed-point numbers are used in conjunction with comparison functions, arithme-
tic functions, and conversion functions.

Floating-point numbers

Fractional numbers (numbers with decimal places) are shown with floating-point
data types. A variable with data type REAL or LREAL consists internally of three
components: a sign (1 bit), an exponent (8 or 11 bits), and a mantissa (23 or 52 bits).
STEP 7 performs the conversion to the internal components. The representation in
programming is either a decimal fraction (e.g. 123.45) or the exponential represen-
tation to base 10 (e.g. 12 34e12 corresponding to 12.34 × 1012).

The LREAL data type available with the CP 1200 can only be used if the Optimized
Block Access attribute is activated (Table 4.4).

Table 4.3 Overview of fixed-point numbers

Data type Present with

Name Width Designation Assignment, area CPU 300/400 CPU 1200

SINT 8 bits 8-bit fixed-point number
with sign

–128…+127 – ×

INT 16 bits 16-bit fixed-point number
with sign

–32 768…+32 767 × ×

DINT 32 bits 32-bit fixed-point number
with sign

–2 147 483 648…
+2 147 483 647

× ×

USINT 8 bits 8-bit fixed-point number
without sign

 0…255 – ×

UINT 16 bits 16-bit fixed-point number
without sign

 0…65 535 – ×

UDINT 32 bits 32-bit fixed-point number
without sign

 0…4 294 967 296 – ×

Table 4.4 Overview of floating-point numbers

Data type Present with

Name Width Designation Assignment, area CPU 300/400 CPU 1200

REAL 32 bits 32-bit floating-point
number

±1.18×10–38 …
±3.40×1038

× ×

LREAL 64 bits 64-bit floating-point
number

±2.23×10–308 …
±1.80×10308

– ×

4.11 Elementary data types

155

Fixed-point numbers are used in conjunction with comparison functions, arithme-
tic functions, mathematical functions, and conversion functions.

Points in time and durations

A variable with data type DATE is saved in a word as an unsigned fixed-point num-
ber. The content of the variable corresponds to the number of days since
01.01.1990. The date is given with year, month, and day. STEP 7 performs the con-
version to the internal representation (Table 4.5).

A variable with data type TIME (duration) occupies a doubleword. The content of
the variable corresponds to the number of milliseconds, and is saved as a 23-bit
fixed-point number with sign. The time period is specified in days, hours, min-
utes, seconds, and milliseconds, where unused units can be omitted. STEP 7 per-
forms the conversion to the internal representation.

A variable with data type TIME_OF_DAY occupies a doubleword. It contains the
number of milliseconds since the beginning of the day (0:00) as an unsigned
fixed-point number. The time-of-day is specified in hours, minutes, seconds, and
milliseconds, where the milliseconds specification can be omitted. STEP 7 per-
forms the conversion to the internal representation.

For processing variables with the data types DATE, TIME, and TIME_OF_DAY, there
are system and standard functions such as the addition of a time period to the
time of day or the extraction of the date from the complex data type
DATE_AND_TIME. STEP 7 V5.5 supplies this function in the Standard Library in the
IEC Function Blocks program. STEP 7 inside TIA Portal provides these functions in
the Program Elements catalog under Advanced statements > Date and time.

A variable with data type S5TIME is required to supply the SIMATIC time functions
with a duration. The data type assigns a decade to a word for the time grid and
three decades for the time value (see Figure 4.22 on page 147). The time period is
specified in hours, minutes, seconds, and milliseconds, where unused units can be
omitted. STEP 7 performs the conversion to the internal representation.

Table 4.5 Overview of points in time and durations

Data type Present with

Name Width Designation Assignment, area CPU 300/400 CPU 1200

DATE 16 bits Date D#1990-01-01 …
D#2168-12-31

× ×

S5TIME 16 bits Duration in
SIMATIC format

S5T#0ms …
S5T#2h46m30s

× –

TIME 32 bits Time value in
IEC format

T#–24d20h31m23s647ms …
T#24d20h31m23s647ms

× ×

TIME_OF_DAY 32 bits Time of day TOD#00:00:00 …
TOD#23:59:59.999

× ×

4 The programming languages

156

Further elementary data types

A variable with data type CHAR (character) occupies one byte. The data type CHAR
represents a single character which is saved in ASCII format. Any printable charac-
ters can be given in single quotation marks (Table 4.6).

A variable in binary coded decimal (BCD) representation is represented with a sign
decade and three or seven numerical decades. The sign decade contains zeros
(corresponding to a positive sign) or ones (corresponding to a negative sign).
Each numerical decade is stored in hexadecimal code in the range from 0 to 9. The
BCD representation is not really a data type. The representation is used when con-
verting to and from fixed-point numbers. For example, the count value of a
SIMATIC counter function is represented as a BCD16 number, which can then be
converted into a fixed-point number.

4.12 Complex data types

The complex data types cannot be edited with the “simple” statements. For the
processing of variables with these data types, there are system and standard func-
tions such as extracting the date (DATE) from the data type DTL (DATE_AND_TIME)
or combining two STRING variables. STEP 7 V5.5 supplies this function in the Stan-
dard Library in the IEC Function Blocks program. STEP 7 inside TIA Portal provides
these functions in the Program Elements catalog under Advanced statements >
Date and time or Advanced statements > String + Char.

Table 4.7 gives an overview of the complex data types.

DT (DATE_AND_TIME)

The data type DT (date and time) represents a point in time in the range of
DT#1990-01-01-00:00:00.000 to DT#2168-12-31-23:59:59.999. The data type con-
sists of 16 BCD-coded numbers and is 8 bytes long. The last byte indicates the day
of the week (1 = Sunday through 7 = Saturday). The general representation is:
DT#year-month-day-hours:minutes:seconds.milliseconds.

Table 4.6 Overview of further elementary data types

Data type Present with

Name Width Designation Assignment, area CPU 300/400 CPU 1200

CHAR 8 bits One character
in ASCII code

’a’, ’A’, ’1’, … × ×

BCD16 1) 16 bits 3 decades
with sign

 –999 … +999 × ×

BCD32 1) 32 bits 7 decades
with sign

 –9 999 999 …
+9 999 999

× ×

1) Not a data type in a narrower sense; only relevant to data type conversion

4.12 Complex data types

157

DTL (DATE_AND_TIME)

The data type DT (date and time, long format) represents a point in time in the
range from DTL#1990-01-01-00:00:00:00 to DT#2168-12-31-23:59:59:999.999.999.
The data type consists of 24 BCD-coded numbers and is 12 bytes long. The general
representation is:
DTL#year-month-day-hours:minutes:seconds:nanoseconds.

STRING

The data type STRING represents a character string consisting of up to 254 charac-
ters. In the declaration, enter the maximum number of allowed characters after
the keyword STRING in square brackets. This information may be omitted, in
which case the editor sets the maximum number of 254 bytes. The (actual) length
of the string is defined between STRING[0] and STRING[254].

A variable of the STRING data type reserves two bytes more than the declared max-
imum length in memory. The default value is encoded with ASCII characters in
single quotes. If the default value is shorter than the declared maximum length,
the remaining character positions are not occupied. When a variable with the data
type STRING is further processed, only the actually occupied character positions
are considered.

ARRAY

The data type ARRAY is an array with a fixed number of components of the same
data type. After the data type ARRAY, enter the range of array indices in square
brackets. The initial value on the left must be less than or equal to the end value
on the right. Both indices are INT numbers in the range from -32 768 to +32 767.
The index can also be a variable in SCL. An array can have up to 6 dimensions,
whose limits are each separated by a comma. Example of a two-dimensional array
with 32 × 16 REAL elements:

ARRAY [1..32, 1..16] OF REAL

Any data type except ARRAY is allowed for the individual array components. A
complete array variable is defined in a global data block or block-specific variable.

Table 4.7 Overview of complex data types

Data type Present with

Name Width Designation CPU 300/400 CPU 1200

DT 8 bytes Date and time × –

DTL 12 bytes Current date and time (long format) – ×

STRING 2+n bytes ASCII-coded character string × ×

ARRAY n bytes Field with components of the same type × ×

STRUCT n bytes Structure with components of different types × ×

4 The programming languages

158

It can be also be applied to a block parameter of the same type. The array compo-
nents are individually treated as variables of the same data type.

STRUCT

The STRUCT data type represents a data structure with a fixed number of compo-
nents, which can each have a different data type. All data types can be used, as well
as other structures. Nesting of up to 6 structures is allowed.

A complete structure variable is defined in a global data block or as block-specific
variable. It can be also applied to a block parameter of the same type if the struc-
ture, the names, and data type of all components match. The structure compo-
nents are individually treated as variables of the same data type.

Example of declaration in a program source file:

MotorData1 : STRUCT

Switch on : BOOL := FALSE;

Switch off : BOOL := TRUE;

SetpointSpeed: INT := 5000;

ActualSpeed : INT;

Description : STRING[10] := '=MD01-M003';

END_STRUCT;

The variable MotorData1 consists of two BOOL components, two INT components,
and one STRING component. An individual component is addressed with
Variablename.Componentname, e.g. MotorData1.SwitchOn.

4.13 Data types for block parameters

The data types for block parameters (“parameter types”) are used to pass on the
SIMATIC time and counter functions, blocks, and pointers to global addresses to
the called block. Table 4.8 gives an overview of the parameter types.

TIMER

The TIMER data type allows a SIMATIC time function to be passed on to the called
block. The TIMER data type is also used in the symbol table (with STEP 7 V5.5) or
in the PLC variable table (with STEP 7 inside TIA Portal) to assign a name to a
SIMATIC time function.

COUNTER

The COUNTER data type allows a SIMATIC counter function to be passed on to the
called block. The COUNTER data type is also used in the symbol table (with STEP 7
V5.5) or in the PLC variable table (with STEP 7 inside TIA Portal) to assign a name
to a SIMATIC counter function.

4.13 Data types for block parameters

159

BLOCK_FB, BLOCK_FC

For block parameters declared with the data types BLOCK_FC or BLOCK_FB, you
can create a function block (FB) or a function (FC) as actual parameter. These
blocks may not have any block parameters themselves.

BLOCK_DB

For a block parameter with data type BLOCK_DB you can create a data block as an
actual parameter. In the called block, you can then call this data block, and thus
access the data addresses of this data block with absolute addressing.

POINTER

For a block parameter with data type POINTER, you can create an address such as
%M200.0 or its symbol, or a pointer in the form

P#[Datablock.]Address Byteaddress[.Bitaddress]

. Only addresses or variables with elementary data types are permitted.

ANY

For a block parameter with data type ANY, you can create an address such as
%M200.0 or its symbol, or a pointer in the form

P#[Datablock.]Address Byteaddress[.Bitaddress] Datatype Number.

All addresses and variables are allowed, including, for example, array and struc-
ture variables. With the data type ANY, a variable in the temporary local data can
also be declared and then accommodate an ANY pointer. This pointer can be ma-
nipulated at runtime, for example, as a variable address of a data source during
copying.

Table 4.8 Overview of parameter types

Data type Present with

Name Designation CPU 300/400 CPU 1200

TIMER
COUNTER

SIMATIC time function
SIMATIC counter function

× –

BLOCK_FC
BLOCK_FB
BLOCK_DB

Function FC
Function block FB
Data block DB

× –

POINTER Pointer to a variable with elementary data type × –

ANY Pointer to a variable or a data area × –

VARIANT Pointer to any variable – ×

VOID Deactivating the function value of a function FC × ×

4 The programming languages

160

VARIANT

A block parameter with data type VARIANT contains a pointer to a variable or a da-
ta area. Variables of all data types are allowed in a block parameter with data type
VARIANT. The variables which can be connected to the block parameter or which
are meaningful are defined by the programming within the called block. For ad-
dressing a data range, the ANY pointer can be used in the form

P#[Datablock.]Address Byteaddress[.Bitaddress] Datatype Number

VOID

The data type VOID (= without type) is used in the function value of a function FC
if the function value should not be displayed (if the function FC should not have a
function value).

4.14 Further data types

User-defined data type UDT

A user-defined data type (UDT) is a compilation of data types that a user programs
(see also chapter 3.10 "Programming a user-defined data type" on page 89). A user
data type is structured like the complex data type STRUCT. A user data type can be
the data type of data addresses or local data or be used as a template for a type
data block.

System-defined data type SDT

A system-defined data type (SDT) is a predefined, non-modifiable data type that is
structured like the data type STRUCT. A system-defined data type is used together
with certain functions or statements. Example: On a CPU 1200, the time function
has the data type IEC_TIMER (SDT 31).

Hardware data types

With the hardware data types, STEP 7 inside TIA Portal addresses hardware and
software objects. The data type and the contents are specified, and the name can
be changed in the Constants tab of the PLC variable table.

Table 4.9 Overview of further data types

Data type Present with

CPU 300/400 CPU 1200

User-defined data type (UDT) × ×

System-defined data type (SDT) – ×

Hardware data type – ×

5 The user program

161

5 The user program

On delivery, the SIMATIC controller with the input/output modules is not yet able
to control the machine or the plant. The CPU requires a program which it process-
es step by step, executing the instructions stored in the program, and thereby
solving the control task. This program is called the “user program” since it is cre-
ated by you. The programming languages of the STEP 7 programming software
are used to write the program.

The user program is executed in various ways. After power-on, the CPU processes
a startup program followed by cyclic (i.e., repeated continuously) execution of the
main program which can be interrupted by alarm or error events with assigned
programs. Priority classes control the mutual interruptibility.

The user program is usually divided into individual sections each representing a
self-contained technological or functional unit. These program sections are called
blocks. Before it can be processed, a block must be called. You can then call other
blocks as so-called subprograms within one block, thereby structuring the user
program. When skillfully organized, the call sequence in the main program (in the
organization block OB 1) represents the technological or functional structure of
the machine or plant to be controlled.

5.1 Program execution with SIMATIC

Program execution modes of a SIMATIC user program

The complete program of a CPU comprises the operating system and the user pro-
gram (control program).

The operating system is the totality of all instructions and declarations of internal
operating functions (e.g. saving of data in event of power failure, activation of pri-
ority classes, etc.). The operating system is a fixed part of the CPU which you can-
not modify. However, you can reload the operating system, e.g. for a program up-
date.

The user program is the totality of all instructions and declarations programmed
by you for signal processing by means of which the plant (the process) to be con-
trolled is influenced in accordance with the control task.

The organization blocks are the interfaces between operating system and user
program. The organization blocks are part of the user program and are called and
processed by the operating system when certain events occur. The organization
blocks are divided into priority classes which determine the sequence of program
processing (mutual interruptibility) when several events occur.

5 The user program

162

An example: An I/O module detects a hardware interrupt and sends the result to
the CPU. The CPU then interrupts the processing of the main program and calls
the organization block belonging to the event. This contains the interrupt handler
assigned to the hardware interrupt. In each organization block, the user program
can be structured through additional blocks.

Fig. 5.1 shows a rough breakdown of the program types of a SIMATIC CPU: The
start-up routine, the main program, and the interrupt handler and error pro-
grams. Program execution commences in the CPU with the start-up routine. The
start-up routine is optional. Following execution of the start-up routine, the CPU
commences with execution of the main program. If the CPU has processed the
main program, it starts processing again from the beginning. This cyclic process-
ing is typical for programmable logic controllers.

The main program has the lowest processing priority. Any events that occur can
interrupt the main program following each instruction; the CPU then executes the
associated interrupt handler or error program and subsequently returns to execu-
tion of the main program.

Overview of the organization blocks

Table 5.1 shows an overview of the possible organization block of a CPU 300/400
(maximum configuration). Which of the organization blocks are actually available
depends on the CPU type. The organization block of a CPU 1200 are shown in
Tabelle 5.5 auf Seite 168.

Fig. 5.1 Program execution modes of a SIMATIC user program

Cycle start

Switch on

<Interrupt> Interruption

Interruption<Error>

Start-up routine

Interrupt handler

Error program

Main program

Program execution modes of the user program

Operating mode
STARTUP

Operating mode
RUN

5.2 The start-up routine

163

5.2 The start-up routine

The CPU performs a startup and is in STARTUP operating mode

b After the power is turned on

b After the mode selector switch is turned from STOP to RUN

b following a request by a communication function (triggered by programming
device or by communication function blocks of another SIMATIC station).

A startup can be triggered manually with the mode switch or a communication
function, or automatically by turning on the power supply.

There are no restrictions on the length of the start-up routine and no time restric-
tions on the execution of the start-up routine. No interrupts are processed while
the start-up routine is being executed. Errors are handled as in RUN mode. During
startup, the CPU updates the timer functions, the runtime meters, and the real-
time clock. The output modules are disabled during startup, i.e. no output signals
can be output during startup.

What startup types there are and what the main differences are can be seen in Ta-
ble 5.2. A CPU 300 performs – just like a CPU 1200 – a warm restart on startup. For
a CPU 1200, additional organization blocks with a number larger than or equal to
123 can contain a start-up routine. A CPU 400 can perform cold restarts, warm re-

Table 5.1 Organization blocks with a CPU 300/400 (maximum configuration)

Organization block Call

Main program OB 1 Cyclically (repeated continuously) by the operating system

Time-of-day interrupt OB 10 to OB 17 At a certain time or at periodic intervals (e.g. monthly)

Time-delay interrupt OB 20 to OB 23 After a settable time, controlled by the user program

Cyclic interrupt OB 30 to OB 38 Periodically at settable time intervals (e.g. every 100 ms)

Hardware interrupt OB 40 to OB 47 In the event of an interrupt signal from an I/O module

DPV1 interrupts OB 55 to OB 57 If the event of status, update and manufacturer interrupts from
PROFIBUS DPV1 slaves

Multiprocessor inter-
rupt

OB 60 Event-controlled by the user program in
multiprocessor operation

Isochronous mode
interrupt

OB 61 to OB 64 Synchronous with data transmission in a PROFIBUS DP master sys-
tem or in a PROFINET IO system

Redundancy error
interrupts

OB 70, OB 72,
OB 73

In the event of redundancy loss due to I/O, or CPU and communi-
cation redundancy errors (H system)

Asynchronous error OB 80 to OB 88 For errors not related to program execution (e.g. station failure)

Background
processing

OB 90 If the minimum cycle has not yet been completed

Startup OB 100, OB 101,
OB 102

During startup of the programmable controller

Synchronous error OB 121, OB 122 For errors related to program processing (e.g. I/O access errors)

5 The user program

164

starts, and hot restarts. Fig. 5.2 shows the activities of a CPU 300 in the STARTUP
and RUN modes.

Table 5.2 Startup methods and assigned organization blocks

Startup method CPU 1200 CPU 300 CPU 400

Cold restart All data is deleted – – OB 102

Warm restart All non-retentive data is deleted OB 100,
≥ OB 123

OB 100 OB 100

Hot restart All data is retained – – OB 101

Fig. 5.2 CPU 300 activities in the STARTUP and RUN modes

RUN

Switch on

Operating system activities
(e.g. communication with the

programming device)

Reset process image input

Non-retentive operands
(bit memories, SIMATIC timers,

SIMATIC counters) deletion

Reset data operands in non-retentive
data blocks to initial values

Disable peripheral outputs

Process image output
transfer

Process image input
update

Process image output and
peripheral outputs initialization

(retain last value or
output substitute value)

Execute main program
(OB 1)

including all interrupt handlers
and error routines

Cycle control point

CPU 300 activities in STARTUP and RUN modes

Assign module parameters

Update process image input

Transfer process image output

Enable peripheral outputs

Execute start-up routine
(OB 100)

STARTUP

5.3 The main program

165

Cold restart

During a cold restart, the CPU puts itself and the modules into the configured ba-
sic state, deletes all data from the system memory (also the retentive data), and
calls the organization block OB 102. The current program and the current data in
the work memory are deleted and the program from the load memory is reloaded
(in contrast to a memory reset, an RAM load memory is not deleted). After a cold
restart, the CPU processes the main program in OB 1 from the beginning.

Warm restart

During a warm restart, the CPU puts itself and the modules into the configured
basic state, deletes any non-retentive data from the system memory, and calls OB
100. The current program and the current data in the work memory are retained.
After a warm restart, the CPU processes the main program in OB 1 from the begin-
ning.

With a CPU 1200, alongside the OB 100 organization block you can program addi-
tional startup organization blocks that have a number greater than or equal to
123 and the Startup event class. The additional organization blocks are then pro-
cessed after OB 100 in the order of their numbers.

Hot restart

In the event of a STOP or power failure, the CPU stores all interruption events and
the internal CPU registers which apply to processing the user program. During a
hot restart, it can then continue processing at the point in the program at which it
was interrupted. This can be the main program or also an interrupt handler or er-
ror program. All “old” interruption events have been stored and are processed.

On hot restart, the OB 101 organization block is processed and the so-called “re-
maining cycle” is then processed in organization block OB 1. The “remaining cy-
cle” from the point in the program at which the CPU continues after a hot restart
up to the end of the main program is regarded as startup. No new interrupts are
processed. The output modules are disabled and are in the basic state.

By setting the CPU parameters, you can specify the interruption duration after
which the CPU may still perform a hot restart (100 ms to 1 hour). If the interrup-
tion takes longer, only a cold restart or a warm restart is permitted.

5.3 The main program

The main program is the cyclically processed user program. Cyclic program pro-
cessing is the “normal” program processing for programmable logic controllers.
The majority of controllers use only this type of program processing. When event-
controlled program processing is used, this is usually only a supplement to the
main program.

5 The user program

166

The CPU only processes the main program when it is in RUN mode. The main pro-
gram is present in organization block OB 1, which has the lowest processing prior-
ity. It can be interrupted by all alarm and error events. With a CPU 1200, alongside
the OB 1 organization block you can program additional main program organiza-
tion blocks that have a number greater than or equal to 123 and the Program cycle
event class. The additional organization blocks are then processed after OB 1 the
order of their numbers (Table 5.3).

Background processing

You can set the processing time for the main program so that there is still time for
background processing. The CPU calls organization block OB 90, which depending
on the time available is processed “piece by piece” in alternation with a complete
cycle of the main program. Just like OB 1, OB 90 can also be interrupted by all
alarm events and error events.

Program organization

The user program is usually divided into individual program sections (i.e.,
blocks). When a block is to be processed, it must be called. Only the organization
blocks are not called by the user program. They are started by the operating sys-
tem of the CPU instead.

The structure of the program specifies the event for which the CPU is to process
the blocks and the sequence in which these blocks are to be processed. For exam-
ple, a rough program structure is created when you program the calls of the
blocks for the main program in organization block OB 1. In these “higher-level”
blocks, you can then call other blocks and structure the user program in more de-
tail, and so on.

In principle, there are two ways to divide the overall automation task into smaller
subtasks:

A technological program structure is primarily based on the setup of the plant to be
controlled and is divided into plant, plant section, and component. The individual
parts of the plant or the process to be controlled correspond to the individual pro-
gram sections. Example: The plant unit “conveyor belt” may consist of different
conveying elements, shunting vehicles, and lifting station; these elements also
consist of individual components such as motors, valves, and indicator elements.

A functional program structure is based on the control function to be performed.
The lower-level blocks contain the program of the subfunctions. Example: The

Table 5.3 Organization blocks for the main and background program

Program type CPU 1200 CPU 300 CPU 400

Main program OB 1,
≥ OB 123

OB 1 OB 1

Background program – – OB 90

5.3 The main program

167

“message acquisition” function may consist of message conditioning, message
storage and message output.

Nesting depth of the block calls

During run time, the CPU makes an entry in the block stack (B stack) for every
block which is called. With this information, the CPU is able to continue process-
ing in the calling block, after processing of the called block has been concluded.
The next block which is called overwrites the data of the previous call in the B
stack. If a “nested” block call is made within the called block, the CPU sets up a
new element in the B stack. The number of B stack elements is limited to a CPU-
specific maximum value. If too many “nested” block calls are made, the CPU as-
sumes the STOP state with the error message “block stack overflow”.

Start information for a CPU 300 and CPU 400

When an organization block is called, the CPU's operating system transfers start in-
formation in the temporary local data. The start information can only be directly
scanned in the program of the organization block. The system block RD_SINFO also
permits access to the start information from the blocks called in the organization
block.

The program editor automatically configures the start information when adding
an organization block to the user program. Names and comments in English can
be adapted according to your requirements.

This start information is 20 bytes long for every organizational block and practical-
ly identical. The “standard structure” of the start information shown in Table 5.4
can be found as a basic framework in all organization blocks.

Table 5.4 Structure of the start information

Byte Data type Structure element Meaning, remark

0 BYTE EV_CLASS Bits 0 to 3: Event detection
Bits 4 to 7: Event class

1 BYTE EV_NUM Event number

2 BYTE PRIORITY Priority class, number of execution level

3 BYTE NUM OB number

4 BYTE TYP2_3 Data ID 2_3: identifies the information entered in ZI2_3

5 BYTE TYPE_1 Data ID 1: identifies the information entered in ZI1

6 … 7 WORD ZI1 Additional information 1

8 … 11 DWORD ZI2_3 Additional information 2_3

12 … 19 DATE_AND_TIME Event time Beginning of event

5 The user program

168

Start information for a CPU 1200

A CPU 1200 makes the start information available to an organization block in its
block interface in the Input declaration section (input parameters). The structure
and content of the start information depends on the organization block. Not all
organization blocks have start information (Table 5.5). The organization blocks
with a variable number are assigned by the event class of a program type.

5.4 The process images

Module addresses in the process image

The process images contain the signal states of some of the input and output mod-
ules and correspondingly it is organized into a process image input and process
image output. You address the process image input via the address area I inputs
and the process image output via the address area Q outputs. In general, the ma-
chine or process is controlled via the inputs and the outputs (see also Chapter 1.4
"The path of a binary signal from the sensor to the program" on page 15).

The process image is part of internal CPU system memory. It begins at I/O address
0 and ends at an upper limit specified by the particular CPU. This limit can be set
with appropriately designed CPUs.

When you define the parameters of the module addresses, you also specify wheth-
er the signal states of a module are to be included in the process image. You can
use the addresses of the process image which are not assigned to modules similar
to the bit memory area. Modules whose addresses are not included in the process
image are addressed with the address areas peripheral inputs (PI) and peripheral
outputs (PQ).

Table 5.5 Organization blocks and start information for a CPU 1200

OB number

Program type Fixed Variable Event class Start information

Main program OB 1 ≥ 123 Program cycle –

Start-up routine OB 100 ≥ 123 Startup Retentivity and time-of-day error

Time-delay inter-
rupt

– 20 … 23,
≥ 123

Time delay interrupt –

Cyclic interrupt – 30 … 38,
≥ 123

Cyclic interrupt –

Hardware interrupt – 40 … 47,
≥ 123

Hardware interrupt –

Time error OB 80 – Time error interrupt Error ID, number and priority of OB sig-
naling the error

Diagnostic inter-
rupt

OB 82 – Diagnostic error
interrupt

Diagnostic status and identification of
the module reporting the error, channel
number

5.4 The process images

169

Updating the process image

Following a CPU startup and prior to initial processing of the organization block OB
1, the operating system transfers the signal states of the process image output to
the output modules and accepts the signal states of the input modules into the pro-
cess image input. This is followed by execution of the main program in OB 1, where
usually the signal states of the inputs are linked to each other and the outputs are
controlled. Following termination of OB 1, a new cycle begins with updating of the
process image (Fig. 5.3).

If an error occurs during automatic updating of the process image, e.g. because a
module can no longer be addressed, the organization block OB 85 “Program exe-
cution error” is called. If OB 85 is not present, the CPU switches to STOP mode.

Fig. 5.3 Process image update for main program and interrupt routines

<Interrupt>
Interrupt

event

Cycle start

Interrupt handler

Operating system Main program

Update OB1 process image and process image partitions

5 The user program

170

Part process images

Some CPUs allow you to divide the process image into part process images. You do
this when you define the parameters of the signal modules with the hardware con-
figuration tool HW Config. When you allocate the addresses with HW Config, you
specify the part process image with which the module is to be addressed. You can
divide both process images – inputs and outputs.

All modules with an address in the process image area which you do not assign to
a process image partition are located in the “OB1 process image”. This corre-
sponds to the “total process image” of those CPUs which cannot handle a division
into process image partitions. This OB1 process image is automatically updated by
the operating system of the CPU during cyclic processing. You can also disable this
automatic update for the CPU 400.

Allocation to interrupt organization blocks

Some CPUs allow you to assign part process images to the organization blocks for
interrupt and asynchronous errors. You do this when you define the parameters
for the CPU. We recommend placing in these part process images the addresses of
those modules that you address in the interrupt program. When an alarm event
occurs, the assigned part process images are updated.

System functions for part process images

The system functions UPDAT_PI and UPDAT_PO or SYNC_PI and SYNC_PO for iso-
chronous mode interrupts update the parameterized process image partition of
the inputs or outputs when they are called. The system functions can be called at
any point in the program to update a process image partition. If you specify pro-
cess image partition 0, you can also update the process image of the main pro-
gram, e.g. if you disabled automatic updating. If an error occurs during the up-
date, the error is reported with the return value of the system function.

5.5 Cycle Time, Reaction Time

Cycle monitoring time

Program processing in the organization block OB 1 is time-monitored. This is han-
dled by the so-called “cycle time monitoring” function. The default monitoring
time is set to 150 ms. You can change this value within the range from 1 ms to 6 s
in the CPU properties. If processing of the main program takes longer than the set
cycle monitoring time, the CPU calls the organization block OB 80 Time error. If
this is not present, the CPU switches to the stop status.

The cycle monitoring time covers the total processing time of OB 1. This also in-
cludes the processing times for higher priority classes which interrupt the main
program (in the current cycle). Communication processes by the operating sys-

5.5 Cycle Time, Reaction Time

171

tem (e.g. programming device accesses to the CPU) also add to the runtime of the
main program.

Minimum cycle time, background processing – OB 90

If the CPUs are designed accordingly, you can specify a minimum cycle time. If
main program processing, including interruptions, does not take as long as speci-
fied, the CPU waits until the set minimum cycle time is reached. Only then the CPU
starts the next cycle by calling OB 1 again. The minimum cycle time is disabled by
default. You can set a value between 1 ms and 6 s in the CPU properties.

The CPU processes organization block OB 90 background processing in the time
between the actual end of the cycle and the expiration of the minimum cycle time.
OB 90 is processed “piece by piece”: Processing of OB 90 is interrupted when OB 1
is called by the operating system, and continued again at the point of interruption
when OB 1 processing is concluded. An interruption by OB 1 can occur after every
instruction (Fig. 5.4).

The closer the processing time of OB 1 is to the minimum cycle time, the less time
remains for processing OB 90. The program processing time is not monitored in
OB 90. Processing of OB 90 only takes place in RUN mode. Just like OB 1, it can also
be interrupted by alarm and error events.

Reaction time

If the user program in OB 1 works with the signal states of the process images, this
results in a response time which is dependent on the program execution time (the
cycle time). The response time lies between one and two cycle times, as shown in
Fig. 5.5.

Fig. 5.4 Minimum cycle time and background processing

PII PIIPIQ PIQ

Current cycle processing time OB 1

Minimum cycle time

Main program Main programBackground program

Background processing

PII = process image input
PIQ = process image output

5 The user program

172

If a limit switch is activated, for example, it changes its signal state from “0” to “1”.
The controller detects this change during subsequent updating of the process im-
age, and sets the input allocated to the limit switch to “1”. The program evaluates
this change by resetting an output, for example, in order to switch off the corre-
sponding motor. The new signal state of the output that was reset is transferred at
the end of program execution; only then is the corresponding bit reset on the digi-
tal output module.

In a best-case situation, the process image is updated immediately following the
change in the limit switch's signal. Then it only takes one cycle for the correspond-
ing output to respond. In a worst-case situation, updating of the process image
has just been completed when the limit switch's signal changes. It is then neces-
sary to wait approximately one cycle for the controller to detect this change and
set the input. Then the module output responds after one further cycle.

The reaction time to a change of the input signal may be between one and two cy-
cle times. The delay times for the input modules and the switching times of con-
tactors and so on also add to the reaction time.

The processing time of the user program thus contains all procedures in a pro-
gram cycle (e.g. also processing of interrupts, processing in the operating system
such as updating the timers, controlling the bus interface and updating the pro-
cess image).

In individual cases, you can reduce reaction times by addressing the I/O directly or
using event-controlled calls of specific program sections.

Fig. 5.5 Reaction times in a programmable logic controller

PII

PII = process image input
PIQ = process image output

PII PIIPIQPIQ PIQ

Response time = one cycle time

Response times when using process images

Response time = two cycle times

User program User program

5.6 Program functions

173

5.6 Program functions

The operating system of the CPU makes functions available that you can use from
the user program. The program for these system functions is in the operating sys-
tem, the function calls are in the user program. A selection of these system func-
tions is listed in Table 5.6.

Real-time clock

The real-time clock provides the date and time. The time-of-day interrupts and im-
pulses for the runtime meter are derived from the real-time clock. If the backup
battery is working, the real-time clock continues to run even if the power supply is
off. Without backup, on power on the clock starts with the time when the power
was last switched off. A memory reset of the CPU has no effect on the real-time
clock.

If several CPUs in a subnet are connected to each other, you can synchronize the
clocks of the other CPUs automatically using a master clock. By calling the system
function SNC_RTCB, you synchronize all clocks in the subnet regardless of the au-
tomatic synchronization. If you use SET_CLK or SET_CLKS to set a master clock, all
other clocks in the subnet will be automatically synchronized to this value.

The time used in the CPU is the module time. Appropriately configured CPUs also
save a time-of-day status. This includes a correction value which, added to the
module time, produces the local time (display time). The local time can be used to
visualize time zones.

Table 5.6 CPU functions

Function, description

Present with

CPU 1200 CPU 300 CPU 400

WR_SYS_T
RD_SYS_T

SNC_RTCB

SET_CLKS

Set clock (SET_CLK)
Read clock (READ_CLK)

Synchronizing the time-of-day

Set time-of-day with time-of-day status

×
×
–

–

×
×
–

–

×
×
×
×

RTM Control runtime meter × × ×

TIME_TCK Reading the system time – × ×

RE_TRIGR Retrigger cycle time × × ×

OB_RT Measure the runtime of an organization block – – ×

STP Stop program execution × × ×

WAIT Delay program execution – × ×

COMPRESS Compress the program – – ×

PROTECT Protect the program – × ×

CIR System modifications during operation – – ×

5 The user program

174

Runtime meter

A runtime meter in a CPU counts the hours while running. You can use the run-
time meter, for example, to record the operating hours of connected devices. If the
CPU is in STOP or HOLD, the runtime meter stops too; if the CPU starts up again,
counting continues at the last value. If the maximum duration has been reached,
the runtime meter remains stationary and signals an overflow. A runtime meter
can only be set to a new value or zero by means of a call from RTM. A memory
reset of the CPU has no effect on the runtime meter.

The system function RTM is used to set a runtime meter to a new value, start or
stop a runtime meter, or read the current value of the runtime meter. After a
warm restart or cold restart you must also restart a runtime meter by means of
RTM. The RTM system function processes runtime meters with runtimes of up to
231-1 hours.

Reading the system time

The system time of a CPU starts when the CPU is switched on. The system time
runs for as long as the CPU is in the STARTUP or RUN mode. The current value of
the system time is “frozen” when at STOP or HOLD. If there is a restart, the system
time starts running again at the stored value. A cold restart or warm restart resets
the system time. The system time is available in the data format TIME, where only
positive values are possible. In the event of an overflow, the system time restarts
at zero.

The TIME_TCK system function is used to read the current system time. You can
use the system time, for example, to calculate the time between two TIME_TCK
calls by calculating the difference.

Restart cycle monitoring time

Calling the system function RE_TRIGR in the main program restarts the cycle mon-
itoring time. This then starts with the value set during CPU parameterization.

Measuring the program runtime of an organization block

The operating system of a CPU 400 saves the runtimes of the organization blocks
using an internal timer in a microsecond grid. In the transition from STOP to RUN,
the timer starts, runs to the upper limit of 231–1 and begins again at zero. The data
saved in the operating system can be read using the system function OB_RT for
the last completed call and for the current call of the organization block. This en-
ables you to determine the time load (utilization) of the user program.

Stopping the execution of the user program

The system function STP ends the processing of the user program. The CPU then
updates the process image output and enters the STOP state. In the module prop-
erties of correspondingly designed modules, you can set the signal states of the
digital and analog outputs which the CPU is to output in the STOP state: Retain last
value or Connect substitute value. As standard, the signal state “0” is output at the

5.6 Program functions

175

digital outputs and a value of zero at the analog outputs at STOP. In the STOP op-
erating mode, the CPU continues communication with the programming device
and the diagnostics activities.

Delay execution of the user program

The system function WAIT holds program execution for a defined duration. The
system function WAIT has the input parameter WT with data type INT, in which
you can specify the hold time in microseconds (µs). The maximum hold time is
32 767 µs, the smallest possible hold time corresponds to the CPU-dependent exe-
cution time of the system function. WAIT can be interrupted by events of higher
priority.

Compressing the user program

After repeated deleting and reloading of blocks, for example when modifying
blocks online, gaps can form in the work memory in the CPU and the RAM load
memory that reduce the usable storage area. The “compress” function can be
used to trigger a program in the CPU operating system that fills these gaps by
pushing the blocks together. You can initiate a “compress” operation with a con-
nected programming device or by calling the system function COMPRESS.

The compression process is distributed over several program cycles. COMPRESS
cannot compress if you are currently running an external compression process, if
the “erase block” function is active, or if programming device functions are cur-
rently accessing the block to be moved (such as program status). Note that blocks
above a certain CPU-specific maximum length cannot be moved with COMPRESS.
Gaps thus remain in the CPU memory. Only the compression in STOP mode trig-
gered by the programming device closes all the gaps.

Protecting the user program

The user program in a CPU can be protected against access in three protection lev-
els: no protection, write protection, and read/write protection. You can set the pro-
tection level when parameterizing the CPU.

Program-driven toggling between protection levels “No protection” and “Write
protection” is possible with the system function PROTECT. Calling the system
function PROTECT is only effective if you have set the protection level “No protec-
tion” with the hardware configuration. It has no effect if write protection or
read/write protection is set. The protection level set with PROTECT remains un-
changed if

b the CPU goes to STOP due to a (program) error, an STP call, or operator inter-
vention, or

b after switching the power supply off and on again.

In all other cases, the protection level “No protection” is set in the case of an oper-
ating mode transition. Even if you switch the mode switch to STOP, protection lev-
el “No protection” is (re)set.

5 The user program

176

Configuration in RUN

Configuration in RUN (CiR) means system modification in running operation. This
functionality permits you to change the configuration of the distributed I/O of an
S7-400 station without the CPU entering STOP or having to be set to STOP
(Fig. 5.6).

Fig. 5.6 CiR elements in the hardware configuration

System modification during operation (Configuration in RUN)

P
R

O
F

IB
U

S
D

P
P

R
O

F
IB

U
S

P
A

S7-400

SIEMENS
SIEMENS

SIEMENS

SIEMENS
SIEMENS

SIEMENS

5.7 Time-of-day interrupts

177

The changes comprise adding compact DP slaves, ET 200M stations, and PA mas-
ter systems to an existing DP master system, adding modules to ET 200M sta-
tions, and adding PA slaves (field devices) to existing PA master systems. All ob-
jects added during running operation can also be removed during running oper-
ation. Components with and without CiR functionality can be used together; but
modifications can only be made to components with CiR capability.

When reconfiguring, process execution is interrupted for a short period (typically
1 s, can be parameterized). The time can be kept short if only few modifications
are always carried out.

5.7 Time-of-day interrupts

You use a time-of-day interrupt if you wish to execute a program once at a particu-
lar time or periodically, for example daily. For a CPU 300, the organization block
OB 10 is provided for processing a time-of-day interrupt. For a CPU 400, the orga-
nization blocks OB 10 to OB 17 are provided. Which of these eight organization
blocks are actually available depends on the CPU you are using. You can configure
a time-of-day interrupt in HW Config in the CPU properties or control it from the
user program during runtime using system functions. A time-of-day interrupt can
only be triggered properly if the real-time clock is set correctly (Table 5.7).

Using a time-of-day interrupt

To start a time-of-day interrupt, you must first set the start time and then activate
the time-of-day interrupt. You can carry out both activities separately using HW
Config or also with system functions. Note that activation with HW Config means
that the time-of-day interrupt is automatically started following parameterization
of the CPU.

With SET_TINT you set the starting time and period of the time-of-day interrupt;
with ACT_TINT you start the time-of-day interrupt. You can start a time-of-day in-
terrupt once or periodically. The time-of-day interrupt is canceled following a sin-
gle call of the time-of-day interrupt OB. You can also cancel an active time-of-day
interrupt using CAN_TINT. If you wish to reuse a canceled time-of-day interrupt,

Table 5.7 Organization blocks for time-of-day interrupts

Organization blocks, functions CPU 1200 CPU 300 CPU 400

Permissible organization blocks – OB 10 OB 10 … OB 17 *)

SET_TINT Set time-of-day interrupt

ACT_TINT Activate time-of-day interrupt

CAN_TINT Cancel time-of-day interrupt

QRY_TINT Query time-of-day interrupt

–

–

–

–

×
×
×
×

×
×
×
×

*) depending on the CPU type

5 The user program

178

you must set the start time again and activate the time-of-day interrupt. You can
query the status of a time-of-day interrupt with QRY_TINT (Fig. 5.7).

Time-of-day interrupts are only executed if the CPU is in RUN mode. A time-of-day
interrupt that is activated in a start-up routine is not started until the CPU goes
into the RUN mode.

Fig. 5.7 Principle of time-of-day interrupt processing and associated system functions

SET_TINT CAN_TINT

ACT_TINT QRY_TINT

Using a time-of-day interrupt

Interrupt OB

SET_TINT

CAN_TINTACT_TINT

QRY_TINT

Set time-of-day interrupt

Cancel time-of-day interruptActivate time-of-day interrupt

Query time-of-day interrupt

OB_NR

OB_NROB_NR

OB_NR

SDT

PERIOD

RET_VAL

RET_VALRET_VAL

RET_VAL

STATUS

5.8 Time-Delay Interrupts

179

5.8 Time-Delay Interrupts

A time-delay interrupt allows you to implement a time delay independent of the
timer functions. For a CPU 300, the organization blocks OB 20 and OB 21 are pro-
vided for processing a time-delay interrupt. For a CPU 400, the organization
blocks OB 20 to OB 23 are provided. Which of these four organization blocks are
actually available depends on the CPU you are using (Table 5.8). With a CPU 1200,
the organization blocks for time-delay interrupts can have a number from 20 to 23
and 123 or above. It is possible to have a maximum total of four organization
blocks for time-delay interrupts and cyclic interrupts.

Using time-delay interrupts

You activate a time-delay interrupt in the user program by calling the system func-
tion SRT_DINT. The call also transfers the delay duration and the number of the
selected organization block to the operating system. The function call is simulta-
neously the start time for the parameterized period. After the delay time has ex-
pired, the selected organization block is started. Note that the processing of a
time-delay interrupt organization block may be delayed if a higher-priority orga-
nization block is being processed at the time the interrupt OB is called (Fig. 5.8).

You can overwrite a running delay time by a new value by calling SRT_DINT again.
The new time delay then commences when the function is called. You cancel an
activated time-delay interrupt by calling the system function CAN_DINT. The asso-
ciated organization block is then no longer called. You can query the status of a
time-delay interrupt with QRY_DINT.

Time-delay interrupts are only executed if the CPU is in RUN mode. You can start a
time-delay interrupt in the start-up routine by calling SRT_DINT. The CPU must be
in RUN mode when the delay has expired. If not, the CPU waits to call the organiza-
tion block until the end of the start-up routine and calls the time-delay interrupt
OB during transition to RUN mode, even before starting the main program.

Table 5.8 Organization blocks for time-delay interrupts

Organization blocks, functions CPU 1200 CPU 300 CPU 400

Permissible organization blocks OB 20 … OB 23
≥ OB 123 **)

OB 20, OB 21 OB 20 … OB 23 *)

SRT_DINT Start time-delay interrupt

CAN_DINT Cancel time-delay interrupt

×
×

×
×

×
×

*) depending on the CPU type

**) Together with cyclic interrupts, maximum four organization blocks are possible

5 The user program

180

5.9 Cyclic Interrupts

A cyclic interrupt is an interrupt triggered at periodic intervals and initiates exe-
cution of a cyclic interrupt organization block. You can use a cyclic interrupt to
have a certain program processed at a time interval which is not dependent on the
processing time of the cyclic program. For a CPU 300, the organization blocks OB
32 to OB 35 are provided for processing a cyclic interrupt. For a CPU 400, the orga-
nization blocks OB 30 to OB 38 are provided. Which of these nine organization
blocks are actually available depends on the CPU you are using (Table 5.9). With a
CPU 1200, the organization blocks for cyclic interrupts can have a number from 30
to 38 and 123 or above. It is possible to have a maximum total of four organization
blocks for time-delay interrupts and cyclic interrupts.

Fig. 5.8 Principle of time-delay interrupt processing and associated system functions

Table 5.9 Organization blocks for cyclic interrupts

Organization blocks CPU 1200 CPU 300 CPU 400

Permissible organization blocks OB 30 … OB 38
≥ OB 123 **)

OB 32 to OB 35 OB 30 … OB 38 *)

*) depending on the CPU type

**) Together with time-delay interrupts, maximum four organization blocks are possible

CAN_DINT

SRT_DINT

QRY_DINT

Interrupt OB

Using a time-delay interrupt

SRT_DINTC AN_DINTQ RY_DINT

Time-delay interrupt
enable

Time-delay interrupt
cancelation

Time-delay interrupt
query

OB_NR

D_TIMR

SIGN

OB_NR OB_NRRET_VAL RET_VAL RET_VAL

STATUS

5.9 Cyclic Interrupts

181

Using cyclic interrupts

A cyclic interrupt has three parameters: time interval (execution), phase offset,
and priority. You can use the phase offset to process cyclic interrupt programs
with a time delay even though they have a common multiple in the time interval.
This results in higher accuracy of the processing period because the lower-priority
organization block does not have to wait.

The time intervals and phase offset commence upon transition to the RUN operat-
ing mode. The call instant for a cyclic interrupt OB is thus the time interval plus
the phase offset. An example is shown in Fig. 5.9. No phase offset is set in the left
section, and consequently start of processing of the lower priority organization
block is delayed by the current processing time of the higher priority organization
block in each case.

Fig. 5.9 Principle of cyclic interrupt processing

Effect of the phase offset

Interrupt OB Interrupt OB Interrupt OB

Using a cyclic interrupt

t

t tt t t

t

t

t

t

t

t

ttt t

Phase offset

RUN RUN

5 The user program

182

5.10 Hardware Interrupts

You use hardware interrupts to immediately detect events in the controlled plant
or machine in the user program and respond with an appropriate routine. For a
CPU 300, the organization block OB 40 is provided for processing a hardware in-
terrupt. For a CPU 400, the organization blocks OB 40 to OB 47 are provided.
Which of these eight organization blocks are actually available depends on the
CPU you are using (Table 5.10). With a CPU 1200, the organization blocks for hard-
ware interrupts can have a number from 40 to 47 and 123 or above. A maximum
total of 50 organization blocks are possible for hardware interrupts.

Triggering a hardware interrupt

A hardware interrupt is triggered on a module designed for this. This can be, for
example, a digital input module which records a signal coming from the process,
or a function module which triggers a hardware interrupt due to an event on the
module. With a CPU 1200, the integrated high-speed counters (HSC) can also
trigger hardware interrupts.

Triggering of a hardware interrupt is initially disabled by default. When you de-
fine the parameters for the module using the HW Config tool, you enable the
processing of a hardware interrupt. You can select whether the hardware inter-
rupt is to be triggered by an incoming event, by an outgoing event, or by both.
When defining the parameters for the module, you also assign an organization
block to the hardware interrupt. The assignment of an organization block to an
interrupt event can also occur during runtime for a CPU 1200 (Fig. 5.10).

Hardware interrupts are only triggered when the CPU is in RUN mode. Hardware
interrupts that occur during startup are rejected.

Scanning for interrupt information with a CPU 300/400

In the start information of the interrupt organization block, you can query which
module triggered the interrupt. Bytes 5, 6 and 7 of the start information contain
the start address of the module. Bytes 8 to 11 contain the signal status of the in-
puts for digital input modules, and the interrupt status for other modules.

Table 5.10 Organization blocks for hardware interrupts

Organization blocks, functions CPU 1200 CPU 300 CPU 400

Permissible organization blocks OB 40 … OB 47
≥ OB 123 **)

OB 40 OB 40 … OB 47 *)

ATTACH Assign hardware interrupt during run-
time

DETACH Cancel hardware interrupt assignment

×
×

–

–

–

–

*) depending on the CPU type

**) Maximum 50 organization blocks possible

5.11 Multiprocessor Interrupt

183

5.11 Multiprocessor Interrupt

In multiprocessor mode, the multiprocessor interrupt permits you to respond to
an event synchronously in all participating CPUs. The system function MP_ALM
triggers the multiprocessor interrupt. The organization block OB 60 is available
for processing the multiprocessor interrupt. Multiprocessor operation is only
possible in an S7-400 station. It is automatically activated if there is more than
one CPU in the rack.

Triggering the multiprocessor interrupt

Calling the system function MP_ALM generates a multiprocessor interrupt. You
can assign an identifier to the call of the system function so that, for example, you
can determine in the program in which CPU the interrupt was triggered.

The multiprocessor interrupt OB is started on all CPUs simultaneously. This
means that the CPU in which the system function MP_ALM was called also waits to
call OB 60 until all other CPUs have reported that they are ready. The organization
block for the multiprocessor interrupt is only started in RUN mode. A call of the
system function MP_ALM in the start-up routine is rejected with the return of an
error message (Fig. 5.11).

Fig. 5.10 Principle of hardware interrupt processing and associated system functions

For a CPU 1200:
ATTACH

For a CPU 1200:
DETACH

Interrupt OB

Using a hardware interrupt

ATTACH DETACH

Assign hardware
interrupt

Cancel hardware interrupt
assignment

OB_NR OB_NR

EVENT EVENT

ADD

RET_VAL RET_VAL

5 The user program

184

5.12 Synchronous errors with a CPU 300/400

The operating system of the CPU generates a synchronous error event when an er-
ror occurs which is directly related to program processing. If you have not pro-
grammed a synchronous error OB, the CPU goes into the STOP mode when a syn-
chronous error event occurs. There are two types of errors.

b Programming errors; OB 121 is called

b Access errors; OB 122 is called

A synchronous error OB has the same priority as the block that caused the error.
Therefore, the registers of the interrupted block can be accessed by the synchro-
nous error OB. Another effect is that the program in the synchronous error OB can
return the registers with modified contents to the interrupted block.

Fig. 5.11 Principle of processing a multiprocessor interrupt

MP_ALM

Interrupt OB

Interrupt OB

Interrupt OB

Using a multiprocessor interrupt

MP_ALM

Trigger multiprocessor
interrupt

JOB RET_VAL

CPU 1

CPU 2

CPU 3

5.12 Synchronous errors with a CPU 300/400

185

Please note that, when a synchronous error OB is called, its 20 bytes of start infor-
mation are stored in the L stack of the error-causing priority class, in addition to
the remaining temporary local data of the synchronous error OB and the tempo-
rary local data of all blocks called in this OB.

Fig. 5.12 shows the program execution in a synchronous error event and the sys-
tem functions that can be used in this context.

Fig. 5.12 Principle of synchronous error processing and associated system functions

DMSK_FLT

REPL_VAL REPL_VAL

MSK_FLT

READ_ERR

OB 121 OB 122

Synchronous error processing

MSK_FLT DMSK_FLTR EAD_ERR

Mask synchronous error
events

Unmask synchronous error
events

Read event status
register

PRGFLT_
SET_MASK

PRGFLT_
RESET_MASK

PRGFLT_
QUERY

ACCFLT_
SET_MASK

ACCFLT_
RESET_MASK

ACCFLT_
QUERY

RET_VAL RET_VAL RET_VAL

PRGFLT_
MASKED

PRGFLT_
MASKED

PRGFLT_
CLR

ACCFLT_
MASKED

ACCFLT_
MASKED

ACCFLT_
CLR

REPL_VAL

Enter substitute value

VAL RET_VAL

5 The user program

186

Entering a substitute value

Using the REPL_VAL system function, you can write a substitute value into accu-
mulator 1 from a synchronous error OB. Example: Values can no longer be read
from an input module; OB 122 access error is then called and with REPL_VAL a sub-
stitute value can be entered and processing can continue with this value.

Masking and unmasking synchronous errors

If a synchronous error occurs, the operating system calls the respective organiza-
tion block or – if the OB is not available – changes to the STOP operating mode.
Certain synchronous error events can be “masked out” so that they no longer
cause a switchover to STOP or a call of the error organization block. If a masked
synchronous error event occurs, the CPU stores this in an event status register.

The system function MSK_FLT is used to mask the synchronous error events. A bit
in an error mask is assigned to each synchronous error. This masking only takes
effect in the current priority class (program processing level) in which MSK_FLT is
called. You read the event status register by means of the system function
READ_ERR to detect a synchronous error which occurred during masking. Call sys-
tem function DMSK_FLT to unmask the synchronous error and re-enable process-
ing.

5.13 Asynchronous errors with a CPU 300/400

Asynchronous errors are errors which can occur regardless of program process-
ing. When an asynchronous error occurs, the operating system calls one of the fol-
lowing organization blocks:

b Time error – OB 80
A time error means, for example, that the cycle monitoring time has been ex-
ceeded, an OB has been required while it was still being processed, or a time-of-
day interrupt has expired because the real-time clock was set forward.

b Power supply error – OB 81
This OB is called when a battery on the CPU rack or an expansion rack is empty,
battery backup has completely failed, or the 24 V supply has failed.

b Diagnostic interrupt OB 82
A module with corresponding capability uses a diagnostic interrupt to report
the diagnostic event to the CPU.

b Insert/remove module interrupt – OB 83
The operating system monitors the module configuration every few seconds.
Each time a module is removed or inserted during RUN, STOP and STARTUP, an
entry is made in the diagnostic buffer and the system state list, and OB 83 is
called. If a suitable module is installed in the configured slot, the module is au-
tomatically loaded with the parameter set and data records by the CPU. Only
then is OB 83 called to report that the installed module is ready again.

5.13 Asynchronous errors with a CPU 300/400

187

b CPU hardware error – OB 84
The operating system calls organization block OB 84 when an interface error
(MPI network, PROFIBUS DP) occurs or disappears.

b Program execution error OB 85
The operating system calls organization block OB 85 if a non-existent organiza-

Fig. 5.13 Principle of asynchronous error processing and associated system functions

Asynchronous error Error OB Present with
CPU 300 CPU 400

EN_IRT EN_AIRT

DIS_IRT DIS_AIRT

Error OB

Asynchronous error processing

DIS_IRT

DIS_AIRT

EN_IRT

EN_AIRT

Disable interrupt
events

Delay interrupt
events

Release disabled interrupt
events

MODE MODE

OB_NR OB_NR

RET_VAL

RET_VAL

RET_VAL

RET_VAL

5 The user program

188

tion block is to be called, if there is a block access error in the operating system
(e.g. missing instance data block when an SFB system function block is called),
and if an I/O access error occurs while the process image is being updated (auto-
matically) on the system side.

b Module rack failure – OB 86
The operating system calls organization block OB 86 when it detects a module
rack failure (power failure, interrupted line, defective interface), or a failure of a
subnet or a station of the distributed I/O.

b Communication error – OB 87
The operating system calls organization block OB 87 when a communication er-
ror occurs (e.g., wrong telegram identifier or telegram length error during
global data communication, error during time synchronization).

b Execution abort – OB 88
The operating system calls organization block OB 88 when the execution of a
block in the user program is aborted because, for example, the permissible
block nesting depth has been exceeded.

The CPU operating system allows existing interrupt events to be ignored or to be
processed at a later time. The processing of the interrupt event is controlled with
system functions (Fig. 5.13).

Disabling, delaying and enabling asynchronous errors and interrupts

Asynchronous errors and interrupts during cyclic program processing are usually
unpredictable. They can interrupt the main program at any point to call the inter-
rupt or error program. A lower-priority interrupt program can also be interrupted
in this way. This interruption can have a negative effect when the interrupted pro-
gram section must be processed within a certain time, for example when a short
reaction time is essential, or when an instruction sequence may not be interrupt-
ed, as would be the case during reading of consecutive values from an I/O module.

You can use system function DIS_IRT to disable interrupts and asynchronous er-
rors. Events that occur after the disable are rejected. The related organization
block is not called, nor does the CPU go to STOP due to a non-existent interrupt
OB. You have several choices: disabling all interrupts and asynchronous errors,
disabling asynchronous errors or an interrupt class (e.g., only the hardware inter-
rupts), or disabling an individual interrupt or asynchronous error organization
block. The disable action applies to all priority classes, that is, to all levels of pro-
gram processing. If you want to cancel the disable action, call system function
EN_IRT. This re-enables processing of all interrupts and asynchronous errors,
even after a warm restart and a cold restart.

Delaying the interrupts and asynchronous errors with system function SFC 41
DIS_AIRT suppresses their processing. Processing resumes when the delay is can-
celed with system function SFC 42 EN_AIRT. The delay of interrupt and asynchro-
nous error processing can also be nested. In this case, make sure that the delay is
enabled as many times as it was activated.

5.14 Error handling with a CPU 1200

189

5.14 Error handling with a CPU 1200

Program execution error

You can specify the response of a CPU 1200 to a faulty block call or an I/O access
error yourself: Use system responses or run the “local error handling”. By default,
the system responses – depending on the error – are “ignore error” or “go into
STOP mode”. If you use the local error handling for a block, it has precedence over
the system response.

You activate the (block-)local error handling by calling one of the functions
GetErrorID Read program error number or GetError Read program error infor-
mation (Fig. 5.14). Local error handling is effective only in the block in which
GetErrorID or GetError is called.

The default responses are as follows with the local error handling active:

b With a write error: the error is ignored, and program execution is continued.

b With a read error: the substitute value FALSE or zero is read, and program exe-
cution is continued.

b With an execution error: execution of the faulty instruction (faulty function) is
aborted, and program execution is continued with the next instruction.

Fig. 5.14 Principle of local error handling with a CPU 1200

GetErrorID
GetError

GetErrorID
GetError

Local error handling with a CPU 1200

Block 1 Block 2

GetErrorID GetError

Read program error
number

Read program error
information

ID ERROR

5 The user program

190

GetErrorID makes an error number available, and GetError makes the complete
error information available in the ErrorStruct data type. You can assign the
ErrorStruct data type to a variable in a data block or in a block interface (of a
local variable). You can evaluate the error number or error information in the
user program and respond appropriately.

GetError and GetErrorID return the first detected error. If several errors occur at
the same time, the error with the highest priority will be displayed. GetError and
GetErrorID do not save the error pattern.

Time error OB 80

The operating system calls the organization block OB 80 time error if one of the
following events occurs:

b Cycle monitoring time exceeded

b OB request error: the requested organization block is still being processed (pos-
sible with time-delay and cyclic interrupts) or an organization block is request-
ed too frequently within a given priority class (queue overflow)

b An interrupt is lost due to interrupt overload.

The time error organization block is assigned to event class Time error interrupt.
Only one time error organization block can be programmed. The error is ignored
if OB 80 is not present when a time error occurs (Fig. 5.15).

Fig. 5.15 Principle of asynchronous error processing with a CPU 1200

EN_AIRT

DIS_AIRT

OB 82OB 80

time error diagnostic interrupt

Asynchronous error processing with a CPU 1200

DIS_AIRT EN_AIRT

Delay interrupt
events

Release delayed interrupt
events

RET_VAL RET_VAL

5.15 Diagnostic functions with a CPU 300/400

191

Diagnostic interrupt OB 82

Appropriately designed modules can detect diagnosis events, for example
“No load voltage present” (I/O modules), overshoot and undershoot, wire break
and short-circuit (analog input modules). If the detection of a diagnosis event is
activated in the device configuration, the organization block OB 82 diagnostic
interrupt is called if the event occurs.

The diagnostic interrupt organization block is assigned to the event class diagnos-
tic interrupt. You can only use one diagnostic interrupt OB in your program. The
OB 82 is processed if no other interrupt organization block is active, otherwise the
diagnosis event is entered into the queue. If a diagnosis event occurs, it is written
into the diagnostic buffer. If an OB 82 is not present when a diagnosis event oc-
curs, the CPU ignores the event.

Calling of the diagnostic interrupt OB can be delayed or enabled using the
DIS_AIRT and EN_AIRT functions.

5.15 Diagnostic functions with a CPU 300/400

Several system functions support diagnostics during runtime. How you detect
causes of error with programming device support is described in chapter Chapter
3.16 "Finding hardware faults using diagnostic functions" on page 106.

Reading start information

The system function RD_SINFO provides the start information of the current orga-
nization block – this is the organization block at the top of the call tree – and that
of the last executed startup organization block even at a lower call level (Fig. 5.16).

The TOP_SI output parameter contains the first 12 bytes of the start information
of the current OB, the START_UP_SI output parameter contains the first 12 bytes of
the start information of the last executed startup OB. The time stamp is not includ-
ed in either case.

Calling of RD_SINFO is not only permissible at any position within the main pro-
gram but also in each priority class, including the program of an error organiza-
tion block or in the startup. For example, if RD_SINFO is called in an interrupt or-
ganization block, TOP_SI contains the start information of the interrupt OB.
TOP_SI and START_UP_SI have identical contents when calling in the startup.

Read system state list

The system state list (SSL) describes the current status of an automation system.
The contents of the SSL can only be read using information functions, contents
cannot be modified. Since the complete system state list is extremely comprehen-
sive, reading is carried out in partial lists and partial list extracts. The partial lists
are only compiled by the CPU's operating system and read using the RDSYSST
function upon request (Fig. 5.16).

5 The user program

192

The SSL ID is available for identification of a partial list. This contains the module
type class to which the list applies, the number of the partial list extract, and the
actual system state partial list number. Together with the index which specifies an
object of a partial list, you are provided with the desired information. The CPU al-
ways provides information on the automation system as standard, but FM and CP
modules can also use this service to provide information (see documentation on
module). You can find the possible system state lists of a CPU in the description of
the operation.

You trigger reading with REQ = “1”, and BUSY = “0” indicates completion of the
read operation. You supply parameter SSL_ID with the partial list number and the
parameter INDEX with an object from the partial list. The parameter SSL_HEADER
contains the length of a data record and the number of transmitted data records.
In the DR parameter you specify the data area in which RDSYSST is to enter the
read data records.

Write user diagnostic event to the diagnostic buffer

You use the system function WR_USMSG to write an entry into the diagnostic buf-
fer and you can send it to all the stations that are logged in (Fig. 5.16). The entry
in the diagnostic buffer has the same structure as a system event, e.g. the start in-
formation of an organization block.

Permitted as event ID (parameter EVENTN) for a user entry are: The event classes 8
(diagnostics entries for signal modules), 9 (standard user events), A and B (freely
available user events). Additional information 1 (parameter INFO1) corresponds
to the bytes 7 and 8 of the buffer entry (one word) and additional information 2
(parameter INFO2) to the bytes 9 to 12 (one doubleword). The contents of both
variables are freely selectable.

If the SEND parameter has signal state “1”, the diagnostic event is also sent to the
nodes logged on for this purpose.

Fig. 5.16 Diagnostic functions with a CPU 300/400

Diagnostic functions with a CPU 300/400

RD_SINFO RDSYSST WR_USMSG

Read start
information

Read system
status list

Write user diagnostic event
to the diagnostic buffer

REQ SEND

SZL_ID EVENTN

INDEX INFO1

INFO2

RET_VAL RET_VAL RET_VAL

TOP_SI BUSY

START_UP_SI SZL_HEADER

DR

5.16 Overview of user blocks

193

5.16 Overview of user blocks

STEP 7 allows you to break down your user program into self-contained program
sections which have a specific function, structure or relate to a technological task.
These program sections are called blocks. With large and complex projects, struc-
turing of the program into individual blocks is recommended and sometimes a
necessity. The blocks are called for processing either in succession or in nested se-
quence.

Organization blocks

Organization blocks (OBs) represent the interface between operating system and
user program. The CPU's operating system calls an organization blocks if a specif-
ic event occur, e.g. in the event of a hardware or time-of-day interrupt. The main
program is in organization block OB 1. The other organization blocks correspond-
ingly have predefined numbers corresponding to the call events or can be as-
signed a number on a CPU 1200. In the program of an organization block, func-
tion blocks and functions are then called as needed. Mutual interruptibility of pro-
gram processing is handled by priority control.

Function blocks

Function blocks (FBs) are parameterizable parts of the user program which can
statically store some of their block-specific data in a permanently assigned data
block. A different data block can be assigned to each function block call. Such a
permanently assigned data block is called an instance data block, and the combi-
nation of function block call and instance data block is referred to as a call in-
stance, or “instance” for short. Function blocks can also store their variables as
“local instances” in the instance data block of the calling function block, the
“multi-instance”.

Functions

Functions (FCs) are preferably used to program frequently recurring automation
functions. They can be parameterized and supply a return value (the function val-
ue) to the calling block. The function value is optional. In addition to the function
value, functions can also have output parameters. Functions do not store informa-
tion and have no assigned data block.

Data blocks

Data blocks (DB) contain the data of the user program. A data block can be gener-
ated as a global data block, as an instance data block, or as a type data block. With
a global data block, you program the data variables directly in the data block. With
an instance data block, the programming of the assigned function block deter-
mines the data variables present in the data block. A type data block has the struc-
ture of a user-defined data type UDT (PLC data type).

5 The user program

194

5.17 Block properties

Block properties with STEP 7 V5.5

You can view and modify the block properties with the menu command Edit > Ob-
ject Properties in the SIMATIC Manager when the block is selected, or with File >
Properties in the program editor (Fig. 5.17).

The block properties are found in two tabs. The General - Part 1 tab contains the
absolute address, the symbolic address, the symbol comment, the creation lan-
guage, and the project path. Furthermore, time stamps and block comments are
displayed. The tab General - Part 2 informs about the following properties:

The block header contains the Name (Header). It is used for identifying the block
and is not identical to the symbolic address. Different blocks can have the same
name. Under Family you can assign a common feature to a group of blocks. Under
Author you can enter the creator of the block and under Version (Header) the block
version.

The section Lengths provides information on the memory requirements of the
block in the load memory and in the work memory. MC7 indicates the length of
the program code. Under Local Data you can see the memory requirements in the

Fig. 5.17 Block properties with STEP 7 V5.5

5.17 Block properties

195

local data stack (L stack); this also includes the temporary local data used by the
editor, which is not visible in the program.

The property Know-how protection stands for block protection (see Chapter 5.18
"Know-how protection, copy protection" on page 197).

DB is write-protected in the PLC means that you can only read from this data block
using a program. A data block with the property Unlinked is only located in the
load memory. It is not relevant to processing. Data blocks in the load memory can
be read and, in connection with a MicroMemory Card, also written to. The proper-
ty Non Retain defines the retentivity of data blocks.

Block read-only indicates that a block has been saved such that it can be monitored
but not modified.

The designation Standard block is located in the block header of standard blocks
supplied by Siemens.

Block properties with STEP 7 V11 inside TIA Portal

To display and change the block properties, select the block in the project tree and
then the Properties command in the shortcut menu. Fig. 5.18 shows as example
the General and Information sections of the block properties of a function block.

The Time stamp section indicates the date of creation of the block and the date of
the last modification to the block, interface, and program. The Compile section
provides information on the processing status of the block, and the Protection sec-
tion indicates the block protection (see Chapter 5.18 "Know-how protection, copy
protection" on page 197).

Fig. 5.18 Block properties General and Information for STEP 7 inside TIA Portal

5 The user program

196

Table 5.11 lists the block attributes for data blocks and logic blocks with the LAD,
FBD or STL programs. Blocks with SCL and GRAPH program have additional attri-
butes.

The IEC check attribute indicates how strict the data type test is to be in the logic
block. With the attribute not activated, it is usually sufficient if the variables used
have the data width required for execution of the function or instruction; with the
attribute activated, the data types of the variables must correspond to the re-
quired data types.

The Multi-instance capability attribute is only present with function blocks. If the
Multi-instance capability attribute is activated (this is the standard setting), you
can call the block as a local instance in another function block.

Data block write-protected in device is an attribute for a global and type data block.
It means that you can only read from this data block using a program. Overwriting
of the data is prevented and an error message is generated. The write protection
applies to the data relevant to execution (actual values) in the work memory; the
data in the load memory (initial values) can be overwritten even if the data block
is provided with write protection. Write protection must not be confused with
block protection: A data block with block protection can be read and written by the
program; however, its data can no longer be viewed using a programming or mon-
itoring device.

Global and type data blocks can be assigned the Only store in load memory attri-
bute. Such types of data block are only present in the load memory, they are “not
relevant to execution”. Since their data is not in the work memory, direct access is
not possible. Data in the load memory can be read and with a CPU 300 and CPU
1200 also written using system functions. Data blocks with the Only store in load

Table 5.11 Block attributes

Attribute for the block Meaning with attribute activated

IEC check OB, FB, FC A stricter test of the data types takes place.

Multiple instance
capability *)

FB The function block can be called in another function block as a
local instance.

Data block write-pro-
tected in the device

Global DB,
type DB

The data of the data block cannot be overwritten by means of a
program during runtime.

Only store in load
memory

Global DB,
type DB

The data block is not transferred to the work memory; it is only
present in the load memory.

Optimized block
access **)

OB, FB, FC, DB The block-specific variables are stored in memory-optimized form
and can only be addressed symbolically. The retentivity can be set
for individual variables and the LREAL data type can be used.

Handle errors
within block **)

OB, FB, FC The default system response to a program execution and access
error is suspended in favor of a self-programmed error routine.

*) Only shown for blocks in a CPU 300/400
**) Only available for S7-1200

5.18 Know-how protection, copy protection

197

memory attribute are suitable for data which is only accessed rarely, e.g. recipes
or archives.

The Optimized block access attribute causes variables to be stored in memory-op-
timized form. For instance data blocks, the attribute is “inherited” from the as-
signed function block. The Optimized block access attribute also has effects on
the retentivity setting of the data variables: with the attribute activated, individ-
ual variables can be set as retentive (in the associated function block for in-
stance data blocks), but only the complete block can be set when the attribute is
not activated. With an activated attribute, the local data can only be addressed
symbolically. Finally, the data type LREAL can only be used in blocks with the Op-
timized block access attribute activated.

The Local error handling in the block attribute is activated as soon as one of the
functions GetError or GetErrorID is inserted when programming the block. The sys-
tem reaction to a program execution or access error is then suppressed in favor of
a self-programmed error routine.

5.18 Know-how protection, copy protection

With the know-how protection for a block you can prevent a program or its data
from being read out, printed, or modified. Using copy protection, you link the pro-
cessing of a block to a specific CPU or specific memory card.

Know-how protection with STEP 7 V5.5

In STEP 7 V5.5, the know-how protection of a block is set in the source-oriented
programming. The keyword is KNOW_HOW_PROTECT. It is specified in the block
header of the block to be protected. If the block is compiled, it is protected. This
protection can no longer be removed; the program source file should thus be kept
available.

Know-how protection with STEP 7 V11 inside TIA Portal

To activate the know-how protection in STEP 7 V11, select the block in the project
tree, and choose Know-how protection from the shortcut menu. Click on Define in
the dialog window, enter a password, and confirm it. If a function block is protect-
ed, the protection is “inherited” by the instance data block when calling as a single
instance.

You change the password for the know-how protection by clicking on Protection in
the Protection block properties and then on Change in the following dialog window
(Fig. 5.19). You remove the know-how protection by clicking on Protection in the
Protection section of the block properties, deactivate the Don't Show Code (Know-
How Protection) checkbox in the dialog window, enter the password, and click OK.

Note: If the password is lost, no further access to the block is possible. You can only
cancel the know-how protection of a block in its offline version. If you download a

5 The user program

198

compiled block to the CPU, the recovery information is lost. A protected block
which you have uploaded from the CPU cannot be opened, not even with the cor-
rect password.

Copy protection with STEP 7 V11 inside TIA Portal

Copy protection can be set up for blocks in a CPU 1200. The processing of the
block then depends on a particular CPU or a particular memory card. So that the
copy protection cannot be removed, the block must then be provided with the
know-how protection.

When the copy protection is being set up, the know-how protection for the block
must be switched off. To set up the copy protection, select the block in the project
tree, select Properties from the shortcut menu and then Protection (Fig. 5.19). In
the Copy protection area, you can choose:

b No binding
No copy protection is set or a set copy protection is canceled.

b Link to serial number of memory card
The block can only be executed if the memory card has the specified serial num-
ber.

b Link to serial number of CPU
The block can only be executed if the CPU has the specified serial number.

To enter the serial number, the options Serial number is inserted when download-
ing to a device or a memory card and Enter serial number are available with an in-
put field for the serial number.

Fig. 5.19 Know-how protection and copy protection with STEP 7 inside TIA Portal

5.19 Block interface

199

5.19 Block interface

The block interface of a logic blocks contains the declaration of the block-specific
variables. These are the variables that you only use in this block. Functions FC and
function blocks FB can exchange data with the calling block via Block parameters;
there are input, output, and in/out parameters. Each logic block has temporary lo-
cal data, in which intermediate results are stored. Function blocks ultimately save
the static local data in the instance data block.

Block parameters

Block parameters represent the transfer interface between the calling block and
the called block. By means of block parameters you enable parameterization of
the processing specification (the block function) present in a block. In the block
interface, you specify – depending on the block type – the name and data type of
the variables used for each variable type (Table 5.12).

An input parameter transfers a value to the program in the block and may only be
read. Input parameters are shown in the block call in the sequence of their decla-
ration, with LAD and FBD on the left side of the call box and with STL and SCL at
the start of the parameter list.

An output parameter transfers a value to the calling block and may only be written.
Output parameters are shown in the block call in the sequence of their declara-
tion, with LAD and FBD on the right side of the call box and with STL and SCL fol-
lowing the input parameters in the parameter list.

An in/out parameter transfers a value to the program in the block and can return it
to the calling block, usually with a changed content. An in/out parameter can be
read and written. In/out parameters are shown in the block call in the sequence of
their declaration, with LAD and FBD on the left side of the call box under the input
parameters and with STL and SCL at the end of the parameter list.

The function value for functions is an output parameter which is handled in a spe-
cial manner. As standard it has the name Ret_Val (RET_VAL) with the declaration
Return (RETURN) and the data type VOID (= without type). In this case it is not dis-

Table 5.12 Variable types in the block interface

Variable type Declaration section Possible in block mode

Input parameter Input, IN - FC FB

Output parameter Output, OUT - FC FB

In/out parameters InOut, IN_OUT - FC FB

Static local data Static, STAT - - FB

Temporary local data Temp, TEMP OB FC FB

Function value Return, RETURN - FC -

5 The user program

200

played. If the function value is declared with a different data type, it is the first
output parameter. In the SCL programming language, the function can then be in-
tegrated into an expression (see section "Calling a function FC" on page 202).

Example of use of block parameters

A block must add three variable values of data type INT. The block should be used
in the program multiple times with different values. Since the block does not have
to permanently (statically) cache variable values, a function FC is suitable for this
application. The variable values are transferred via block parameters, in this case
three input parameters and one output parameter (Fig. 5.20).

In the example, the variables #Sum and #Ret_Val are also declared. #Sum stores
the intermediate result in the temporary local data. #Ret_Val has data type VOID
and is not shown.

The names of the block parameters are present in the program of the adder as
dummies for the subsequent variable values; here, they are called formal parame-
ters. You use the formal parameters as symbolically addressed variables.

Temporary local data

Temporary local data are local block-specific variables. They store intermediate re-
sults which are generated during program processing of a block. The signal states

Fig. 5.20 Example of declaration of block parameters

Adder

Number_1

Number_2

Result

INT

Name : Adder
Type : FC
Number: 12

Declaration

Number_1

Number_2

Result

Program

Interface

Block properties

Number_3

Name Type

Number_3

Input INT

INT

INT

INT

Input

Input

Output

Ret_Val

INT

VOID

Temp

Return

#Number_1

#Number_2

ADD
INT

ADD
INT

#Sum

#Sum

#Number_3 #Result

Declaring block parameters

Sum

5.20 Calling blocks

201

or values of the temporary local data are only available while the block is being
processed. They are lost after the block is concluded.

You declare the temporary local data in the block interface of the logic block. Usu-
ally, the temporary local data is addressed symbolically, but it is also possible to
use absolute addressing with a CPU 300/400. You address a bit with L y.x, a byte
with LB y, a word with LW y, and a doubleword with LD y (y = byte address, x = bit
address).

Start information for organization blocks

When an organization block is called, the operating system of a CPU 300/400
transfers start information in the temporary local data. This start information is
20 bytes long for each organization block and contains notes on the start event; for
example, for a hardware interrupt, the address of the module that generated the
interrupt.

The operating system of a CPU 1200 provides start information only for the orga-
nization blocks OB 100 (start-up routine), OB 80 (time error), and OB 82 (diagnos-
tic interrupt). This start information is in the block interface in the Input declara-
tion section.

Static local data

Static local data are block-specific variables in function blocks. These are in the in-
stance data block to which each call of a function block is allocated. For a local in-
stance, this can also be the instance data block of the calling function block
(“multi-instance”).

The static local data retains its value until it is changed by the program, as do the
data addresses in global data blocks. You declare the static local data in the block
interface of the function block. The static local data is addressed symbolically
within the function block. Since the static local data is in a data block, it can, like
data variables, be addressed with “data block”.localvariable (for a single instance),
with “data block”.instancename.localvariable (for a multi-instance), or with the ab-
solute address. For function blocks, the same applies to the block parameters.

5.20 Calling blocks

If the program of a block should be processed, the block must be called. When call-
ing, the block can be parameterized, i.e. the block is given values it needs to work
with.

In the graphical programming languages LAD and FBD there is a box for a block
call. Above the box is the address of the calling block in absolute or symbolic form.
From the left the (block) inputs lead to the box; on the right are the (block) out-
puts. Via the inputs the called block receives the values with which it is to work.
The block returns the results via the outputs. In the textual languages STL and
SCL, the block parameters are a list after the actual call statement.

5 The user program

202

The values transferred in the block call are called actual parameters. These can be
constant values, addresses, variables, data areas, or blocks. This depends on the
type of block parameter and on the processing within the called block. An actual
parameter must have the same data type as the block parameter that it supplies
with a value.

Calling a function FC

When calling a function FC you must supply all block parameters.

The function value of a function FC is not shown on a call if the function value is of
the data type VOID. If the function value has a different data type, it is shown in
LAD, FBD, and STL as the first output parameter. In SCL the function FC in this
case returns a value that has the data type of the function value. The function can
thus be used in an expression like a variable with the data type of the function val-
ue. An example is shown in Fig. 5.21.

Calling a function block FB

When calling a function block FB, supplying of block parameters is optional. Block
parameters that you do not supply retain their old value, because the values in the
instance data block are stored.

When calling a function block, the instance data block belonging to the call must
also be specified. The call can be executed as a “single instance”, in which case
each call has its own instance data block. If the function block in the program of a
function block is called, it is alternatively possible to store the instance data of a
function block called as a “local instance” in the instance data block of the calling
function block, the “multi-instance” (Fig. 5.22).

Fig. 5.21 Use of the function value with SCL

Call of the "Adder2" block in the SCL program

Declaration of the function value in the "Adder2" function

Block interface

SCL

Number_2

Number_3

Result

Number_1

Return

Input

INT

INT

INT

INT

//Call within an exprssion

#Variable_1 := "Adder2" (Number_1 := %MW30, Number_2 := %MW32, Number_3 := %MW34) + #Variable_2;

5.20 Calling blocks

203

You can declare any number of function blocks to be local instances, including
those that themselves contain local instances. The nesting depth for local instanc-
es has the value 8. You can also enter a function block multiply as a local instance
– each with a different name. The limitation is the length of the data block: It must
be able to accept all the data of subordinate (including nested) local instances.

Multiple calling of a block

You can call a block several times in the program and provide the call with other
addresses every time. With each call, the block function is then executed with dif-
ferent values.

Example of a function FC: The Adder function described in the chapter should be
called twice, the first time with absolutely addressed memory words and the sec-
ond time with symbolically addressed data addresses. Fig. 5.23 displays a graphi-
cal representation of the block calls based on the representation of STEP 7 inside
TIA Portal.

Fig. 5.22 Data storage for a local instance

Call of the
local instance

Program
in the calling
function block

Program in
function block
that was called as
local instance

Own block
parameters

Own block
parameters

Block parameters
of the local instance

Static local data
of the local instance

Static local data
of the local instance

Block parameters
of the local instance

Own static
local data

Own static
local data

Declaration of the
local instance

Bl
oc

k
in

te
rf

ac
e

Data storage of a local instance in a multi-instance

5 The user program

204

Fig. 5.23 Multiple call of a function FC

%MW30

“Measurements”.
Value1

%MW32

“Measurements”.
Value2

%MW34

“Measurements”.
Value3

%MW40

“Measurements”.
Total

Actual
parameter

Actual
parameter

Block
parameter

First call

Second call

Multiple call of a function FC

“Adder”

“Adder”

Result

Result

Number_1

Number_1

Number_2

Number_2

Number_3

Number_3

Adder
Measurements

Total
Measurements

6 Communication

205

6 Communication

Each SIMATIC S7 station can exchange data with another station. Simple data ex-
change is generally performed by the CPU itself. Data exchange with connection
protocols that the CPU is not capable of is performed by communication modules.

A network is a group of stations for the purpose of communication. It consists of
one or more subnets of the same or different kinds linked together. A subnet in-
cludes all communication nodes that are connected to each other over a hardware
link with uniform physical properties and transfer parameters such as transfer
rate and that exchange data via a shared transfer method.

Depending on the requirements, various subnets can be selected:

b MPI (Multi Point Interface) is designed for easy data exchange between
S7-300/400 stations.

b Industrial Ethernet permits the rapid exchange of large amounts of data be-
tween S7 stations and to third-party devices. PROFINET IO is the open Industrial
Ethernet standard for the connection of distributed I/O stations.

b PROFIBUS is the transmission standard for data, process and fieldbus communi-
cation. PROFIBUS DP allows the rapid exchange of data with distributed I/O sta-
tions.

b AS-Interface (AS-i) is used to query sensors and control actuators on the field-
bus level.

b A point-to-point connection (PtP) uses the physical standard RS232 or RS485 to
link a SIMATIC station to an input/output device via a serial connection.

The data exchange is configured with STEP 7. Networking connects the S7 stations
involved in data exchange to a subnet. The protocol for data traffic is then defined
with a connection.

In the user program, communication functions ensure the handling of data traf-
fic. The communication functions are either integrated as system modules in the
operating system of the CPU or they are provided as standard blocks in the Pro-
gram Elements catalog or in libraries.

6.1 Configuring the network

The network configuration permits the graphic display and documentation of
configured networks and their stations (nodes). It is a part of the device configu-
ration. If a PLC station is operated on its own – without an HMI station and with-
out data communication to other PLC stations – the network configuration is not

6 Communication

206

required. Connection of a programming device to transfer the user program and
for program testing does not require configuration either.

General procedure

You use HW Config in the project to connect the stations to be networked to the
necessary “communication-capable” modules – the CPU and CP modules. Here
you can also add the relevant subnets to the project, connect the stations with the
subnets, and set the node addresses.

In the network configuration, you then configure the communication links. A con-
nection is needed for S7 communication (event-driven communication service to
exchange large amounts of data) or if the communication partner is not a SIMATIC
PLC station. The number of possible connections is CPU-specific. STEP 7 specifies
a connection ID for each connection and partner. You need this information when
you use the communication functions in your program.

In a connection configured at one end (one-sided data traffic) with only one part-
ner, the communication functions in the user program control the data traffic.
The operating system takes over the data traffic in the remote partner. In a two-
sided connection (two-sided data traffic), the communication functions are present
in both partners and can initiate the exchange of data from the user program.

To exchange data between two stations belonging to different projects, select “un-
specified” (in the local station in both projects) as the connection partner in the
connection table. Make sure that the connection data is consistent in both
projects.

In the network configuration, you can also add and network further stations and
subnets. If the network configuration is complete, start the compilation process,
which generates the configuration data for the networked stations.

Network configuration with STEP 7 V5.5

To start the network configuration, open the project using the SIMATIC Manager
and select Options > Configure network from the main menu. Alternatively, in
SIMATIC Manager you can also double-click on the icon of an existing subnet in
the project folder or on the icon of the connection table in the CPU folder.

The network configuration shows the existing stations and subnets and their net-
working in a separate window (Fig. 6.1). To add a station, drag it from the network
object catalog to the working area. If the network objects catalog is not visible, you
can display it in the network window by choosing View > Catalog. You add a subnet
in the same way.

To equip the newly added station with a communication-capable module, double-
click on the station to start HW Config, choose a rack, and attach at least the CPU
or CP module. Save the configured station and return to the network configura-
tion.

6.1 Configuring the network

207

For networking, drag a bus interface to the appropriate subnet. Alternatively, se-
lect the bus interface and choose Object Properties from the shortcut menu. In the
dialog box, you can now connect the bus interface to a subnet, or break off the
connection again. In addition, you can change the node address here.

If you select a CPU, the connection table is displayed in the lower part of the net-
work window. If you select a subnet, you are given an overview of the networked
stations and their node addresses.

The established connections are listed in the connection table. You add a new con-
nection by selecting a row and choosing Insert New Connection in the shortcut
menu. In the dialog box, select the connection partner. If a connection exists,
change the connection partner with Connection Partner... from the shortcut menu
or set the connection properties with Object Properties... (Fig. 6.2).

The Network > Check Consistency command causes STEP 7 to check whether the
current configuration and parameter assignment produce consistent connection
data. Save the network configuration with Network > Save. To compile, select Net-
work > Save and Compile. The compiled configuration data is stored in the System
Data object in the Blocks folder.

Fig. 6.1 Example of the network window for STEP 7 V5.5

6 Communication

208

Network configuration with STEP 7 V11 inside TIA Portal

You can access the network configuration with the project opened in the Portal
view via Devices & networks and Configure networks or in the Project view with the
Devices & networks editor, which is positioned in the project navigation under-
neath the project. In the working window of the device configuration, change to
the Network view tab (Fig. 6.3).

In the top part of the working window, the network view graphically displays all
PLC, PC, and HMI stations available in the project. If the Network button is activat-
ed in the toolbar of the work window, the network is shown if it has already been
set up during device configuration. You can drag further stations from the hard-
ware catalog to the working area to add them to the project. You select a station
via the CPU, to which you add a CP module from the hardware catalog if needed.

To add a subnet, select the bus interface in the station graphic and select Add Sub-
net from the shortcut menu. Alternatively, drag a bus interface to another of the
same kind. This creates an appropriate subnet automatically.

When networking a module, the editor automatically claims the next unused node
address for the bus interface. To display the node addresses, click in the toolbar of
the working window on the Display Addresses icon. You can change the automati-

Fig. 6.2 Example of the configuration of a communication connection

6.1 Configuring the network

209

Fig. 6.3 Example of the network configuration working area with STEP 7 inside TIA Portal

Fig. 6.4 Display of connection properties for STEP 7 inside TIA Portal

6 Communication

210

cally assigned node address in the module properties in the inspector window
with the bus interface selected.

In order to configure a connection, click on the Connections button and select
the connection type in the adjacent list. The devices suitable for this connection
type are then displayed highlighted in the Network view. When you drag a high-
lighted station onto another, a corresponding connection is established. This is
shown with a blue-white-patterned line and listed in the Connections tab in the
lower part of the working window. If you select a connection, the connection
properties are shown in the Properties tab in the inspector window and can be
changed (Fig. 6.4).

Save the network configuration with Project > Save from the main menu. To com-
pile, choose e.g. the PLC station in the project navigation and select Compile >
Hardwarefrom the shortcut menu.

6.2 The MPI subnet

Every CPU 300/400 is equipped with a “Multi Point Interface” (MPI). Data is ex-
changed by means of a proprietary Siemens protocol (Fig. 6.5).

MPI uses either a shielded two-wire cable or a fiber-optic conductor of glass or
plastic as the transmission medium. The maximum cable length in a bus seg-
ment is 50 m for non-isolated interfaces and 1000 m for isolated interfaces.
These lengths can be increased by using intermediary RS485 repeaters (up to
1100 m) or optical link modules (up to > 100 km). The transmission rate is gen-
erally 187.5 Kbit/s.

Fig. 6.5 Networking with MPI

SIMATIC S7-400 station

SIMATIC S7-300 station

MPI

Communication via MPI

S

S

6.3 External station S7 basic communication

211

The maximum number of stations is 32. Each station receives a certain amount of
time to access the bus and send data telegrams. When this time expires, the sta-
tion passes the token (access rights) to the next station. This procedure is called
token passing.

Via an MPI subnet, you can use global data communications, external station S7
basic communication, or S7 communication to exchange data between CPUs
(Table 6.1). No additional modules are required.

To configure the networking, proceed as described in chapter 6.1 "Configuring the
network" on page 205. If the CPU has a combined MPI/DP interface, the interface
must be set to MPI in the CPU properties before connecting to the MPI subnet.

6.3 External station S7 basic communication

External station S7 basic communication (“MPI communication”) handles the data
traffic between SIMATIC-300/400 stations. The stations must be interconnected
over an MPI subnet, either using an MPI cable or – with a S7-400 station – via the
backplane bus between the CPUs in the case of multiprocessor operation. The
communication functions required for this are system functions in the CPU oper-
ating system, the calls for which are contained in STEP 7 V5.5 in the Standard
Library under Communication Blocks and in STEP 7 inside TIA Portal in the Pro-
gram Elements catalog under Communication > Communication with iSlave/iDevice
(Table 6.2).

The communication functions establish communication connections as needed at
runtime themselves; they are not configured in the connection table (“communi-

Table 6.1 Communication services via MPI

Communication service Modules Configuration, interface

Global data communications every CPU 300 and CPU 400 GD table

External station S7 basic communication every CPU 300 and CPU 400 SFC calls

S7 communication every CPU 300 and CPU 400 Connection table, FB/SFB calls

Table 6.2 System functions for external station S7 basic communication

Function Comment

X_SEND Send data The communication functions must be called in pairs in both connection
partners for each connection (two-sided data traffic).

X_RCV Receive data

X_GET Read data One of the communication functions is called in one connection partner,
while the CPU operating system takes over control of the data traffic in
the other partner (one-sided data traffic).X_PUT Write data

X_ABORT Terminate connection The connection is set up dynamically as needed and can be configured to
disconnect after the transfer ends. X_ABORT terminates an existing con-
nection.

6 Communication

212

cation via non-configured connections”). If the data transmission has ended, it can
be determined by parameter assignment if the connection is closed again and
thus the connection resource should be released or whether the connection will
remain available for further transmissions. The connection can be forcibly termi-
nated with X_ABORT.

There is always only one connection to a communication partner at any one time.
The communication partner in the S7 basic communication is not defined statical-
ly. Once a job is completed, re-parameterization can allow a different communica-
tion partner to be chosen. This means the number of communication partners is
not limited by the available number of connection resources.

A maximum of 76 bytes are transferred as user data in S7 basic communication.
The CPU's operating system combines the user data into blocks independent of
the transfer direction, and these blocks are data-consistent. The length of the data
transmitted consistently is a CPU-specific variable. If two CPUs exchange data via
the connection configured at one end, the block size of the “passive” CPU is deci-
sive for the consistency of the transferred data.

With signal state “1” at the parameter CONT, a connection to the partner CPU is
established as a prerequisite for data transmission. If the CONT parameter is still
“1” after the job is completed, the connection remains active, otherwise it is termi-
nated.

The system function X_SEND sends data over a connection configured at both
ends. The data is received in the partner device with the system function X_REC.
The partner device is defined with the MPI address at parameter DEST_ID. The job
is initiated if the signal state is “1” at the parameter REQ. The data addressed at
the parameter SD is transferred. Parameter REQ_ID makes it possible to give the
transmit data an identifier that can be evaluated at parameter REQ_ID by X_REC.
As long as BUSY has signal state “1”, the send request is still being processed.

The system function X_RCV receives data sent by X_SEND. EN_DT = “0” determines
whether data has been received; NDA then is “1”. If EN_DT = “1”, received data is
written to the target area defined by the parameter RD. The RET_VAL parameter
indicates the number of received bytes.

If REQ = “1”, the system function X_GET reads data from the partner station whose
MPI address is specified at parameter DEST_ID. The data to be read is specified in
parameter VAR_ADDR and written to the target area, which is defined at parame-
ter RD. The RET_VAL parameter indicates the number of received bytes. As long as
BUSY has signal state “1”, the job is still being processed.

If REQ = “1”, the system function X_PUT writes data to the partner station whose
MPI address is specified at parameter DEST_ID. The send area is defined by the pa-
rameter SD. The parameter VAR_ADDR defines the target area in the partner de-
vice. As long as BUSY has signal state “1”, the job is still being processed.

The system function X_ABORT terminates an existing connection with REQ = “1”.
Only a connection established in its own station with X_SEND, X_GET, or X_PUT
can be canceled.

6.4 Global data communications

213

6.4 Global data communications

Global data communications (GD communications) is a communication service
that is integrated in the operating system of a CPU 300/400. It exchanges small
amounts of non-time-critical data via the MPI bus. The CPUs are interconnected
using an MPI cable or – with a S7-400 station – via the backplane bus between the
CPUs in the case of multiprocessor operation.

Cyclic global data communications does not require a user program. The CPU op-
erating system contains the required communication functions. In a CPU 400,
global data communications with system functions can also be event-driven in the
user program (Table 6.3).

Sending and receiving takes place asynchronously between sender and receiver
at the cycle control point, i.e. after cyclic program processing, before a new pro-
gram cycle begins. Data is exchanged in the form of data packets. The CPUs ex-
changing a shared data packet form a GD circle. In a GD circle, a maximum of 15
CPUs can exchange data with each other. A CPU can also belong to several GD
circles (Fig. 6.6).

Table 6.3 System functions for global data communications with S7-400

Function Comment

GD_SEND Send GD packet The system functions send or receive a GD packet. They can be called in
addition to cyclic global data communications.

GD_RCV Receive GD packet

Fig. 6.6 Example of GD circles in global data communications

MPI

Data exchange with GD packets

CPU (1) CPU (2) CPU (3) CPU (4) CPU (5)

6 Communication

214

Global data communications is configured with STEP 7 V5.5. Select the icon for the
MPI subnet in SIMATIC Manager or in the network configuration, choose Options >
Define Global Data; an empty global data table will appear. In the column head-
ings, enter the participating CPUs and define the data packets to be transferred
line by line. A line can contain several receivers, but only one sender. The transfer-
rable global data comprises inputs and outputs (process images), bit memories
and data in data blocks, as well as time and counter values as data to be sent. A GD
packet can consist of several GD elements that can be individual addresses or ad-
dress areas.

After completing this, select GD Table > Compile. After the first compilation, you
can specify the reduction ratios and, if required, the addresses for the transfer sta-
tus. With the reduction ratios you specify the number of (user program) cycles af-
ter which the CPU sends or receives the data. A reduction ratio of 0 deactivates the
cyclic data exchange in a a CPU 400 if you just want event-driven sending and re-
ceiving with system functions. Finally, you compile the GD table again.

With a CPU 400, you can also control global data communications from the user
program. Additionally or alternatively to the cyclic transmission of global data,
you can send a GD packet with the system function GD_SND and receive a GD pack-
et with the system function GD_RCV. A prerequisite for these system functions is a
configured global data table. The system functions do not have to be called in pairs,
a “mixed” mode is also possible. For example, you can send event-driven GD pack-
ets with GD_SND, but then receive these cyclically.

6.5 The Industrial Ethernet subnet

Industrial Ethernet is the subnet for connecting computers and programmable
controllers, with a focus on the industrial area, defined by the international stan-
dard IEEE 802.3. Any CPU with a PN interface and any PC with an Ethernet adapter
can be connected to the subnet (Fig. 6.7).

Industrial Ethernet can be designed physically as an electrical, optical, or wireless
network. FastConnect Twisted Pair (FC TP) cables with RJ45 connections or Indus-
trial Twisted Pairs (ITP) cables with sub-D connections are available for imple-
menting the electrical cabling. Fiber-optic (FO) cabling can consist of glass fiber,
PCF, or POF. It offers galvanic isolation, is impervious to electromagnetic influenc-
es, and is suitable for long distances. Wireless transmission uses the frequencies
2.4 GHz and 5 GHz with data transfer rates up to 54 Mbit/s (depending on the na-
tional approvals).

Up to 1024 nodes can be networked per segment. Before a network access, each
node checks if another node is presently sending data. If so, it waits a random
time before attempting a new network access (CSMA/CD access method). All nodes
have equal rights.

Using Industrial Ethernet, you can exchange data and use the S7 functions with
the S7 communication. With the corresponding CP modules, you can also set up

6.5 The Industrial Ethernet subnet

215

ISO transport, ISO-on-TCP, TCP, UDP, and email connections (Table 6.4). To config-
ure the networking and the connections, proceed as described in chapter 6.1 "Con-
figuring the network" on page 205.

Fig. 6.7 Networking with Industrial Ethernet

Table 6.4 Communication services via Industrial Ethernet

Communication service Modules Configuration, interface

S7 communication CPUs with PN interface

CP 343-1, CP 343-1 Lean,
CP 343-1 Advanced

CP 443-1, CP 443-1 Advanced

Connection table, FB/SFB calls

Open User Communication
(IE communication)

CPUs with PN interface

CP 343-1, CP 343-1 Lean,
CP 343-1 Advanced

CP 443-1, CP 443-1 Advanced

FB calls

PROFINET IO (IO controller) CPUs with PN interface

CP 343-1, CP 343-1 Advanced

CP 443-1, CP 443-1 Advanced

Hardware configuration,
inputs/outputs, SFC/SFB calls

PROFINET IO (IO device) CPU 300, CPU 400 and ET 200 CPU
with PN interface

CP 343-1, CP 343-1 Lean,
CP 343-1 Advanced

Hardware configuration,
inputs/outputs, SFC/SFB calls

S5-compatible communica-
tion

CP 343-1, CP 343-1 Lean

CP 443-1

Connection table,
SEND/RECEIVE calls

IT communication (HTTP,
FTP, e-mail)

CP 343-1 Advanced

CP 443-1 Advanced

Connection table,
SEND/RECEIVE calls

SIMATIC S7-300 station SIMATIC S7-1200 station

SIMATIC S7-400 station

Industrial Ethernet

PROFINET IO
S

S

Communication via Industrial Ethernet

S

S

S

6 Communication

216

As an open standard of the PROFIBUS user organization, PROFINET IO controls
distributed I/O in Industrial Ethernet. The configuration of the distributed I/O with
PROFINET IO is described in chapter 6.12 "Distributed I/O with PROFINET IO" on
page 225.

6.6 Open User Communication, IE communication

Open User Communication (“open communication via Industrial Ethernet”, in
short: IE communication) transfers data between two devices connected to the
Ethernet subnet. Communication can be implemented using the TCP native proto-
col in accordance with RFC 793, the ISO-on-TCP protocol in accordance with RFC
1006, or the UDP protocol in accordance with RFC 768.

The communication functions are loadable standard function blocks (FB), which
are contained in STEP 7 V5.5 in the Standard Library under Communication
Blocks and in STEP 7 inside TIA Portal in the Program Elements catalog under
Communication > Open User Communication (Table 6.5).

Before data can be transferred by means of IE communication, a connection must
be established to the communication partner in the case of the TCP native and
ISO-on-TCP protocols (“connection-oriented protocols”) or a connection to the
communication layer of the CPU operating system in the case of the UDP protocol
(“connectionless protocol”). The partner is then addressed when the relevant
function block is called.

The connection is configured via a data area (and not using the network configu-
ration via the connection table). The necessary data structures for a CPU 300/400
are stored in the user data types and for a CPU 1200 in the system data types (Ta-
ble 6.6). Data can be transferred in parallel in both directions over a connection.
Several connections can exist on one physical line.

Table 6.5 Standard blocks for Open User Communication

Function Comment

TSEND_C Establish connection and
send data with TCP

CPU 1200:

These communication functions establish a connection for data
transfer, and after the end of transmission they can be programmed
to disconnect it. The connection is established in the “active” station.

TRCV_C Establish connection and
receive data with TCP

TCON Establish connection CPU 300, CPU 400, and CPU 1200:

To send and receive, a connection must be established with TCON in
the “active” station. This can be disconnected with TDISCON.

TSEND and TRCV transfer data using the TCP native and ISO-on-TCP
protocols.

TUSEND and TURCV transfer data using the UDP protocol.

TDISCON Disconnect

TSEND Send data with TCP

TRCV Receive data with TCP

TUSEND Send data with UDP

TURCV Receive data with UDP

6.7 S7 communication

217

For a CPU 1200, TSEND_C and TRCV_C transfer data using the TCP native or ISO-
on-TCP protocol. The parameters REQ and EN_R control the data transfer. The
DONE, BUSY, ERROR and STATUS parameters indicate the job status. The CONT
parameter controls the connection establishment and disconnection. With signal
state “1”, the connection is established and the data can be transferred. If CONT is
still “1” when the job is completed, the connection remains active, otherwise it is
terminated. A pointer to the connection data is created at the CONNECT parame-
ter. The DATA parameter defines the send or receive mailbox for the transferred
data.

A connection for the communication functions TSEND and TRCV or TUSEND and
TURCV is established by means of TCON. TDISCON cancels the connection again
and thus releases the resources used. The REQ parameter triggers the establish-
ment or disconnection of a connection. The DONE, BUSY, ERROR and STATUS pa-
rameters indicate the job status. A pointer to the connection data is created at the
CONNECT parameter.

TSEND and TRCV transfer data using the TCP or ISO-on-TCP protocol. A connection
must previously have been established with TCON. The parameters REQ and EN_R
control the data transfer. The DONE, BUSY, NDR, ERROR, and STATUS parameters
indicate the job status. The DATA parameter defines the send or receive mailbox
for the transferred data.

TUSEND and TURCV transfer the data using the UDP protocol. A connection must
previously have been established with TCON. The parameters REQ and EN_R con-
trol the data transfer. The DONE, BUSY, NDR, ERROR, and STATUS parameters indi-
cate the job status. The DATA parameter defines the send or receive mailbox for
the transferred data. A pointer at the ADDR parameter points to the address of the
sender or receiver.

6.7 S7 communication

S7 communication transmits large amounts of data between SIMATIC S7 stations.
The stations are interconnected via a subnet. This can be an MPI, PROFIBUS or
Ethernet subnet. The communication connections are static and are configured in
the connection table (“communication via configured connections”).

In a CPU 300, the S7 communication is implemented with loadable standard func-
tion blocks (FB), which are contained in STEP 7 V5.5 in the Standard Library under

Table 6.6 Data types for the structure of the connection data and address information

Data structure of the Data type CPU

Connection data TCON_Param CPU 1200

TCON_PAR CPU 300/400

Address information of the remote partner with UDP TADDR_Param CPU 1200

TADD_PAR CPU 300/400

6 Communication

218

Communication Blocks and in STEP 7 inside TIA Portal in the Program Elements
catalog under Communication > S7 Communication.

In a CPU 400, the S7 communication is implemented with system function blocks
(SFB) integrated in the operating system. They are contained in STEP 7 V5.5 in the
Standard Library under System Function Blocks and in STEP 7 inside TIA Portal in
the Program Elements catalog under Communication > S7 Communication.

With a CPU 1200, the S7 communication is implemented with system blocks inte-
grated in the operating system. They are included in the Program Elements cata-
log under Communication > S7 Communication.

Configuring S7 communication

A prerequisite for S7 communication is the networking of PLC stations and the es-
tablishment of S7 connections with a configured connection table in which the
communication connections are defined (see chapter 6.1 "Configuring the net-
work" on page 205).

A communication connection is specified by a connection ID for every communi-
cation partner. STEP 7 assigns the connection ID when editing the connection ta-
ble. You use the “Local ID” for parameterization of the communication functions
in the CPU from which the connection is considered and the “Partner ID” for pa-
rameterization of the communication functions in the (remote) partner CPU. It
is possible to use the same logical connection for different send and receive jobs.

Two-sided data communication

In the case of two-sided data communication, you require a send block and a re-
ceive block at each end of a connection. Both blocks have the connection IDs locat-
ed in the same line in the connection table. You can also use several “pairs of
blocks” which are then distinguished by the job ID (Table 6.7).

USEND and URCV transfer a data packet without acknowledgment by the partner
CPU. BSEND and BRCV transfer a data block in segments of up to 64 KB. Data traffic
is controlled by the parameters REQ and EN_R. The DONE, NDR, ERROR, and
STATUS parameters indicate the job status. At the parameter ID is the connection

Table 6.7 Standard blocks for S7 communication (two-sided data communication)

Function Comment

USEND Uncoordinated sending of
a data packet

CPU 300 and CPU 400:

These communication functions are used in pairs.

For the CPU 300, there are several types of functions.URCV Uncoordinated receipt of a
data packet

BSEND Send a data block with a
length of up to 64 KB

CPU 300 and CPU 400:

These communication functions are used in pairs. The data block is
transferred in segments.

For the CPU 300, there are several types of functions.
BRCV Receive a data block with a

length of up to 64 KB

6.7 S7 communication

219

ID from the connection table; at parameter R_ID is a job identifier. The data to be
transmitted is taken from the send mailbox to which the parameter SD_n points,
and saved in the receive mailbox to which the parameter RD_n points. With a CPU
300, only one of the parameters (SD_1, RD_1) can be used; with a CPU 400, all four
can be used.

One-sided data traffic

In the case of one-sided data exchange, the call of the communication function is
only present in the local CPU. In the partner CPU, the operating system takes care
of the necessary communication tasks; a send or receive (user) program is not re-
quired here. The partner CPU can perform the required communication services
in both RUN and STOP mode. The size of the consistently transmitted data blocks
depends on the (server) CPU used (Table 6.8).

The REQ parameter initiates data traffic. The DONE, NDR, ERROR and STATUS pa-
rameters indicate the job status. In the local CPU, the parameter SD_n points to
the send mailbox and the parameter RD_n points to the receive mailbox. The pa-
rameter ADDR_n indicates the data area where the operating system in the part-
ner CPU should read or write. With a CPU 300, only one of the parameters (SD_1,
RD_1, ADDR_1) can be used; with a CPU 400 or CPU 1200, all four can be used.

Table 6.8 Standard blocks for S7 communication (one-sided data traffic)

Function Comment

GET Read data from a partner
CPU

CPU 300, CPU 400, and CPU 1200:

These communication functions are used in only one CPU; in the
partner CPU, the operating system takes over the data traffic.

For the CPU 300, there are several types of functions.
PUT Write data to a partner CPU

Table 6.9 Standard blocks for S7 communication (control and monitoring)

Function Present with

STATUS Poll status of the partner device. The status is requested from the
partner device.

CPU 400

USTATUS The status of the partner device is received. The status is sent by
the partner device on a change without being requested.

CPU 400

CONTROL Poll status of a communication instance. CPU 400

C_CNTRL Poll status of a connection. CPU 300

C_DIAG Determine connection status. CPU 400

START Perform a restart on the partner device. CPU 400

STOP Switch the partner device to STOP status. CPU 400

RESUME Perform a hot restart on the partner device. CPU 400

PRINT Transfer data to a printer connected via a CP module. CPU 400

6 Communication

220

Control and monitoring functions

Control and monitoring functions are also part of one-sided data traffic. No user
program is required in the partner CPU for the execution of control and monitor-
ing functions (Table 6.9). The parameter REQ starts the job; the parameters DONE,
ERROR, and STATUS indicate the job status.

6.8 The PROFIBUS subnet

PROFIBUS is the acronym for “Process Field Bus”. It is a vendor-independent stan-
dard according to EN 50170 Volume 2 for the networking of field devices (Fig. 6.8).

The transmission medium used is either a shielded two-wire line or a fiber-optic
cable of glass or plastic. The cable length in a bus segment depends on the data
transfer rate; this is 100 m for the highest transfer rate (12 Mbit/s) and 1000 m for
the lowest (9.6 Kbit/s). The network span can be increased using repeaters or opti-
cal link modules.

The maximum number of nodes is 127; nodes can be active or passive. An active
node can access the bus for a specific period and can send data frames. After this
period, it passes the access permission on to the next active node (“token passing”
access method). If passive nodes (slaves) are allocated to an active node (master),
the master will perform the data exchange with the slaves assigned to it while it
has access permission. A passive node has no access authorization.

Fig. 6.8 Networking with PROFIBUS

SIMATIC S7-300 station

SIMATIC S7-1200 station

SIMATIC S7-400 station

PROFIBUS

PROFIBUS DP
S

Communication via PROFIBUS

S

S

S

S

6.9 Internal station S7 basic communication

221

With corresponding CP modules, you can transfer data with PROFIBUS FMS. There
are loadable communication functions to serve as an interface to the user pro-
gram (FMS interface or SEND/RECEIVE interface). An overview of the modules with
PROFIBUS connection and the available communication services is shown in Table
6.10.

To configure the networking and the connections, proceed as described in chapter
6.1 "Configuring the network" on page 205. You connect distributed I/O via a
PROFIBUS subnet (chapter 6.15 "Distributed I/O with PROFIBUS DP" on page 242).

6.9 Internal station S7 basic communication

The internal station S7 basic communication transfers data between programma-
ble modules within a SIMATIC 300/400 station. Data is exchanged via PROFIBUS.
Example: Internal station S7 basic communication can, for example, take place in
parallel to the cyclic data exchange via PROFIBUS DP between the master CPU and
the slave CPU where event-driven data is transferred. The communication func-
tions required for this are system functions in the CPU operating system, the calls
for which are contained in STEP 7 V5.5 in the Standard Library under Communica-
tion Blocks and in STEP 7 inside TIA Portal in the Program Elements catalog under
Communication > Communication with iSlave/iDevice (Table 6.11).

Table 6.10 Communication services via PROFIBUS

Communication service Modules Configuration, interface

S7 communication CPUs with DP interface

CP 342-5, CP 343-5

CP 443-5 Basic, CP 443-5 Extended

Connection table, FB/SFB calls

Internal station
S7 basic communication

CPUs with DP interface

CP 342-5, CP 343-5

CP 443-5 Basic, CP 443-5 Extended

IM 467

SFC calls

PROFIBUS DP (DP master) CPUs with DP interface

CM 1243-5

CP 342-5 (DPV0)

CP 443-5 Extended

IM 467

Hardware configuration,
inputs/outputs, SFC/SFB calls

PROFIBUS DP (DP slave) CPUs with DP interface

CM 1242-5

CP 342-5 (DPV0)

CP 443-5 Extended

Hardware configuration,
inputs/outputs, SFC/SFB calls

S5-compatible
communication

CP 342-5, CP 343-5

CP 443-5 Basic, CP 443-5 Extended

Connection table,
SEND/RECEIVE calls

PROFIBUS FMS CP 343-5

CP 443-5 Basic

Connection table, FMS interface

6 Communication

222

The communication functions establish communication connections as needed at
runtime themselves; they are not configured in the connection table (“communi-
cation via non-configured connections”). If the data transmission has ended, it can
be determined by parameter assignment if the connection is closed again and
thus the connection resource should be released or whether the connection will
remain available for further transmissions. The connection can also be forcibly
terminated with I_ABORT.

There is always only one connection to a communication partner at any one time.
The communication partner in the S7 basic communication is not defined statical-
ly. Once a job is completed, re-parameterization can allow a different communica-
tion partner to be chosen. This means the number of communication partners is
not limited by the available number of connection resources.

A maximum of 76 bytes are transferred as user data in S7 basic communication.
The CPU's operating system combines the user data into blocks independent of
the transfer direction, and these blocks are data-consistent. The length of the data
transmitted consistently is a CPU-specific variable. If two CPUs exchange data via
the connection configured at one end, the block size of the “passive” CPU is deci-
sive for the consistency of the transferred data.

With signal state “1” at the parameter CONT, a connection to the partner CPU is
established as a prerequisite for data transmission. If the CONT parameter is still
“1” after the job is completed, the connection remains active, otherwise it is termi-
nated.

On REQ = “1”, the system function I_GET reads data from the module whose user
data address is specified at parameters IOID and LADDR. The data to be read is
specified in parameter VAR_ADDR and written to the target area, which is defined
at parameter RD. The RET_VAL parameter indicates the number of received bytes.
As long as BUSY has signal state “1”, the job is still being processed.

On REQ = “1”, the system function I_PUT writes data to the partner station whose
user data address is specified at parameters IOID and LADDR. The send area is de-
fined by the parameter SD. The parameter VAR_ADDR defines the target area in the
partner device. As long as BUSY has signal state “1”, the job is still being pro-
cessed.

The system function I_ABORT terminates an existing connection with REQ = “1”.
Only a connection established in its own station with I_GET or I_PUT can be can-
celed.

Table 6.11 System functions for internal station S7 basic communication

Function Comment

I_GET Read data The communication function is called in the user program of the local
CPU. The CPU operating system takes over control of the data traffic in
the connection partner.I_PUT Write data

I_ABORT Terminate connection The connection is set up dynamically as needed and can be configured to
disconnect after the transfer ends. I_ABORT terminates an existing con-
nection.

6.10 The AS-Interface subnet

223

6.10 The AS-Interface subnet

The AS-Interface (actuator/sensor interface, in short: AS-i) is an open, internation-
al standard in accordance with EN 50295 and IEC 62026-2 for the lowest process
level in automation plants. An AS-Interface master controls the AS-Interface slaves
via a 2-wire AS-Interface cable, which transfers both the control signals and the
supply voltage (Fig. 6.9).

The transmission medium is an unshielded two-wire line which supplies the actu-
ators and sensors with both data and power (power supply unit required). With an
extension plug and two repeaters in parallel connection, the network span can be
up to 600 m.

An AS-i master controls up to 62 AS-i slaves with cyclic polling and thus
guarantees a response time of 10 ms when fully configured with A/B addresses
(double address assignment), depending on the slave profile. The AS-i master is
available, for example, as communication module in a SIMATIC station or as link

Fig. 6.9 Networking with AS-Interface

Table 6.12 Master modules for AS-Interface

Modules Comment

CP 343-2 AS-i master in S7-300 design

CP 343-2P AS-i master in S7-300 design, network configuration with STEP 7 inside TIA Portal

CM 1243-2 AS-i master V3.0 in S7-1200 design, network configuration with STEP 7 inside
TIA Portal

IE/AS-i Link PN IO Gateway; in PROFINET the link is an IO Device, while on the AS-i bus it is a single
or double master

DP/AS-i Link 20 E Gateway; in PROFIBUS the link is a modular DP slave, while on the AS-i bus it is
a single master

DP/AS-i Link Advanced Gateway; in PROFIBUS the link is a modular DP slave, while on the AS-i bus it is
a single or double master

SIMATIC S7-300 station SIMATIC S7-1200 station

AS-Interface

Communication via AS-Interface

S

S

6 Communication

224

with a gateway from PROFINET IO and PROFIBUS DP. In STEP 7 V5.5, the AS-i mas-
ter system is configured using a table. STEP 7 inside TIA Portal represents the AS-i
bus as a subnet for the master modules CP 343-2P and CM 1243-2. (Table 6.12).
For the communication modules CP 343-2 and CP 343-2P, there is the standard
block AS-3422, which controls the AS-i master via command jobs.

6.11 The point-to-point connection

A point-to-point connection (PTP) allows data transfer over a serial connection
(Fig. 6.10).

The transmission medium is an electrical cable with interface-dependent assign-
ment. RS 232C (V.24), 20 mA (TTY) and RS 422/485 (X.27) are available as inter-
faces. The transmission rate ranges from 300 bit/s up to 19.2 Kbit/s on a 20 mA
interface or 76.8 Kbit/s with RS 232C and RS 422/485. The cable length is depen-
dent on the physical interface type and the transmission rate; it is 10 m for
RS 232C, 1000 m for a 20 mA interface with 9.6 Kbit/s and 1200 m for RS 422/485
with 19.2 Kbit/s.

For each different interface, there is a different module type or plug-in interface
module (Table 6.13). Protocols and procedures include 3964 (R), RK 512, printer
drivers, and an ASCII driver that allows you to define your own procedure. For spe-
cial cases there are loadable special drivers.

Fig. 6.10 Point-to-point networking

SIMATIC S7-300 station SIMATIC S7-1200 station

Point-to-point

Communication via a point-to-point connection

S

S

SIMATIC S7-400 station

6.12 Distributed I/O with PROFINET IO

225

The interface properties are parameterized with the hardware configuration.
Communication functions are available depending on the interface type and ap-
plication.

6.12 Distributed I/O with PROFINET IO

PROFINET (process field network) provides a standardized interface for transmis-
sion over Industrial Ethernet, standardized according to the manufacturer-inde-
pendent standard IEC 61158/61784. Industrial Ethernet (“real-time Ethernet”) is
an area and cell network according to the international standards IEEE 802.3
(Ethernet) and IEEE 802.11 a/b/g/h/n (wireless LAN), designed for the industrial
sector down to the field level.

With PROFINET, there are the types

b PROFINET CBA (component based automation), an automation concept for im-
plementing decentralized controls, and

b PROFINET IO for communication on the fieldbus level between an IO Controller
and the IO Device assigned to it.

PROFINET IO primarily transfers binary process data between an IO Controller in
the (central) programmable controller and the distributed field devices – the IO
Devices. (Fig. 6.11). The IO Controller and all IO Devices controlled by it constitute
a PROFINET IO system. Several PROFINET IO systems can be operated in a Ethernet
subnet.

Table 6.13 Modules, interfaces, and drivers for the PtP subnet

Module Interface Drivers

V.24 TTY X.27 ASCII 3964(R) RK512 Other

CPU 313C-2PtP

CPU 314C-2PtP

1

1

–

–

–

–

×
×

×
×

×
×

–

×
–

–

CP 340 1 × × × × (×) – Printer driver

CP 341 1 × × × × × × Reloadable protocols

CP 440 1 – – × × × – –

CP 441-1

CP 441-2

1

2

×
×

×
×

×
×

×
×

×
×

–

×
Printer driver

Printer drivers, reloadable
protocols

CM 1241 1 × – × × – – USS drive protocol,
Modbus RTU, reloadable
protocols

CB 1241 1 – – × × – – USS drive protocol,
Modbus RTU, reloadable
protocols

6 Communication

226

With PROFINET IO, up to 256 devices – depending on the device – can be managed
by one IO Controller. The number of nodes in the network is more or less unlimit-
ed. The data transmission rate is 10 or 100 Mbit/s.

General procedure for configuring PROFINET IO

A prerequisite for the configuration of a PROFINET IO system is a project with a
PLC station. The PLC station contains a CPU with PN interface or a CP module with
integrated IO Controller.

Connect the PN interface with an Ethernet subnet and assign a PROFINET IO sys-
tem to the IO Controller. Select the IO Devices from the hardware catalog, drag
them to the working area, and connect their PN interface with the PROFINET IO
system.

An “intelligent” IO Device (in short: “I-Device”), i.e. an independent station with a
CPU, is coupled via a transfer area to the PROFINET IO system. To configure an
I-Device, create an S7 or ET200 station with a CPU, set the operating mode of the
PN interface to “IO Device”, connect the PN interface with the PROFINET IO system,
and configure the transfer area as the user data interface to the IO Controller.

Fig. 6.11 Components of a PROFINET IO system

PROFINET IO

Hardware components with PROFINET IO

Transmission of process signals Connection between
Ethernet subnets

Connection to other subnets

SIMATIC S7 station with IO Controller

S

S

S

S

6.12 Distributed I/O with PROFINET IO

227

Addresses in the PROFINET IO system

A PROFINET IO system with the IO Controller and all IO Devices is integrated into
the address structure of the central CPU, because the IO Devices are addressed by
the central CPU as centrally arranged modules. The following addresses are avail-
able in a PROFINET IO system:

b IP address
Every node on the Industrial Ethernet subnet using the TCP/IP protocol requires
a unique IP address that is assigned once for the IO Controller, and from which
the IP addresses for the IO Devices can then be derived. The four-byte-long ad-
dress consists of the subnet address and the node address. Their respective
parts are specified by the subnet mask.

b Node address:
The node address is part of the IP address and is unique in the PROFINET IO sys-
tem.

Fig. 6.12 Addresses in a PROFINET IO system

Compact
IO Device

IO Controller

Modular
IO Device

Intelligent IO Device

Transfer areas in
the user data interface
in the intelligent IO Device

PROFINET IO

Addresses in a PROFINET IO system

PROFINET IO system

SIEMENS

SIEMENS

user data addresses

user data addresses
S

IP addr.

IP addr.

IP addr.

IP addr.

IP addr.

6 Communication

228

b Device name, device number
Give the IO Controller and every IO Device a device name. In addition to the de-
vice name, each IO Device is given a device number (station number) that you
can change and with which you address the IO Device from the user program.

b Geographic address:
The geographic address of an IO Device corresponds to the slot address of a cen-
trally located module. It is composed of the number of the PROFINET IO system,
the station number, and the slot number.

b Logical address, module start address:
You access the user data of an IO Device under the logical address. The smallest
logical address corresponds to the module start address of a central module.

b Diagnostic address:
Modules without user data that can send diagnostic data are addressed via a di-
agnostic address. The diagnostic address occupies one byte in the address area
of the peripheral inputs.

A compact IO Device behaves like a single module, while a modular IO Device be-
haves like several modules. In an “intelligent” IO Device, the transfer areas of the
user data interface simulate modules. The user data addresses of all modules of
a station may not overlap (Fig. 6.12).

Configuring a PROFINET IO system with STEP 7 V5.5

Prerequisite: You have created a project with the central PLC station and placed a
module with a PN interface. The IO Controller is activated in the properties of the
PN interface.

You configure the properties of the PN interface by double-clicking in the configu-
ration table with the station open on the line with the PN interface. Click the Prop-
erties button, and in the dialog box select the subnet to which the PN interface is
to be connected. To create a PROFINET IO system, select the command Insert >
PROFINET IO system.

To add an IO Device, drag the desired IO Device from the hardware catalog to the
PROFINET IO system in the working area. The IO Devices can be found in the hard-
ware catalog under PROFINET IO and the corresponding folder. Double-clicking on
the IO Device opens the Properties dialog. Here, for a modular IO Device, you can
insert additional modules that you drag from the hardware catalog under the in-
terface module used (!) to the working area and set the user data addresses if nec-
essary. An example of a PROFINET IO system is shown in Fig. 6.13.

You first create an “intelligent” IO Device as an autonomous PLC station using the
SIMATIC Manager, insert a module with a PN interface, and connect it to the Ether-
net subnet. To set the operating mode, select the PN interface in the configuration
table and then choose Edit > Object Properties. Select the I-Device tab in the Proper-
ties window, and check the I-Device mode checkbox there.

6.12 Distributed I/O with PROFINET IO

229

After activating the operating mode, click New... to create a new transfer area in
the user data interface to the IO Controller. In the properties of the transfer area,
specify the direction of transmission and the user data addresses from the view-
point of the IO Device (Fig. 6.14).

Once you have configured all transfer areas, save and compile the station and gen-
erate a GSD file with Options > Create GSD file for I-Device … from the I-Device. In
the dialog window, click the Create button and for immediate installation the
Install button, and then Close. STEP 7 creates a folder Preconfigured Stations in the
hardware catalog under PROFINET IO, and inserts a folder with the icon for the
I-Device that was just created.

To couple the I-Device with the IO Controller, open the PLC station with the IO
Controller and drag the I-Device to the PROFINET IO system. With the IO Device
selected, the transfer areas are displayed in the configuration table as a subslot of
slot 2 with the user data address from the viewpoint of the IO Controller. To
change an address, double-click on the address line and enter the new address on
the Addresses tab in the Properties window.

Configuration of a PROFINET IO system with STEP 7 inside TIA Portal

Prerequisite: You have created a project with the central PLC station and inserted a
module with a PN interface. The IO Controller is activated in the properties of the
PN interface.

Fig. 6.13 Example of a PROFINET IO system for STEP 7 V5.5

6 Communication

230

Open the PLC station with HW Config and select the Network view tab in the work-
ing window. Connect the PN interface of the IO Controller to a subnet by right-
clicking on the PN interface and selecting Add subnet from the shortcut menu. To
configure a PROFINET IO system, choose Assign IO system from the shortcut
menu.

To add an IO Device to the PROFINET IO system, drag the desired IO Device from
the hardware catalog to the PROFINET IO system in the working area. With a se-
lected IO Device, you can set the properties of the IO Device in the device view, for
example, by adding desired modules and setting their addresses.

Fig. 6.15 shows a PROFINET IO system in network view with the central IO Control-
ler and a compact IO Device (ET 200eco), a modular IO Device (ET 200 with IM 153-
4PN), and an I-Device (ET 200S with IM 151-8PN/DP).

You create an I-Device as a separate PLC station. You establish a connection to the
existing subnet by dragging the PN interface of the I-Device to the PN interface of
another device on the subnet, for example, the PN interface of the IO Controller. In
the interface properties of the IO Device, activate the IO Device checkbox in the

Fig. 6.14 Example of a transfer area of an I-Device (STEP 7 V5.5)

6.12 Distributed I/O with PROFINET IO

231

Operating mode group and select the assigned IO Controller from the drop-down
list. The station is then added as an IO Device to the PROFINET IO system.

You configure the user data interface to the IO Controller in the interface proper-
ties of the I-Device. In the Operating mode group, choose I-Device communication
and double-click in the Transfer areas table on <Add new>. A new transfer area is
created. Set the user data addresses here, both on the side of the I-Device as well
as on the side of the IO Controller. You can create several transfer areas. You are
given detailed information about a transfer area when you select it in the Proper-
ties navigation (Fig. 6.16).

Fig. 6.15 Example of representation of a PROFINET IO system (STEP 7 inside TIA Portal)

Fig. 6.16 Example of the configuration of a transfer area (STEP 7 inside TIA Portal)

6 Communication

232

6.13 Special functions for PROFINET IO

Real-time communication with PROFINET IO

PROFINET IO offers several types of data transfer:

b Non-time-critical data such as configuration and diagnostic information is
transferred acyclically with the TCP/IP communication standard.

b User data (input/output information) is exchanged cyclically between the IO
Controller and the IO Device (real-time RT) within a defined time period – the
update time.

b Time-critical user data, e.g. for motion control applications, is transferred iso-
chronously with hardware support (isochronous real-time IRT).

A permanent communication channel is reserved on the Ethernet subnet for IRT
communication. RT communication – cyclic data exchange between the IO Con-
troller and IO Devices – and non-real-time TCP/IP communication take place paral-
lel to the update time. In this way, all three communication types can exist in par-
allel on the same subnet.

Cyclic data exchange is handled in a specific time pattern, the send clock. STEP 7
calculates the send clock from the configuration information on the PROFINET IO
system. The send clock is the shortest possible update time.

With STEP 7 V5.5 you configure the send clock (without IRT communication) cen-
trally in the properties dialog of the PN interface in the PROFINET tab or in the
properties tab of the PROFINET IO systems in the Update time tab.

With STEP 7 V11 you configure the send clock in the interface properties of the IO
Controller. With the PN interface selected, select a value in the properties tab un-
der Advanced options > Real-time settings > IO communication from the drop-down
list Smallest possible updating interval.

The update time is the period within which each IO Device in the IO System has
exchanged its user data with the IO Controller. The update time corresponds to
the send clock or a multiple thereof. You can increase the update time manually,
for example to reduce the bus load. Under certain circumstances, you can reduce
the update time for individual IO Devices if you in return increase the update time
for other devices whose user data can be exchanged non-time-critically.

If the IO Device is not supplied by the IO Controller with input or output data with-
in the watchdog timer, it switches to a safe state. The watchdog timer is calculat-
ed as the product of the update time and “Accepted update cycles without IO data”.

Real-time (RT) means that a system processes external events within a defined
timeframe. If it responds predictably, it is called deterministic. In RT communica-
tion, transfer takes place at a specific point in time (send clock) within a defined
interval (update time). PROFINET IO allows the use of standard network compo-
nents for RT communication.

6.13 Special functions for PROFINET IO

233

If not all data to be exchanged is transferred within the planned time frame, for
example due to the addition of new network components, some data is distributed
to other send clocks. This can result in an increase in the update time for individu-
al IO Devices.

Isochronous real-time (IRT) is hardware-supported real-time communication
designed, for example, for motion control applications. IRT frames are
deterministically transmitted via planned communication paths in a specified or-
der. IRT communication therefore requires network components that support this
planned data transmission. Isochronous real-time is available in the “High flexi-
bility” option for simple configuration and system expansion and in the “High
performance” option for fast update times.

You use STEP 7 V5.5 to configure the IRT communication: You set up a new sync
domain and determine a sync master to handle the synchronized distribution of

Fig. 6.17 Example of the configuration of a new sync domain

6 Communication

234

the IRT frames to the sync slaves. IRT with the “High performance” option requires
a topology configuration and thus a defined structure that takes account for the
transmission properties of the cables and the switches used.

A sync domain is a group of PROFINET IO nodes that exchange synchronized data
with each other. One node (this can be an IO Controller or an IO Device) assumes
the role of the sync master, and the others are the sync slaves. A sync domain can
contain several IO Systems, but an IO System is always assigned entirely to one
single sync domain. Several sync domains can exist on one Ethernet subnet.

If an IO System is configured, a special sync domain is automatically created: the
syncdomain-default. All configured IO Systems, IO Controllers and IO Devices are
first located in the sync domain syncdomain-default. You create a new sync do-
main for IRT communication, and transfer the IO System (from the syncdomain-
default) to the new sync domain. Not all devices of an IO System have to be syn-
chronized, or in other words, exchange data with IRT communication. During con-
figuration, unsynchronized nodes are also added to the sync domain at first; at
runtime only synchronized nodes remain in the sync domain. An example of the
configuration of a sync domain an be seen in Fig. 6.17.

The Topology Editor allows cabling configuring of devices on the Industrial
Ethernet subnet. The logical connections between the PROFINET devices are con-
figured with the configuring tools HW Config and Network Config. The Topology
Editor is used to configure the physical connections with the Length and Cable
Type properties for determining the signal runtimes. Use of the Topology Editor is
a prerequisite for using IRT communication (isochronous real time) with the
“High performance” option.

The physical connections between devices on the Ethernet subnet are point-to-
point connections. The connections on a PN interface are called ports. The Ether-
net cable connects a device port with a port on the partner device. To enable sever-
al nodes to communicate with each other, they are connected to a switch that has
several connections (ports) and that distributes signals. There are also S7 devices
featuring a PN interface that has two or more ports connected by an integral
switch. With this interface you can wire communication devices together in a lin-
ear bus topology without external switches. In tabular view, the Topology Editor
shows the interconnection table with the port pairs of all configured active and
passive components. The graphic view shows the configured devices, their ports,
and the interconnection (Fig. 6.18).

The Isochronous mode function permits synchronous input, processing, and
output of I/O signals in a fixed time pattern (constant bus cycle time). A prerequi-
site for isochronous mode is isochronous real-time (IRT) with the “High perfor-
mance” option. The basis of the time pattern is the cycle time and the data cycle
derived from this (the update time). Isochronous mode is available for a
PROFINET IO system and for a PROFIBUS DP master system. With STEP 7 V5.5, you
can configure isochronous mode for both systems; with STEP 7 V11 you can con-
figure it for the PROFIBUS DP master system (chapter 6.14 "Isochronous mode pro-
gram" on page 238).

6.13 Special functions for PROFINET IO

235

The Shared device function allows different IO Controllers to access submodules
(I/O modules and transfer areas) in one IO Device. The associated IO Device is used
by the IO Controllers together (“shared” device). Each submodule of the shared
device is assigned to an IO Controller. The basic conditions for use of a shared de-
vice are:

b The IO Controller and the IO Device must be present in the same Ethernet sub-
net.

b When using isochronous real-time communication (IRT), a shared device can
only be used with the IRT option “High performance”.

b The shared device function can only be used with “even” send cycle times.

b A shared device cannot be operated in an isochronous manner with the constant
PROFINET IO cycle.

The shared device function is configured with STEP 7 V5.5 and is available for a
CPU 400 with firmware version 6.0 and higher and for a CPU 300 or CPU ET 200
with firmware version 3.2 and higher. The prerequisite for configuring a shared

Fig. 6.18 Example of tabular and graphic view of the Topology Editor

6 Communication

236

device is a project with two or more IO Controllers and PROFINET IO systems on
the same Ethernet subnet.

To create a (modular) shared device, open a controller station and drag the IO De-
vice from the hardware catalog to the PROFINET IO system. Configure the mod-
ules by dragging them from the hardware catalog to the slot in the configuration
table. Position all modules for all IO Controllers.

Following configuration, copy the IO Device into the clipboard, for example using
the Copy command from the shortcut menu. Save the controller station, and open
another one.

To insert the saved IO Device, right-click on the PROFINET IO system and select the
Shared insert command from the shortcut menu. Then save the controller station.
In both controller stations there is now an IO Device with identical configuration.
Repeat inserting for the other IO Controllers if applicable.

To assign the modules to an IO Controller, open the Access tab. All modules are
listed in a tree structure. A module has the value “Full” if it is assigned to the
IO Controller of the currently open PROFINET IO system. Otherwise it has the val-
ue “---”. Open the shared devices in succession in each PROFINET IO system, and
assign the modules to the associated IO Controller by clicking in the Value column
(Fig. 6.19).

The media redundancy is used to increase the network availability by means of a
special topology. The ends of a linear topology are connected into a ring topology
in a station at the two connections of the PN interface. This station is the redun-
dancy manager and the connections are the ring ports. If a station in the ring net-
work fails, an alternative communication path can be made available. Up to 50 de-
vices can participate per ring by means of the Media Redundancy Protocol (MRP)
used with SIMATIC S7. The media redundancy must be configured in the interface
properties of all participating stations in the tab Media Redundancy (STEP 7 V5.5)
or under Advanced options > Media redundancy (STEP 7 V11). IRT communication
cannot be used if media redundancy is configured.

Device replacement without removable medium: When replacing an IO Device,
a device name must be assigned to the new IO Device in order to make it known
(again) to the IO Controller. This can be carried out – depending on the IO Device
– using a memory card or the programming device. Under certain conditions, the
new IO Device can be identified by means of neighbor relationships between the
other IO Devices and the IO Controller and assigned a new device name by the
IO Controller. Among the prerequisites are that a port interconnection is config-
ured, and that with STEP 7 V5.5, in the interface properties of the IO Controller in
the General tab, the Support device replacement without removable medium check-
box is checked, or that with STEP 7 V11, when configuring the interface properties
under Advanced options > Interface options the Allow device replacement without re-
movable medium checkbox is checked. Only new IO Devices or IO Devices that have
been reset to the factory settings should be used as replacement devices.

With a prioritized startup, the startup of IO Devices in a PROFINET IO system
with RT and IRT communication is carried out faster. Here, special conditions

6.13 Special functions for PROFINET IO

237

must be observed when wiring and supporting activities must be performed in
the user program. The maximum possible number of IO Devices controlled with
prioritized startup depends on the IO Controller used. With STEP 7 V5.5 you con-
figure the prioritized startup in the properties of the PROFINET interface of an
IO Device in the General tab by means of the Prioritized startup checkbox. With
STEP 7 V11 you configure the prioritized startup in the properties of the
PROFINET interface of an IO Device by means of the Prioritized startup checkbox.
You can find the checkbox under Advanced options > Interface Options or – with an
intelligent IO Device – under Operating mode (with IO Device mode switched on
and assigned IO Controller).

Fig. 6.19 Example of configuration of a shared device

6 Communication

238

6.14 Isochronous mode program

Reference is made to isochronous mode if a program is executed synchronous to a
PROFIBUS DP cycle or PROFINET IO cycle. Reproducible response times are ob-
tained in connection with constant bus cycle times. The user program executed in
isochronous mode is present in organization blocks OB 61 to OB 64. For process
image updating in isochronous mode, there are the system functions SYNC_PI and
SYNC_PO (Table 6.14).

Configuration of isochronous mode for PROFIBUS with STEP 7 V5.5

First, you configure the DP master system and the stations and modules
participating in isochronous mode. In the CPU properties, assign the priority, the
DP master system, and the process image partitions to the organization block in
the Isochronous mode interrupts tab.

To turn on the constant bus cycle time and isochronous mode, select the DP mas-
ter and choose Edit > Object properties. In the following dialog boxes, set the
DP master operating mode and one of the bus profiles DP or Custom. You then se-
lect the Activate constant bus cycle time checkbox.

You can modify the suggested constant bus cycle time, but not below the displayed
minimum time. The Details button shows the individual proportions of the equi-
distance time. Please note that the constant bus cycle time increases the more pro-
gramming devices are connected directly to the PROFIBUS subnet and the more
intelligent DP slaves are in the DP master system.

In addition, you activate the isochronous mode in the participating DP stations
and modules or, and electronic modules. For the modules and electronic modules,
you can also set the corresponding process image partition for the isochronous
update that you have specified in the CPU parameter assignment.

Configuration of isochronous mode for PROFINET with STEP 7 V5.5

In order to configure isochronous mode, you create a PROFINET IO system with
the controller station and the IO Devices, import the stations into a sync domain
with the IRT option High performance, and configure networking between the sta-

Table 6.14 Blocks for isochronous mode interrupts

Blocks CPU 1200 CPU 300 CPU 400

Organization blocks – OB 61 *) OB 61 to OB 64

SYNC_PI
Isochronous updating of input process image partition

SYNC_PO
Isochronous updating of output process image parti-
tion

–

–

×

×

×

×

*) not for all CPU types

6.14 Isochronous mode program

239

tions using the Topology Editor. In the device stations, you assign a process image
partition to the modules in their properties on the Addresses tab.

You assign the isochronous mode organization block to the PROFINET IO system
in the CPU properties: Open the controller station and double-click on the CPU to
open the CPU properties window; select the Isochronous mode interrupts tab and
set the PROFINET IO system for the organizational block. Click on the Details but-
ton. The duration of the application cycle is calculated from the data cycle, multi-
plied by a factor that you specify on this tab. It is therefore necessary to estimate
the processing time of the isochronous mode program and to compare this with
the data cycle time.

If applicable, you set the delay time on this tab with which the isochronous mode
OB is to start, and assign the process image partition which you have set for the
module addresses in the IO Devices. The following methods are available for de-
termining the times Ti and To:

b Automatic – STEP 7 determines the times and sets them the same for all IO De-
vices

b Fixed – you enter the times which then apply to all IO Devices

b In the IO Device – the times are then set individually in the respective IO Device.

To assign the modules to isochronous mode, select the IO Device, double-click on
the PN interface in the configuration table, and select the IO cycle tab in the Prop-
erties dialog. In the section Isochronous mode, assign the isochronous mode OB to
the IO Device, and click on the Isochronous modules/submodules… button. You can
activate or deactivate the individual modules of the IO Device for isochronous
mode in the displayed window. Proceed in the same manner for the other IO Devic-
es. You are provided with an overview of the configuration if, with the controller
station selected, you then select the Edit > PROFINET IO > Isochronous mode com-
mand.

Configuring isochronous mode for PROFIBUS with STEP 7 V11 inside
TIA Portal

A prerequisite for configuration of isochronous mode is the constant bus cycle
time and the corresponding functionality of the participating DP components. Fol-
lowing configuration of the DP master system with appropriate modules (CPU
with integral DP interface as well as ET 200S and/or ET 200M DP interface modules
with input/output modules with isochronous mode capability), assign the DP mas-
ter system and the process image partition to the organization block in the CPU
properties in the Isochronous mode interrupts tab.

To switch on the constant bus cycle time and isochronous mode, activate the Acti-
vate constant bus cycle time checkbox in the properties of the PROFIBUS subnet un-
der Constant bus cycle time. Activate isochronous mode for the participating DP
slaves in the Detail overview section and, if you “open” a line with a DP slave, the
isochronous mode of the individual I/O modules in the DP slave. In the Ti/To values

6 Communication

240

column you can select the mode from a drop-down list for calculation of the Ti/To
values:

b From the subnet: The currently configured DP slave obtains the Ti/To values
from the subnet and thus has the same values as the other DP slaves which also
obtain their values from the subnet.

b Automatic minimal: If you manually change the Ti/To values of another DP slave
when in this setting, any adaptations which may be necessary on the currently
configured DP slave are carried out automatically.

b Manual: With this setting, you manually enter the Ti/To values for the currently
configured DP slave.

You can also make these settings in the interface properties of the DP slave under
Isochronous mode. Each module or submodule involved in isochronous mode
must be addressed in a process image partition. You set the process image parti-
tion for the module in the Device view in the module properties under I/O address-
es.

Isochronous updating of process images

The system functions SYNC_PI Isochronous update of inputs and SYNC_PO Isochro-
nous update of outputs are available for an isochronous and data-consistent up-
date of process image partitions. Both system functions must only be called in an
isochronous mode interrupt OB. Direct access to these process image partitions
should be avoided.

Processing of isochronous mode interrupts

Isochronous mode interrupts are only processed in RUN mode. A isochronous
mode interrupt in the STARTUP, STOP or HOLD operating modes is rejected. The
reaction time in isochronous mode is the sum of the times Ti and To as well as the
bus cycle time (see Fig. 6.20). With PROFINET it is possible to wait for several bus
cycles before the isochronous OB is called again.

Ti is the time required for reading in the I/O signals. It contains the execution time
in the input modules or electronic modules and additionally, in the case of modu-
lar DP slaves or IO Devices, the transfer time on the backplane bus.

At the end of Ti, the input information for the transfer is available. The bus cycle
then commences. In PROFIBUS, the bus cycle is composed of the cyclic data trans-
mission, the transmission of the acyclic services, and a reserve time. In PROFINET,
the IRT communication is performed first, then the RT communication, and finally
the transmission of the acyclic services. After data transfer to the DP slaves or after
IRT communication, the isochronous mode interrupt OB begins. Between comple-
tion of the execution of this OB and the next bus cycle, there must be time for the
execution of the main program.

To is the time required for output of the I/O signals. It comprises the transfer time
on the subnet as well as the processing time in the output modules or electronic

6.14 Isochronous mode program

241

Fig. 6.20 Using an isochronous mode interrupt

SYNC_POSYNC_PI

Interrupt OB

Input Output

Principle of isochronous program processing

SYNC_PI SYNC_PO

Isochronous update of process
image partition of the inputs

Isochronous update of process
image partition of the outputs

PART PARTRET_VAL RET_VAL

FLADDR FLADDR

Ti To

a

s

d

f

g h

j

6 Communication

242

modules. In the case of modular DP slaves or IO Devices, the transfer time on the
backplane bus is also added.

6.15 Distributed I/O with PROFIBUS DP

PROFIBUS (Process Field Bus) is a vendor-independent standard according to IEC
61158 and EN 50170. The following PROFIBUS variants exist:

b PROFIBUS FMS (fieldbus message specification) for universal communication
tasks in the field

b PROFIBUS PA (process automation) for process automation, particularly in in-
trinsically safe areas with the physical characteristic according to IEC 1158-2,
and

b PROFIBUS DP (distributed peripherals) for process automation with fast cyclic
transfer of small amounts of data.

PROFIBUS DP enables the transfer of predominantly binary process data be-
tween a “DP master” in the (central) programmable controller and the decentral-
ized field devices, the “DP slaves” (Fig. 6.21). A maximum of 126 nodes (stations)
can be operated on a PROFIBUS network, which can be divided into segments

Fig. 6.21 Components of a PROFIBUS DP master system

PROFIBUS DP

Hardware components with PROFIBUS DP

Transmission of
process signals

Connection between
PROFIBUS subnets

Connection to other
subnets

SIMATIC S7 station with DP master

S

S

S

S
SIEMENS

6.15 Distributed I/O with PROFIBUS DP

243

with up to 32 stations. The DP master and all DP slaves controlled by it form a
PROFIBUS DP master system. Several PROFIBUS DP master systems can be operat-
ed in a PROFIBUS subnet.

General procedure for configuring PROFIBUS DP

A prerequisite for the configuration of a PROFIBUS DP master system is a project
with a PLC station. The PLC station contains a CPU with DP interface or a CP mod-
ule with integrated DP master.

In the CPU properties, activate the DP master under the DP interface. If the inter-
face is a combined MPI/DP interface, you must first switch the interface to
PROFIBUS. Connect the DP interface to a PROFIBUS subnet and assign a PROFIBUS
DP master system to the DP master. Select the DP slaves from the hardware cata-
log, drag them to the working area, and connect their DP interface with the
PROFIBUS DP master system.

An “intelligent” DP slave (in short: “I-Slave”) is an independent station with a
CPU that is coupled via a transfer area to the PROFIBUS DP master system. To
configure an I-Slave, create an S7 or ET200 station with a CPU, set the operating
mode of the DP interface to “DP slave”, connect the DP interface to the PROFIBUS
DP master system, and configure the transfer area as the user data interface to
the DP master.

Addresses in the PROFIBUS DP master system

A PROFIBUS DP master system with the DP master and all DP slaves is integrated
into the address structure of the central CPU, because the DP slaves are addressed
from the central CPU as centrally arranged modules. The following addresses are
available in a PROFIBUS DP master system:

b Node address, station number
Each station on the PROFIBUS subnet has a unique address within the subnet.
The station (the DP master or a DP slave) is addressed on PROFIBUS via this
node address.

b Geographic address:
The geographic address of a DP slave corresponds to the slot address of a cen-
trally located module. It is composed of the number of the PROFIBUS DP master
system, the station number, and the slot number.

b Logical address, module start address:
You access the user data of a DP slave under the logical address. The smallest
logical address corresponds to the module start address of a central module.

b Diagnostic address:
Modules without user data that can send diagnostic data are addressed via a di-
agnostic address. The diagnostic address occupies one byte in the address area
of the peripheral inputs.

6 Communication

244

A compact DP slave behaves like a single module, while a modular DP slave be-
haves like several modules. In an “intelligent” DP slave, the transfer areas of the
user data interface simulate modules. The user data addresses of all modules of a
station may not overlap (Fig. 6.22).

Configuration of a PROFIBUS DP master system with STEP 7 V5.5

Prerequisite: You have created a project with the central PLC station and placed a
module with a DP interface.

Double-clicking on the Hardware object in the SIMATIC Manager starts HW Config.
Double-clicking on the DP interface in the configuration table opens the proper-
ties dialog of the interface. In the General tab, with a combined MPI/DP interface,
set the type of interface. To network with a subnet, click the Properties button, and
in the dialog box select the subnet to which the DP interface is to be connected. In
the Operating mode tab, enable operation as a DP master. To create a PROFIBUS DP

Fig. 6.22 Addresses in a PROFIBUS DP master system

Compact
DP DP slave

DP master

Modular
DP slave

Intelligent DP slave

Transfer areas in
the user data interface
in the intelligent DP slave

PROFIBUS DP

Addresses in a PROFIBUS DP master system

DP master system

SIEMENS

SIEMENS

user data addresses

node
address

user data addresses
S

n.addr.n.addr.

n.addr.

n.addr.

n.addr.

6.15 Distributed I/O with PROFIBUS DP

245

master system, with the DP interface selected, choose the Insert > DP master system
command.

To add a DP slave, drag the desired DP slave from the hardware catalog to the
PROFIBUS DP master system in the working area. The DP slaves can be found in
the hardware catalog under PROFIBUS DP and the corresponding folder. Double-
click the DP slave to open the Properties dialog. With a modular DP slave, you can
insert additional modules here that you drag from the hardware catalog under the
interface module used (!) to the working area and set the user data addresses if
necessary. An example of a PROFIBUS DP master system is shown in Fig. 6.23.

You first create an “intelligent” DP slave as an autonomous PLC station using the
SIMATIC Manager, insert a module with a DP interface, and connect it to the
PROFIBUS subnet. To set the operating mode, select the DP interface in the config-
uration table and then choose Edit > Object Properties. Select the Operating mode
tab in the Properties window, and check the DP slave checkbox there. Now you can
configure the transfer areas of the user data interface on the Configuration tab
from the viewpoint of the DP slave.

Fig. 6.23 Representation of a PROFIBUS DP master system in STEP 7 V5.5

6 Communication

246

After activating the operating mode, click New... to create a new transfer area in
the user data interface to the IO Controller. In the properties of the transfer area,
specify the direction of transmission and the user data addresses from the view-
point of the IO Device (Fig. 6.24).

The configured I-slaves are stored in the hardware catalog under PROFIBUS DP and
Configured stations. An icon represents each type of station, for example
ET200S/CPU for an ET200S station with an I-Slave. Select the desired station type
and drag it to the PROFIBUS DP master system. In the Coupling tab, select the con-
figured -I-Slave and click the Coupling button. Now you can configure the user da-
ta addresses of the transfer areas on the Configuration tab from the viewpoint of
the DP master.

Configuration of a PROFIBUS DP master system with STEP 7
inside TIA Portal

Prerequisite: You have created a project with the central PLC station and inserted a
module with a DP interface.

Open the PLC station with the hardware configuration and select the Device view
tab in the working window. With a combined MPI/DP interface, under MPI/DP inter-

Fig. 6.24 Example of a transfer area of an I-Slave (STEP 7 V5.5)

6.15 Distributed I/O with PROFIBUS DP

247

face > PROFIBUS address in the module properties, select the interface type
PROFIBUS and network the interface with a PROFIBUS subnet. In the Operating
mode tab, enable operation as a DP master. To insert a PROFIBUS DP master sys-
tem, switch to the Network view tab, select the DP interface of the DP master, and
choose Assign master system from the shortcut menu.

To add a DP slave to the PROFIBUS DP system, drag the desired DP slave from the
hardware catalog to the PROFIBUS DP master system in the working area. With a
selected DP slave, you can set the properties of the DP slave in the device view, for
example, by adding desired modules and setting their addresses. Fig. 6.25 shows
a PROFIBUS DP master system in network view with the central DP master and a
compact DP slave (ET 200eco), a modular DP slave (ET 200 with IM 153-2), and an
I-Slave (ET 200S with IM 151-7CPU).

Fig. 6.25 Example of a PROFIBUS DP master system (STEP 7 inside TIA Portal)

Fig. 6.26 Example of configuration of a transfer area

6 Communication

248

You create an I-Slave as a separate PLC station. You establish a connection to the
existing subnet by dragging the DP interface of the I-Slave to the DP interface of
another device on the subnet, for example to the DP interface of the DP master. In
the interface properties of the I-Slave, activate the DP slave checkbox in the Operat-
ing mode group and select the assigned DP master from the drop-down list. The
station is then added as DP slave to the PROFIBUS DP master system.

You configure the user data interface to the DP master in the interface properties
of the I-Slave. In the Operating mode group, choose I-Slave communication and
double-click in the Transfer areas table on <Add new>. A new transfer area is creat-
ed. Set the user data addresses here, both on the side of the I-Slave as well as on
the side of the DP master. You can create several transfer areas. You are given de-
tailed information about a transfer area when you select it in the Properties navi-
gation (Fig. 6.26).

6.16 Special functions for PROFIBUS DP

Output intervals of equal length through constant bus cycle time

In the normal case, of the DP master controls the DP slaves assigned to it cyclically
and without pauses. The time intervals may vary as a result of S7 communication,
for example if the programming device carries out control functions over the
PROFIBUS subnet. If outputs are to be controlled via the distributed I/O at inter-
vals that are always equal, constant bus cycle times can be set if there is a corre-
spondingly configured DP master. Here, the DP master must be the only class 1
master on the PROFIBUS. Constant bus cycle times are possible for the bus profiles
DP and Custom, and they are a prerequisite for isochronous mode (see chapter
6.14 "Isochronous mode program" on page 238).

Synchronizing DP slaves with SYNC and FREEZE

The DP master reads the input data from the DP slaves in chronological succession
and receives signal states that are current in this sequence. The command FREEZE
allows you to read in related input data simultaneously that is distributed over
multiple DP slaves. The FREEZE command requests the DP slaves combined into a
group to simultaneously (synchronously) freeze the current input signal states to
allow them to then be cyclically fetched by the master. These input signals retain
their value until a new FREEZE command causes the DP slaves to read in and
freeze the now current input signals or until the UNFREEZE command is issued,
which cancels the effects of FREEZE.

A similar procedure is used for the output signals. The DP master writes the out-
put data to the DP slaves consecutively, and the signals are output in this order.
The SYNC command outputs related data, which are distributed over several DP
slaves, simultaneously to the process. SYNC causes the DP slaves combined in a
group to output their output signal states simultaneously (synchronously) and
retain these states unchanged. The DP master can now write the new signal states
in succession to the DP slaves. After transmission is complete, use the SYNC com-

6.16 Special functions for PROFIBUS DP

249

mand again to ensure the synchronous output of the new output signals. The
DP slaves retain the states of the output signals until you output the current val-
ues with a SYNC command or cancel SYNC with an UNSYNC command.

By calling the system function DPSYC_FR, you cause a SYNC or FREEZE command
to be issued in the user program. The DP master then sends the corresponding
command simultaneously to all DP slaves. Prerequisite for the use of SYNC and
FREEZE is that the DP master and the participating DP slaves provide the corre-
sponding functionality and that you have configured the SYNC/FREEZE groups
with HW Config. You can generate up to eight SYNC/FREEZE groups per DP master
system that are to execute either the SYNC command, the FREEZE command, or
both. You configure the SYNC/FREEZE groups following the configuration of the
DP master system when all DP slaves are present in the DP master system.

In STEP 7 V5.5, select the interface of the DP master in the network configuration
and choose Master system… from the shortcut menu. You see a dialog window in
which you can assign a group the properties SYNC, FREEZE, or both in the Group
Properties tab. In the Group Assignment tab, you assign the DP slaves to the groups
(Fig. 6.27).

With STEP 7 inside TIA Portal, you assign the DP slave to a group in the interface
properties of the DP slave in the SYNC/FREEZE properties group.

Fig. 6.27 Example of configuration of SYNC and FREEZE groups (STEP 7 V5.5)

6 Communication

250

“Listening in” on PROFIBUS with direct data exchange
(direct communication)

In a DP master system, a DP master only controls the DP slaves that have been as-
signed to it. On correspondingly configured stations, only one other node – called
master or slave, receiver or subscriber – can “listen in” on the PROFIBUS subnet as
to which input data a DP slave – called sender or publisher – sends to its DP master.
This direct data exchange is also referred to as direct communication. You can also
use direct data exchange between two DP master systems on the same PROFIBUS
subnet. For example, the DP master in DP master system 1 can “listen in” in this
manner to the data of a DP slave in DP master system 2.

6.17 DPV1 interrupts

You use DPV1 interrupts in connection with PROFIBUS DPV1 slaves or PROFINET
IO devices. A correspondingly equipped station can call one of the organization
blocks OB 55 to OB 57 with a DPV1 interrupt in the CPU (Table 6.15).

Triggering a DPV1 interrupt

Appropriately equipped PROFIBUS DPV1 slaves and PROFINET IO devices can trig-
ger the following interrupts:

b Status interrupt if, for example, the DPV1 slave changes its operating mode; the
interrupt organization block OB 55 is called.

b Update interrupt if, for example, the DPV1 slave is reparameterized via
PROFIBUS or directly; the interrupt organization block OB 56 is called.

b Manufacturer interrupt if an event envisaged for this by the manufacturer oc-
curs in the DPV1 slave; the interrupt organization block OB 57 is called. The
events triggering the interrupt are defined by the manufacturer of the DPV1
slave.

If a DPV1 interrupt occurs, the assigned organization block must also be available.
If this is not the case, the CPU enters a message in the diagnostic buffer and calls
the asynchronous error block OB 85 program execution error or goes into STOP
mode. DPV1 interrupts are only processed if the CPU is in RUN mode. DPV1 inter-
rupts occurring during startup are entered in the diagnostic buffer and the mod-
ule state data.

Table 6.15 Organization blocks for DPV1 interrupts

Type of program, functions CPU 1200 CPU 300 CPU 400

DPV1 interrupt routine – OB 55 to OB 57 *) OB 55 to OB 57

*) not for all CPU types

6.17 DPV1 interrupts

251

Querying interrupt information

In the interrupt organization block, you can query which DP slave triggered the
interrupt. Bytes 5, 6, and 7 of the start information contain the start address of
this module. Bytes 8 to 11 contain additional information such as the interrupt
type and the identification of whether this is an incoming or outgoing event.

The additional interrupt information can be read using the system function block
RALRM. The assignment of the MODE parameter determines the mode of the sys-
tem block RALRM (Fig. 6.28). In bytes 0 to 19, the destination area TINFO (task in-
formation) contains the complete start information of the organization block in
which RALRM was called, independent of the nesting depth in which it was called.
Management information is present in bytes 20 to 27, e.g. which component has
triggered the interrupt. In bytes 0 to 3 (bytes 0 to 25 with PROFINET), the destina-
tion area AINFO (alarm information) contains the header information, e.g.the
number of received bytes of the additional interrupt information or interrupt
type. Bytes 4 to 223 (bytes 26 to 1431 with PROFINET) contain the component-spe-
cific additional interrupt information itself.

Fig. 6.28 Using a DPV1 interrupt

RALRM

Interrupt OB

Using a DPV1 interrupt

RALRM

Instance data

Read additional interrupt
information

MODE

F_ID

MLEN

TINFO

AINFO

NEW

ID

LEN

RALRM: Assignment of MODE parameter

STATUS

7 Operator control and monitoring

252

7 Operator control and monitoring

Overview of devices and configuration tools

To control a machine or plant means to monitor the production process and inter-
vene in the process whenever necessary. SIMATIC HMI (Human Machine Interface)
provides the necessary devices and tools.

The SIMATIC HMI device families meet all requirements placed on HMI devices,
from simple Key Panels and HMI devices with touch-sensitive screens in various
sizes for machine-level operator control and monitoring all the way to SCADA sys-
tems (Supervisory Control And Data Acquisition) for process control and process
monitoring in distributed multi-user systems with redundant servers and web cli-
ent solutions across locations (Fig. 7.1).

Depending on the design, the HMI devices are connected with the programmable
controller via the MPI, PROFIBUS, or Industrial Ethernet bus systems.

WinCC inside TIA Portal, WinCC flexible, and the SCADA system WinCC are avail-
able as HMI engineering software for configuring the HMI devices. PC-based HMI
devices such as the Panel PC run visualization software that enables operator con-
trol and monitoring of the process. Numerous option packages expand the basic
functionality of the engineering and visualization software.

This chapter describes a selection of available HMI devices.

Fig. 7.1 Overview of SIMATIC HMI device families

Panel PC

Basic PanelsKey Panels Comfort Panels Mobile Panels

Multi PanelsPanelsMicro Panels

7.1 Key Panels KP8, PP7 and PP17

253

7.1 Key Panels KP8, PP7 and PP17

Key Panels (KP) and Push Button Panels (PP) are the innovative alternative to con-
ventionally wired key panels. Supplied pre-assembled and ready for installation,
the bus-compatible operator panels are the key to drastically reducing wiring
times when compared with conventional methods. Fig. 7.2 provides a graphic de-
piction of the Key Panel KP8 and the two Push Button Panels PP7 and PP17.

Key Panels

Key Panels are pre-assembled key panels for simple machine operation. They fea-
ture large illuminated pushbuttons with good tactile feedback, which can even be
operated with gloves and are therefore suitable for harsh industrial environments.
The buttons have LED backlighting that can be adjusted in terms of brightness
and color (red, yellow, green, blue, white). All keys can be individually labeled us-
ing slide-in labels.

The connection to the control is implemented via PROFINET. The connection con-
sists of two RJ45 sockets that are interconnected by an integrated switch and which
allow the construction of a linear structure without additional module.

Only a rectangular cutout is required for installation. The degree of protection is
IP 65 for the front when installed and IP 20 for the rear. Digital inputs/outputs are
available on the rear for expansion. The F-variant provides the ability to connect a
rear emergency stop button according to SIL 3 or SIL 2.

Key Panel KP8 PN: 8 large mechanical illuminated pushbuttons, 8 freely configu-
rable digital inputs/outputs for the connection of further operator controls,
e.g. keyswitches.

Fig. 7.2 Key Panel KP8/KP8F, Push Button Panels PP7 and PP17-II

SIMATIC PP7SSIMATIC HMIS SIMATIC PP17S

Key Panels

7 Operator control and monitoring

254

Key Panel KP8F PN: 8 large mechanical illuminated pushbuttons, 8 freely config-
urable digital inputs/outputs for the connection of further operator controls,
e.g. keyswitches, 2 additional fail-safe digital inputs for the connection of, for
example, emergency stop buttons.

Key Panel KP32F PN: 32 large mechanical illuminated pushbuttons, 16 freely
configurable digital inputs/outputs and 16 additional digital inputs for the connec-
tion of further operator controls, e.g. keyswitches, 4 additional fail-safe digital in-
puts for the connection of, for example, emergency stop buttons.

Push Button Panels

Push Button Panels are pre-assembled operator panels for simple machine opera-
tion. They feature short-stroke keys in different numbers depending on the de-
sign. These keys can be labeled and have built-in, two-color surface LEDs. The con-
nection to the controller is implemented through a serial interface, either via an
MPI for a direct connection to the CPU's programming device interface, or as DP
standard slave for a PROFIBUS DP connection to any DP masters.

Only a rectangular cutout is required for installation. The degree of protection is
IP65 on the front and IP20 on the rear. Digital inputs/outputs are available, for
example to allow additional 22.5 mm standard elements such as pushbuttons and
lamps to be inserted in the perforated cutouts of the standard version. Push But-
ton Panels can be used immediately without parameter assignment; they are fac-
tory-set to the MPI address 10, and memory byte 100 and higher is set for the
pushbuttons and LEDs. The interface parameters can be changed without tools on
a rear display.

Although already furnished with various functions, such as an integrated lamp
and pushbutton test, or 0.5 Hz and 2 Hz flashing frequencies, the Pushbutton Pan-
els PP7 and PP17 can also be tailored to meet your specific requirements with re-
gard to number and layout of the display and operating elements and labeling.

If Push Button Panels are used as DP slaves, parameter assignment is performed
in HW Config in STEP 7 as with an ET200 station. All parameters are stored on a
memory module, which can be easily exchanged. For diagnostic purposes, all op-
erating modes are shown on the rear display.

Push Button Panel PP7: 8 short-stroke keys, 8 LEDs, 4 additional digital inputs,
3 perforated cutouts for additional 22.5 mm standard elements such as lamps,
pushbuttons, etc.

Push Button Panel PP17-I: 16 short-stroke keys, 16 LEDs, 16 additional digital
inputs and 16 additional digital outputs, 12 perforated cutouts for additional
22.5 mm standard elements such as lamps or pushbuttons, also available as
SIPLUS version.

Push Button Panel PP17-II: 32 short-stroke keys, 32 LEDs, 16 additional digital
inputs and 16 additional digital outputs, also available as SIPLUS version.

7.2 Basic Panels

255

7.2 Basic Panels

Basic Panels offer basic HMI functionality for small machines and applications.
They are available in size 3” as a pure Key Panel (KP), from 4” to 12” with touch
screen and additional keys (KTP), and as a pure touch device in the size 15”. Vari-
ants can be selected for connection to PROFINET/Ethernet or PROFIBUS DP/MPI.
Fig. 7.3 shows the KTP 400 and the KTP 1000.

Basic Panels are HMI devices for the lower performance range. The PROFINET ver-
sions of the Basic Panels are equipped with an RJ45 terminal for Industrial Ether-
net, and the PROFIBUS versions with an RS422/485 interface for 12 Mbit/s. Depend-
ing on the device version, Basic Panels have a touch screen and function keys. The
number of function keys depends on the device version (Table 7.1).

The degree of protection achieved when installed is IP65 for the front and IP20 for
the rear. The supply voltage for the Basic Panels is 24 V DC. All devices have an
unbuffered real-time clock.

Despite the functionality tailored to basic applications, the Basic Panels offer nu-
merous HMI functions as standard: The signaling system can consist of max. 200
discrete alarms and 15 analog alarms. The message text can be up to 80 charac-
ters long and can contain up to 8 variables. The message buffer can hold 256
messages. 250 variables (KP 300, KTP 400) and 500 variables (KTP 600, KTP 1000,
TP 1500) are available.

Up to 50 process pictures can be configured, where each picture can contain 30 ar-
rays, 30 variables, and 30 complex objects such as bars. Up to 5 recipes can be
used. Of the 32 configurable languages, 5 can be switched online. For protection
against unauthorized operation, 32 authorizations can be issued to up to 50 users
in 50 user groups.

Fig. 7.3 Basic Panels KTP 400 Basic mono PN and KTP 1000 Basic color PN

S SIMATIC PANELTO
U

C
H

S TO
U

C
H

SIMATIC PANEL

Basic Panels

7 Operator control and monitoring

256

WinCC Basic inside TIA Portal can be used as engineering software for Basic Pan-
els. WinCC Basic is supplied together with STEP 7 Basic/Professional inside TIA
Portal.

7.3 Comfort Panels

Comfort Panels offer high-end functionality for implementing automation solu-
tions. The devices are available in versions with 4”, 7”, 9”, and 12” with touch
screen (TP) or with keys (KP), as well as 4” version with additional keys (KTP). All
function keys are equipped with LED and tactile feedback for additional reliability
of operation. Fig. 7.4 shows the KP 400 Comfort Panel and KPT 400 Comfort Panel.

Table 7.1 Selected technical data of Basic Panels

KP 300
Basic
mono PN

KTP 400
Basic
mono PN

KTP 600
Basic
mono PN

KTP 600
Basic color
PN or DP

KTP 1000
Basic color
PN or DP

TP 1500
Basic
color PN

Display size 3.6” 3.8” 5.7” 5.7” 10.4” 15”

Resolution, pix-
els

240 × 80 320 × 240 320 × 240 320 × 240 640 × 480 1024 × 768

Colors black/white 4 gray levels 4 gray levels 256 colors 256 colors 256 colors

Touch screen No Yes Yes Yes Yes Yes

Function keys 10 4 6 6 8 No

User
memory

512 KB 512 KB 512 KB 512 KB 1024 KB 1024 KB

Fig. 7.4 Comfort Panels KPT 400 Comfort and KP 400 Comfort

Comfort Panels

SIMATIC HMIS

SIMATIC HMIS

TO
U

C
H

7.3 Comfort Panels

257

The Comfort Panels replace the corresponding predecessor units (see Table 7.2).
The high-resolution widescreen display with 16 million colors offers up to 40%
more visualization area. The LED backlighting is dimmable from 0 to 100% via
PROFIenergy, via the HMI project, or via the PLC. All touch devices can also be in-
stalled upright. The degree of protection is IP65 on the front when installed. The
degree of protection is IP20 on the rear side.

The Comfort Panels are equipped with PROFINET/Ethernet as well as PROFIBUS
DP/MPI interfaces. The PROFINET version with 7” display has two ports with inte-
grated network switch.

The Comfort Panels offer numerous HMI functions as standard (information
structured according to device versions 4”/7”, 9”, 12”): The signaling system can
hold up to 2000/4000 messages. A retentive message buffer can hold 256/1024
messages. Up to 500/500 process pictures and up to 100/300 recipes can be config-
ured. 1024/2048 variables are available.

The configuration software for Comfort Panels is WinCC (Comfort, Advanced or
Professional) inside TIA Portal.

Table 7.2 Selected technical data of the Comfort Panels

KP 400 Comfort KTP 400 Comfort TP 700 Comfort KP 700 Comfort

Display size 4.3” 4.3” 7.0” 7.0”

Resolution, pixels 480 × 272 480 × 272 800 × 480 800 × 480

Function keys *) 8 4 – 24

User
memory

4 MB 4 MB 12 MB 12 MB

Successor to OP 77B TP 177B 4” TP 177B,
TP 277,

MP 177 6”

OP 177B
OP 277 6”

TP 900 Comfort KP 900 Comfort TP 1200 Comfort KP 1200 Comfort

Display size 9.0” 9.0” 12.1” 12.1”

Resolution, pixels 800 × 480 800 × 480 1280 × 800 1280 × 800

Function keys *) – 26 – 34

User
memory

12 MB 12 MB 12 MB 12 MB

Successor to MP 277 8” Touch MP 277 8” Key MP 277 10” Touch MP 277 10” Key

*) programmable, with LED

7 Operator control and monitoring

258

7.4 Mobile Panels

A Mobile Panel is a mobile HMI device for direct operation of plants and machines
from any connection box. By reconnection during operation or by radio transmis-
sion (Mobile Panel 277(F) IWLAN), they can be taken to any location where direct
visual contact with the workpiece or process is required. Depending on the con-
nection point selected, it is possible to enable or block operator actions or privi-
leges.

The buttons and the other display elements and operator controls such as LEDs or
function keys can be configured as additional I/Os. For example, activation of an op-
erator control can result in direct setting of an input bit in the central controller via
the bus system, or an LED on the Panel can be triggered as an output. Further oper-
ator controls – depending on the version – are two 3-stage enabling buttons, op-
tionally a positively latching STOP pushbutton, as well as a handwheel and key-
switch.

STOP and acknowledgement buttons are designed with dual circuits according to
the safety regulations and comply with the requirements of Safety Category 3 in
accordance with EN 954-1. The operator controls of the Mobile Panel 277F IWLAN
have a failsafe design with use of PROFIsafe. The STOP pushbutton can be incorpo-
rated into the emergency stop circuit of the machine or plant by means of the con-
nection boxes. It supplements, but does not replace, the emergency stop equip-
ment according to EN 418, which is permanently installed in the plant. When dis-
connecting the Mobile Panel, the connection boxes “Plus” prevent an emergency
stop by automatically closing the emergency stop circuit.

Fig. 7.5 Mobile Panel 177 and Mobile Panel 277

SIMATIC MOBILE PANELS

S

Mobile Panels

SIMATIC MOBILE PANEL

7.5 Micro Panels

259

The Mobile Panels are available in connection versions for MPI/PROFIBUS DP with
a transmission rate of max. 12 Mbit/s and for PROFINET IO with 10/100 Mbit/s.
Configuration is carried out using WinCC flexible (Compact, Standard, or Ad-
vanced) or with WinCC V11 inside TIA Portal (Comfort, Advanced, or Professional).

With the Mobile Panel 177, operation is carried out using a pixel graphics 5.7”
STN display with touch screen. The resolution is 320 × 240 pixels with 256 colors.
Additional control options are provided by the 14 programmable, function key
with user-definable labels, of which 8 have green LEDs.

With the Mobile Panel 277, operation is carried out using a pixel graphics
7.5” TFT display with touch screen. The resolution is 640 × 480 pixels with 65 536
colors. 18 programmable function keys with user-definable label with LEDs are
additionally available. The version with the 10” TFT display has a resolution of
800 × 600 pixels, and the absent function keys are replaced with programmable
keys.

7.5 Micro Panels

Designed specifically for applications with the SIMATIC S7-200 Micro PLC, there
are control and display units that allow you, for example, to display message texts,
set outputs, and control small machines or plants. On the front, the degree of pro-
tection is IP65 when installed; on the rear side it is IP20. The TD 200 and TD 400C
Text Displays and the OP 73micro and TP 177micro devices with graphic display
are available. Fig. 7.6 shows the TD 200 Text Display and the OP 73micro Operator
Panel.

The TD 200 Text Display has two lines with 20 characters each (ASCII, Cyrillic) or
10 characters each (Chinese). It can display up to 80 message texts with up to 6
variables. One memory bit, which can be polled in the user program, is assigned
to each of the 8 programmable function keys. The configuration data of the TD 200
is saved in the CPU 200. The TD 200 is configured using STEP 7 Micro/WIN.

The TD 400C Text Display features a 3.7” STN display (black/white) with a resolu-
tion of 192 × 64 pixels, on which up to 4 lines of text can be configured. It can dis-

Fig. 7.6 TD 400C Text Display and OP 73micro Operator Panel

TD400CS SIMATIC PANELS

Micro Panels

7 Operator control and monitoring

260

play up to 80 message texts with up to 6 variables. The 15 keys can be assigned
numerous functions. One memory bit, which can be polled in the user program, is
assigned to each of the keys. The configuration data of the TD 400C is saved in the
CPU 200. The TD 400C is configured using STEP 7 Micro/WIN.

The OP 73micro Operator Panel has a monochrome 3” LCD with a resolution of
160 × 48 pixels as well as eight system keys and four freely programmable func-
tion keys. The OP 73micro is configured with WinCC flexible.

The TP 177micro Touch Panel has a 5.7” STN touch screen with four blue levels
and a resolution of 320 × 240 pixels. The TP 177micro is configured with WinCC
flexible.

7.6 SIMATIC Panels – Series 70

The SIMATIC Panels of the Series 70 comprise the Operator Panels OP 73, OP 77A,
and OP 77B, which replace the text-based Operator Panels OP 3 and OP 7.

The Operator Panels have IP65 degree of protection at the front, which makes
them suitable for use at the machine level. Current faults, operating modes, and
process values can be monitored and controlled using the LED-backlit LC display
and a membrane keyboard which is resistant to various oils, greases and stan-
dard detergents. The mounting dimensions correspond to OP 3 (OP 73) or OP 7
(OP 77A/B).

The panels of the Series 70 are configured using WinCC flexible. 32 languages in-
cluding Asian and Cyrillic fonts are available. Up to 5 languages can be selected
online; language-dependent texts and graphics can be implemented. The message
system with bit messages can manage up to 500 (OP 73) or 1000 messages
(OP 77). You can configure up to 500 process displays with text and graphic ob-
jects, fields and variables. OP 77B has a recipe management function for up to 100
recipes. Access protection is provided with passwords and password levels to pre-
vent unauthorized operations.

Fig. 7.7 Operator Panels OP 73 and OP 77A/B

SIMATIC PANELS

SIMATIC PANELS

Panels – Series 70

7.7 SIMATIC Panels – Series 170

261

You can connect the panels of the Series 70 to S7-200 (PPI interface) or S7-300/400
(MPI interface). Operation is also possible on PROFIBUS DP at 1.5 Mbit/s or
12 Mbit/s (OP 77B).

The Operator Panel OP 73 has 8 system keys and 4 freely configurable function
keys. The pixel graphics, monochrome 3” STN LC display has a resolution of
160 × 48 pixels. A 256 KB flash memory is integrated for the configuration data.

The Operator Panel OP 77A has 23 system keys, 8 freely configurable function
keys with user-definable label, 4 of them with LED. The pixel graphics, mono-
chrome 4.5” STN LC display has a resolution of 160 × 64 pixels. A 256 KB flash
memory is integrated in the device for the configuration data.

The Operator Panel OP 77B has the same design as the OP 77A, but it has a larger
user memory of 1000 KB for configuration data. A USB port and an SD/multimedia
card slot are available as additional interfaces.

7.7 SIMATIC Panels – Series 170

The Panels of the Series 170 with IP65 degree of protection on the front allow use
at the machine level. Current faults, operating modes, and process values can be
monitored and controlled using the pixel graphics STN Liquid Crystal Display
(LCD) and a membrane keyboard which is resistant to various oils, greases and
standard detergents. The TP 177B PN/DP INOX is also available with a stainless
steel front (DIN EN 1672-2). The degree of protection on the installation side is
IP20. The 5.7” display has a resolution of 320 × 240 pixels, and is available with
256 colors or 4 blue levels depending on the panel. TP 177B is also available with a
4.3” TFT display with 256 colors and a resolution of 480 × 272 pixels.

The operating system is Windows CE. The Panels of the Series 170 are configured
using WinCC flexible. 32 languages can be configured offline – including Asian

Fig. 7.8 Touch Panel TP 177A/B and Operator Panel OP 177B

S SIMATIC PANELTO
U

C
H

SIMATIC PANELS

TOUCH

Panels - Series 170

7 Operator control and monitoring

262

and Cyrillic languages – thus facilitating global application of the devices. Up to
16 languages can be switched online during operation.

A user administration function allows authentication depending on process re-
quirements through application of user names and passwords with assignment of
user-specific privileges.

The Touch Panels TP 177A and TP 177B permit operation directly via the screen.
A touch-sensitive screen replaces the keyboard; wherever you have configured a
button in the display, the operator can trigger actions by touching it. A mouse and
keyboard can be connected via a USB port on the TP 177B.

The display of the Operator Panel OP 177B is designed as touch screen with con-
figurable system keys. Additionally, there are freely configurable and inscribable
32 function keys, of which 26 with LED. An external mouse and keyboard can be
connected via a USB port.

7.8 SIMATIC Panels – Series 270

The Panels of the Series 270 with IP 65 protection at the front allow use at machine
level. Monitoring of faults, operating modes and process values, and appropriate
operator actions, are carried out on a TFT LCD and a membrane keyboard which is
resistant to various oils, greases and the usual cleaning agents. The degree of pro-
tection on the installation side is IP 20. The 5.7” display has 256 colors with a reso-
lution of 320 × 240 pixels.

The operating system is Windows CE. The Panels of the Series 270 are configured
using WinCC flexible. The user RAM is 4 MB. Up to 2000 or 4000 messages, 300
recipes and 500 process graphics can be configured. A maximum of 2048 variables
are available.

32 languages can be configured offline – including Asian and Cyrillic languages –
thus facilitating global application of the devices. Up to 16 languages can be
switched online during operation. A user administration function allows authenti-
cation depending on process requirements through application of user names
and passwords with assignment of user-specific privileges.

RS422, RS485 (MPI, PROFIBUS DP with up to 12 Mbit/s), USB (for connecting an ex-
ternal mouse or keyboard), and Ethernet (RJ45) are available as interfaces. Togeth-
er with the ProAgent process fault diagnostics function, faults occurring in the
plant can be identified faster and downtimes can thus be minimized. If a process
fault occurs, ProAgent provides information on the location and cause of the fault
– also with the support of predefined standard displays.

The Touch Panel TP 277 is operated directly via the screen. A touch-sensitive
screen replaces the keyboard; wherever you have configured a button in the dis-
play, the operator can trigger actions by touching it.

7.9 Multi Panels

263

The Operator Panel OP 277 is operated using a membrane keyboard. There are
36 system keys and 24 freely configurable function keys with user-definable label,
18 of which have LEDs.

7.9 Multi Panels

The multifunctional platforms combine the ruggedness of a machine-level HMI
device with the flexibility of a personal computer. Multi Panels have degree of pro-
tection IP65 on the front, they have no hard disks or fans so that they can be used
in harsh industrial environments. Short ramp-up times mean they are quickly
ready for use after power-on. Each Multi Panel is available in two versions: with
touch screen and with membrane keyboard.

The following on-board interfaces are available: RS422, RS485 (MPI, PROFIBUS DP
up to 12 Mbit/s), USB, and Ethernet (RJ45), and also TTY for the MP 370. A slot for
an SD/MultiMedia card is also present.

The operating system of the Multi Panels is Windows CE. The panels are config-
ured with WinCC flexible. Optimized versions of the WinAC MP 2007 Software PLC
are available for MP 277 and MP 377.

The Multi Panel MP 177 Touch has a pixel graphics 5.7” TFT display with a color
depth of 64k colors and a resolution of 320 × 240 pixels.

The Multi Panel MP 277 Key has a pixel graphics 7.5” or 10.4” TFT display with a
color depth of 64k colors and a resolution of 640 × 480 pixels. Additionally, there
are 38 system keys, 26 or 36 configurable function keys with user-definable label,
18 or 28 of which with LEDs.

The Multi Panel MP 277 Touch has a pixel graphics 7.5” or 10.4” TFT display with
a color depth of 64k colors and a resolution of 640 × 480 pixels.

Fig. 7.9 Touch Panel TP 277 and Operator Panel OP 277

S

S TO
U

C
H

Panels – Series 270

SIMATIC PANEL

SIMATIC PANEL

7 Operator control and monitoring

264

The Multi Panel MP 377 Key has a pixel graphics 12.1” TFT display with a color
depth of 64k colors and a resolution of 800 × 600 pixels. Additionally, there are 38
system keys, 36 configurable function keys with user-definable label with LEDs.

The Multi Panel MP 377 Touch is available in the versions 12” (12.1” TFT display
with a resolution of 800 × 600 pixels), 15” (15.1” TFT display with a resolution of
1024 × 768 pixels), and 19” (19” TFT display with a resolution of 1280 × 1024 pixels)
with a color depth of 64k colors. The MP 377 PRO 15” Touch is equipped with a
robust and very compact aluminum enclosure and is fully enclosed in accordance
with IP65.

7.10 SIMATIC Panel PC

The SIMATIC Panel PCs are used in both the manufacturing industry and process
industry. They are designed for installation in control cabinets or control panels.
The degree of protection when installed is IP65 on the front. The Panel PCs have a
high level of electromagnetic compatibility (EMC) and vibration and shock immu-
nity, and they are designed for continuous 24-hour operation. On some device
types, the computing unit and the operating unit can also be operated when phys-
ically separated. An optional direct key module enables direct process operation
via PROFIBUS DP independently of the operating system.

Fig. 7.10 Multi Panels MP 277 10” Touch and MP 377 12” Key

S

SIMATIC MULTI PANELS TO
U

C
H

Multi Panels

SIMATIC MULTI PANEL

7.10 SIMATIC Panel PC

265

A SIMATIC Panel PC meets the requirements of Totally Integrated Automation and
forms the ideal platform for PC-based Automation, whether as a SIMATIC WinAC
controller, as a process visualization system at machine level with WinCC flexible,
or for complex HMI solutions with WinCC. A Panel PC consists of an operating unit
and a computing unit. The Panel PCs are either available without operating system
or with a pre-installed operating system Windows XP embedded Standard 2009,
Windows XP Professional Multi-Language or Windows embedded Standard 7 or
Windows 7.

The Panel PC IPC 277D is a particularly compact and energy-efficient Nanopanel
PC with the front installation versions 7” Touch (800 × 480 pixels), 9” Touch (800 ×
480 pixels), and 12” Touch (1280 × 800 pixels). The versions 15” Touch (1280 × 800
pixels) and 19” Touch (1366 × 768 pixels) will be available soon. The TFT display
has a color depth of 16 million colors and is dimmable from 0 to 100%.

The processor is an Intel Atom E660 1.3 GHz and 2 GB of RAM, or alternatively,
an Intel Atom E640 1.0 GHz and 1 GB of RAM. The following interfaces are avail-
able: 2 × LAN 10/100/1000 Mbit/s Ethernet interface, 3 × high-speed USB V2.0 and
1 × COM1 (RS232).

The Panel PC IPC 477C is designed for use directly on the machine, in which the
combination of ruggedness and reliability is of major priority and the openness of
a PC is also required. The operating unit is available in the following versions: 12”
Touch/Key (800 × 600 pixels/36 function keys), 15” Touch/Key (1024 × 768 pixels/

Fig. 7.11 Panel PC IPC 477C 12” Touch and IPC 677C 15” Key

S

SIMATIC PANEL PC
S

TO
U

C
H

Panel PC

SIMATIC PANEL PC

7 Operator control and monitoring

266

36 function keys), and 19” Touch (1280 × 1024 pixels). For mounting on a support
arm of stand, the PRO 15”/19” Touch version (1024 × 768 pixels/ 1280 × 1024 pixels)
is available as fully enclosed device with degree of protection IP65. The TFT display
has a color depth of 16 million colors.

The processor is an Intel Celeron M 1.2 GHz, an Intel Core2 Solo 1.2 GHz, or an
Intel Core2 Duo 1.2 GHz. The main memory can be 1, 2, or 4 GB DDR3 RAM. The
following interfaces are available: 2 × PROFINET onboard (optionally 2 × PROFINET
onboard and 1 × PROFIBUS onboard or 1 × PROFINET onboard and 1 × PROFINET
with 3 ports), 5 × high-speed USB V2.0 (of which 1 × on the front), 1 × COM1
(RS232) and 1 × DVI-I for connecting a second display unit.

The Panel PC IPC 577C is designed for installation in control cabinets and con-
soles; due to its minimal mounting depth it can also be used in configured spaces.
The operating unit is available in the following versions: 12” Touch/Key (800 × 600
pixels/36 function keys), 15” Touch/Key (1024 × 768 pixels/36 function keys), and
19” Touch (1280 × 1024 pixels). The TFT display has a color depth of 16 million
colors.

The processor is an Intel Celeron M 1.2 GHz, an Intel Core2 Solo 1.2 GHz, or an
Intel Core2 Duo 1.86 GHz. The main memory can be 1, 2, or 4 GB DDR3 RAM. The
following interfaces are available: 2 × PROFINET onboard (optionally 2 × PROFINET
onboard and 1 × PROFIBUS onboard or 1 × PROFINET onboard and 1 × PROFINET
with 3 ports), 5 × high-speed USB V2.0 (of which 1 × on the front) and 1 × COM1
(RS232).

The Panel PC IPC 677C is designed for installation directly at the machine; due to
its minimal mounting depth it can also be used in configured spaces. The
operating unit is available in the following versions: 12” Touch/Key (800 × 600 pix-
els/36 function keys), 15” Touch/Key (1024 × 768 pixels/36 function keys), and 19”
Touch (1280 × 1024 pixels). The TFT display has a color depth of 16 million colors.

The processor is an Intel Celeron P4505 1.86 GHz, an Intel Core i3-330E with
2.13 GHz, or an Intel Core i7-610E 2.53 GHz. The main memory is 1 GB, expand-
able up to 8 GB. The following interfaces are available: 2 × PROFINET onboard,
1 × PROFINET onboard with 3 ports and 1 × PROFIBUS onboard, 4 × high-speed
USB V2.0 (of which 1 × on the front) and 1 × COM1 (RS232).

7.11 Configuring SIMATIC HMI

SIMATIC WinCC (Windows Control Center) is the engineering and runtime software
for HMI devices and HMI applications. WinCC flexible is used for configuring HMI
devices for the machine-level area and PC-based single-user systems, with WinCC al-
so PC-based multi-user systems with SCADA functionality (supervisory control and
data acquisition) for monitoring and process control in industrial processes. The
WinCC version for the Totally Integrated Automation Portal (TIA Portal) engineering
framework covers both areas.

7.11 Configuring SIMATIC HMI

267

General functions of the engineering software

All configuration data is saved in one project. With WinCC in standalone mode,
you create an HMI project, add an HMI station (an operator panel), and configure
the operator control and monitoring functions. If WinCC flexible is integrated in
STEP 7 or if you use WinCC inside TIA Portal, create a project with the SIMATIC
Manager or with the TIA Portal and then add the HMI station. A wizard will guide
you through all the necessary steps.

All functionalities are available to the user interface that are supported by the se-
lected HMI station. In WinCC there is a special editor available for each configura-
tion task, e.g. to create a image or a message. With a graphical editor, you open an
object in the working area and edit it, e.g. to change the color or the motion se-
quence of a graphic. A tabular editor displays all similar objects in a table, e.g. all
variables, whose properties you then edit in the table.

With WinCC, you create the variables that you use when configuring the HMI sta-
tion (internal variables), or the variables for the interface to the PLC station (exter-
nal variables).

You can configure displays with which the process is controlled and monitored. A
display can consist of static and dynamic objects, for example, text, numerical val-
ues, and trend and bar charts that change depending on process variables. Func-
tion keys or configured buttons make it possible to switch to another display. You
can use image layers to set the nesting depth of the display. WinCC provides li-
braries with pre-configured image objects.

The signaling system has system-defined messages that do not require any config-
uration and user-defined messages that can be configured as analog alarms (up-
ward or downward violation of limits) or discrete alarms (display of statuses or
status changes). Messages are assigned to specific alarm classes – such as errors
and warnings – whose representation and acknowledgment concept can be config-
ured.

Recipes contain related data, such as for a specific batch in production. A recipe
consists of recipe data records, which in turn consist of recipe elements. The reci-
pe data may already be entered during configuration. It is stored in the HMI sta-
tion and can be changed, amended, or deleted during runtime. It is possible to ex-
change recipe data between HMI and PLC station.

You configure user groups, users, and authorizations with the user administra-
tion. Authorizations restrict security-related operations to specific user groups. To
do this, you set up access protection for an operating element. Only users who
have been assigned to a user group with the appropriate access rights may use
this object for operation. For operation at runtime, you determine how many in-
valid login attempts are allowed and the interval after which the password must be
changed. Users and user groups can also be managed at runtime on the HMI de-
vice.

WinCC enables you to configure a project in multiple languages. First, you config-
ure the texts in the reference language, then translate them into the desired proj-

7 Operator control and monitoring

268

ect languages with the texts of the reference language as a template – for example,
through exporting the reference texts and importing the translated texts. You can
then switch to the desired language (editing language) during configuration. Run-
time languages are those project languages that you transfer to the HMI devices.
The maximum number of languages depends on the HMI device. At runtime, the
language can be changed on the HMI device.

WinCC inside TIA Portal engineering software

WinCC inside TIA Portal is available in the versions Basic, Comfort, Advanced, and
Professional (Fig. 7.12). The engineering tools are largely determined by the con-
figurable target devices, where the more powerful engineering software
incorporates the abilities of the underlying software. The upgrade to a more pow-
erful version is available with a PowerPack, except for WinCC Basic.

Integration inside TIA Portal provides the same working environment for the con-
figuration of HMI stations and programming of PLC stations. This means common
symbols, common data management, and system diagnostics as an integral com-
ponent. The engineering interface has the same appearance for HMI and PLC sta-
tions and thus increases the ease of use. There is no longer a distinction between
HMI and PLC projects. HMI and PLC stations (and even PC-based stations) are in
one project and can be networked by means of communication connections that
are configured once.

Fig. 7.12 Available versions of WinCC V11 inside TIA Portal

WinCC in the TIA Portal engineering software

WinCC Professional

WinCC Advanced

WinCC Comfort

WinCC Basic

7.11 Configuring SIMATIC HMI

269

The simulator enables the HMI device to be simulated directly on the configura-
tion device. Either you observe the behavior of the HMI device after you have spec-
ified variable values, or the configuration device communicates directly with a
PLC station. This can be a “real” PLC station or one simulated with PLCSIM on the
configuration device.

SIMATIC WinCC (TIA Portal) V11 SP2 is executable under Windows XP Professional
SP3 (32-bit) and Windows 7 Professional/Ultimate/Enterprise (32-bit). WinCC Basic
is also executable under Windows XP Home SP3 and Windows 7 Home. WinCC Ad-
vanced and WinCC Professional can also be operated under Windows Server 2003
R2 Standard Edition SP2 and Windows Server 2008 Standard Edition SP2. To work
with WinCC inside TIA Portal, a user authorization (license) is required. The con-
figuration data from the project created with WinCC flexible can be imported by
means of a simple migration.

Options for WinCC inside TIA Portal

WinCC options (TIA Portal) allow you to expand the basic functionality of WinCC
Runtime. A special license is required for each option. The WinCC engineering sys-
tem already contains the functionality of the Runtime options. You do not need a
license on your configuration PC to configure the functionality of a runtime op-
tion.

The following options are available for WinCC Runtime Advanced:

b WinCC Audit permits the recording of operator actions in an Audit Trail. The op-
erator actions to be recorded can be selected according to whether an electronic
signature or comment is required during runtime.

b WinCC Sm@rtServer is used for remote maintenance and servicing over the In-
ternet. An integral Web server provides standard HTML pages with which, for
example, recipe data records with password protection can be accessed or con-
figuration data downloaded to the controller.

The following options are available for WinCC Runtime Advanced and WinCC Run-
time Professional:

b WinCC Recipes generates and manages machine parameters and production da-
ta on the basis of data records and controls exchange with the PLC. Data records
can also be imported and exported as CSV files, e.g. for Microsoft Excel.

b WinCC Logging is used to archive messages and process values. The evaluation
of message and process value archives can, for example, be performed with Mi-
crosoft Excel.

b WinCC ControlDevelopment extends the basic functionality with own controls,
which are developed using VB.net or C#.

b SIMATIC Logon creates user administration on a central computer for one or
more WinCC stations that are connected via an Ethernet network, and checks
each user logon and logoff at one of the connected stations.

7 Operator control and monitoring

270

The following options are available for WinCC Runtime Professional:

b WinCC Server and WinCC Client permit the setup of a powerful client/server sys-
tem. In a common network of PLC and HMI stations, a server provides the con-
nected clients with process and archive data, messages, images, and reports.

b WinCC WebNavigator allows the operation and monitoring of plants via the In-
ternet or corporate intranet using an Internet browser with ActiveX support.

b WinCC DataMonitor allows the display and evaluation of current process states
and saved data on an office PC with standard tools.

SIMATIC WinCC Runtime inside TIA Portal visualization software

WinCC Runtime is a PC-based operator control and monitoring solution and is
supplied in the versions Advance for single-user systems at the machine level
and Professional for distributed multi-user systems and multi-site solutions with
web clients. The basic packages are expandable by means of option packages. It
is also possible to include customer-specific ActiveX controls created using
WinCC ControlDevelopment.

SIMATIC WinCC flexible ES engineering software

WinCC flexible ES is the engineering software for HMI applications at the machine
level in plant and mechanical engineering. WinCC flexible is available in the ver-
sions Micro, Compact, Standard, and Advanced (Fig. 7.13). The engineering soft-
ware is largely determined by the configurable target devices, where the more
powerful engineering software incorporates the abilities of the underlying soft-
ware. Except for WinCC flexible Micro, the tools can be upgraded to the next level
with a PowerPack.

With WinCC flexible you can create and edit HMI projects, either as stand-alone
version or in the SIMATIC Manager of STEP 7 V5.5. The latter has the advantage of
a common data management, simplified connection configuration, and simpler
commissioning.

The simulator enables the HMI device to be simulated directly on the configura-
tion device. Either you observe the behavior of the HMI device after you have spec-
ified variable values, or the configuration device communicates directly with a
PLC station. If WinCC flexible is integrated in STEP 7, you can also simulate a PLC
station with the PLCSIM option package.

SIMATIC WinCC flexible 2008 SP3 is executable under Windows XP Professional
SP3 (32-bit) and Windows 7 Professional, Ultimate and Enterprise (32-bit and
64-bit). A user authorization (license) is required to operate WinCC flexible.
WinCC flexible has replaced the ProTool configuration software. It is possible to
import ProTool configuration data (V6) through a simple conversion.

7.11 Configuring SIMATIC HMI

271

SIMATIC WinCC flexible RT visualization software

WinCC flexible RT requires a user authorization (runtime license) for operation,
which is available with 128, 512, 2048, or 4096 PowerTags (variables with process
link to the controller). To configure the visualization software, the engineering
software WinCC flexible Advanced is required.

WinCC flexible RT includes the central HMI components for all visualization tasks,
such as operator functions, graphics and plots, signaling system, and logging. The
visualization takes place via a Windows-compliant user interface and can be ex-
tended as needed through option packages.

WinCC flexible options

WinCC flexible options allow you to expand the standard functionality of WinCC
flexible Runtime. A special license is required for each option. The WinCC flexible
engineering system already contains the functionality of the Runtime options. You
do not need a license on your configuration PC to configure the functionality of a
runtime option. The following options are available:

Fig. 7.13 Available versions of WinCC flexible

WinCC flexible engineering software

WinCC flexible Advanced

WinCC flexible Standard

WinCC flexible Compact

WinCC flexible Micro

7 Operator control and monitoring

272

b WinCC flexible /Archives is used to archive process values and messages either
manually, process-controlled or time-controlled. Archived process values can be
read back, and used as a basis for a configurable trend display.

b WinCC flexible /Recipes generates and manages machine parameters and pro-
duction data on the basis of data records, and controls exchange with the PLC.
Data records can also be imported and exported as CSV files, e.g. for Microsoft
Excel.

b WinCC flexible /Audit permits the recording of operator actions in an Audit Trail.
The operator actions to be recorded can be selected according to whether an
electronic signature or comment is required during runtime.

b WinCC flexible /Sm@rtServices is used for remote maintenance and servicing
over the Internet. An integral Web server provides standard HTML pages with
which, inter alia, recipe data records with password protection can be accessed
or configuration data downloaded to the controller. Events in the controller can
trigger the dispatch of an e-mail to maintenance personnel.

b WinCC flexible /Sm@rtAccess contains functions for communication between dif-
ferent SIMATIC HMI systems. This facilitates control and monitoring of widely
distributed machines with several operator stations by a central operator.

b WinCC flexible /OPC-Server contains functions for communication with applica-
tions from different vendors on the basis of OPC (OLE for process control). With
WinCC flexible RT, OPC is used on the basis of DCOM; for the Multi Panels MP
277 and MP 377, OPC is available on the basis of XML.

b WinCC flexible /ProAgent offers a standardized diagnostics concept for various
SIMATIC components without necessitating additional configuration for the di-
agnostics functionality. Thus the controller is also off-loaded with regard to
memory requirements and program runtime.

Visualization and operator control using the SCADA system
SIMATIC WinCC

SIMATIC WinCC is a PC-based software package for visualization and operation of
machine control systems and plant processes in all industries – from simple single-
user systems through to distributed multi-user systems with redundant servers and
cross-location solutions with web clients.

SIMATIC WinCC V7.0 SP2 is executable under Windows 7 Professional/Enterprise/
Ultimate (32-bit), Windows XP Professional SP3, Windows 2003 Server (R2) SP2, and
Windows 2008 Server SP2. WinCC contains the Microsoft SQL Server 2005 SP2.

SIMATIC WinCC is the basic software for visualization and operation, and can be
expanded by WinCC options and WinCC add-ons. In the basic configuration,
WinCC consists of a configuration system (CS) with various WinCC editors and a
runtime system (RT).

You can use the configuration system to create process displays for operation and
monitoring of a machine or plant, to handle data occurring anywhere in the plant,

7.11 Configuring SIMATIC HMI

273

and to document these in reports. The runtime system permits machine or plant
control using the configured GUI, archiving of generated data and events with
time tagging in an SQL database, and communication with the configured auto-
mation systems.

WinCC Editors

WinCC Explorer is the highest level within the WinCC system. From here you start
the editors with which WinCC's different specialist tasks are handled.

User Administrator assigns user rights for the runtime modules of the individual
editors. Every time a user tries to log in, the system checks for the correct user
rights and then enables the project areas for which the user has the necessary au-
thorization.

You use the Graphics Designer to create process pictures. It offers user-friendly
and simple user interfaces with tool and graphics palettes and supports systemat-
ic configuration through its integrated object and symbol library. Open interfaces
allow graphic import and incorporation of self-developed graphic objects; the OLE
2.0 interface is supported. A wizard helps you to configure the dynamic response
of the screen objects.

Global Scripts is the generic term for C functions and actions. Project functions and
actions are confined to the project in which they were created. Standard and inter-
nal functions can be used across projects. Example: dynamization of process value
archives, user archives, and condensing archives.

Tag Logging contains functions that read the process information into the HMI
system and prepare this data for visual representation and archiving. Essential
economic and technical criteria of the operating mode of a plant can be gleaned
from this data.

Alarm Logging contains functions for importing events, messages, and alarms
from processes and for the preparation, display, acknowledgement, and archiving
of these. Alarm Logging is intended to enable you to obtain comprehensive
information about fault and operating modes, to detect critical situations in time,
to reduce or avoid downtime, and to improve product quality.

The Report Designer is the central logging system in WinCC for user reports or
project documentation. It provides time-driven and event-driven generation of re-
ports on messages, operator inputs, archive contents, and current or archived data
in any freely selectable layouts. During output, the configured placeholders are re-
placed dynamically by the appropriate data.

Summary of configuration with WinCC

With WinCC Explorer you create a single-user or multi-user project, configure the
connection to the automation system, and create the required variables. With the
WinCC Graphics Designer you configure displays with static texts and graphics, in-

7 Operator control and monitoring

274

sert dynamic picture elements, and combine them using variables. The operator-
accessible picture elements are subsequently inserted, and linked to actions.

Depending on the application and the scope of functions, you create e.g. archives
for process data using the Tag Logging function, and configure the display for the
process data trends. With the Alarm Logging function you create the signaling sys-
tem with message blocks, message classes, message texts and limit monitoring
functions, define archiving of the messages, and configure the message window.

If operation with access privileges is to be provided, create users and user groups
by means of the User Administrator and assign corresponding privileges to them.
In the case of multilingual operations, you translate the message, display and ar-
chive texts, and activate the language selection function. Finally, you define the
runtime properties and the start screen, and activate the project.

WinCC Options and WinCC Add-Ons

WinCC options are developed, marketed, and supported by the WinCC manufactur-
er. WinCC options are, for example WinCC /Server (allows client/server operation
with up to 12 WinCC servers and 32 clients), WinCC /Redundancy (increases sys-
tem availability), WinCC /ProAgent (specific process fault diagnostics), WinCC
/Dat@Monitor (display and evaluation of current process statuses and archived da-
ta with Internet-based standard tools), WinCC /User Archives (permits storage of
freely configurable data records such as the operation parameters of a machine in
the WinCC database, representation in the form of a table or form, data import/ex-
port), or WinCC /Audit (permits tracing and recording of modifications: What was
changed in the project? What operations were made by whom and when?).

WinCC add-ons are created on the initiative of the respective vendor and usually
also marketed by them. They can solve diverse tasks such as maintenance and en-
ergy management, or communication with non-Siemens controllers. WinCC add-
ons are available as communication channel DLLs to WinCC, ActiveX Control,
graphic object, or autonomous software package. They are available in two ver-
sions: WinCC Premium add-ons are checked in the Siemens Test Center for compat-
ibility with the WinCC basic system, and are primarily provided with support from
the Siemens Hotline; WinCC 3rd Party add-ons are not subject to qualification tests
in the Siemens Test Center, and are exclusively provided with support from the re-
spective add-on vendor.

7.12 Process Diagnostics in the User Program
Using S7-PDIAG

The S7-PDIAG option package enables the configuration of the process diagnosis
in the user program of an S7-300/400 station (CPU 314 and above) with STEP 7
V5.5 in the LAD, FBD and STL programming languages. The process diagnosis
monitors the operation of a controlled machine or plant, detects and reports error
conditions, provides tips for troubleshooting, and thus helps to reduce downtime.
In conjunction with the HMI configuration software and the option package

7.12 Process Diagnostics in the User Program Using S7-PDIAG

275

SIMATIC ProAgent, which is specially tailored to process diagnosis, a powerful sys-
tem can be created for viewing, diagnosing, and correcting process errors on the
270 and 370 Series Panels as well as on PCs with WinCC.

PDIAG monitoring methods

To detect errors, PDIAG monitors the process in various ways. General monitoring
for monitoring the logic operations on addresses. Address monitoring records a
signal level or a signal edge of individual addresses, which can be combined with a
delay time. Motion monitoring checks whether physical motions in the process are
performed correctly and quickly enough. The following motion monitoring func-
tions are predefined:

b Action monitoring (after initiation, is the selected end position reached in a
specified time?)

b Startup Monitoring (after initiation, has the device left the selected end position
within the specified delay?)

b Reaction Monitoring (has the device, after having passed a position flag,
reached the end position within the specified delay? Or, has the device, after it
has reached the end position, left this end position within the specified delay?)

b Interlock Monitoring (after initiation, has the interlocking condition been ful-
filled within the specified delay?).

Structuring according to units

There is one unit for each diagnostics-capable block in the user program. A unit
consists of components that belong together technologically and allows rapid lo-
calization of the process error. Individual error definitions, motions, or sub-units
can be combined into one unit (Fig. 7.14).

Fig. 7.14 Unit overview of the example supplied with the S7-PDIAG option package

7 Operator control and monitoring

276

Motions are monitored process operations with two directions and two or more
stable end positions. When the motion is initiated, it moves into one of the direc-
tions assigned to it. You use the Error Definition function to specify the error that
generates an error message. This could be, for example, the signal level of an ad-
dress after a specified delay, or self-defined monitoring logic using PDIAG lan-
guage elements.

PDIAG shows the units already configured in the unit overview. In the Blocks folder
are the diagnostics-capable blocks with the subunits and error definitions.

Project Configuration with PDIAG

You create a monitoring function either with the STEP 7 V5.5 program editor or
directly with PDIAG.

In the program editor, position the cursor on the address for which you want to
create a monitoring function in connection with an assignment statement or a coil
or a box, and choose Edit >Special Object Properties>Monitoring. In the Process
Monitoring window, select the desired monitoring mode.

The address selected at the beginning is the “initial diagnostic address”. A criteria
analysis can take place based on it. Here, all the signal states are displayed that led
to the alarm. The display device performs the criteria analysis without an addi-
tional user program. You can also configure monitoring directly in PDIAG (in
SIMATIC Manager, start PDIAG with Options > Configure Process Diagnostics), but
you will then receive no criteria analysis. This procedure is suitable, for example,
for inputs for which there is no assignment in the user program.

Motion monitoring requires a special program. An LAD program which is adapted
to the ProAgent standard diagnostic display is part of the programming example
(function block FB 100) delivered with the PDIAG tool. You can use this program as
a model for your own monitoring programs.

After you have configured all monitoring functions, select the appropriate blocks
in the SIMATIC Manager and choose Options > Configure Process Diagnostics. In the
displayed PDIAG window with the unit overview, you can now specify the blocks
for fault detection and initial value/status acquisition using Options >Customize on
the Default settings tab. You then start the compilation with Process Diagnostics >
Compile. To activate the monitoring functions, you must call the blocks with the
monitoring functions in a cyclically processed block, e.g. in organization block
OB1.

7.13 Process Diagnostics Using SIMATIC ProAgent

SIMATIC ProAgent, in conjunction with the engineering tools STEP 7 V5.5 as well
as WinCC and WinCC flexible, makes standard diagnostics screens available for
process fault diagnosis in machinery and plants. In the event of failure, informa-
tion about the location and cause of the error is displayed, which helps to trouble-
shoot effectively. The standardized user interface offers consistent operation on

7.14 Telephone network connections with TeleService

277

all supported Operator Panels, Touch Panels, Multi Panels, and PC-based HMI de-
vices on machinery and plants. ProAgent is matched to the requirements of STEP 7
engineering tools in conjunction with SIMATIC S7-300/400 and WinAC.

There is thus a single standardized diagnostics concept for the operation and
monitoring of machines and plants. ProAgent reduces the load on the SIMATIC
station by the HMI device with respect to memory capacity and program execution
time (e.g. by means of criteria analysis in the HMI device, saving structural infor-
mation, address comments, etc.). At runtime, the standard diagnostics screens are
supplemented by process-specific data related to the context, i.e. matching the
displayed message or the selected technological unit.

Starting the diagnostics: message diagram displaying faults that have occurred
in the process

The message view shows all pending process messages. It may be possible to di-
rectly determine the cause of the fault from the alarm message. For more accurate
fault localization, you can select a message in the message view and from there
access other diagnostics screen.

Get the overall picture: unit overview

The unit overview shows all technological plant or machine units and sub-units
and their current operating modes. The operator can thus isolate a faulty unit im-
mediately and take the required actions as specified by the configuration.

Analysis of faulty step sequences and control in the step diagram

In conjunction with S7-GRAPH, the step sequence view supports the analysis and
operation of a faulty sequential control, e.g. you can initialize or deactivate the se-
lected step sequence or activate or deactivate a particular step.

Plant control and troubleshooting using the motion diagram

The motion diagram allows you to use the function keys or the direct control keys
to initiate specific motions in individual technological units, for example drive a
faulty unit to the safe end position.

Condition analysis in the diagnostic detail view

Condition analysis means that an error is traced to its position in the program.
The program code is displayed as statement list (STL) or ladder logic (LAD), de-
pending on the programming language used. In the program you can see which
signals caused the fault message.

7.14 Telephone network connections with TeleService

You use the TeleService option package to connect a programming device or PC to
a PLC or HMI station via the telephone network. This enables you to manage, con-
trol, and monitor remote machines or plants from a central point. TeleService is
standalone software and does not require the installation of STEP 7. TeleService is
included in the scope of delivery of STEP 7 inside TIA Portal. The connection to the

7 Operator control and monitoring

278

central PG/PC is established via a modem. A TS adapter creates the connection on
the station side:

b TS-Adapter II in S7-300 design
The integrated modem can work with either analog connections or ISDN. The
adapter has a USB interface for parameter assignment and an RS232 interface
for connecting an external modem, for example, a wireless modem. The adapter
can be connected to PPI, MPI, or PROFIBUS DP. Prerequisite for operation is Tele-
Service V6.0.

b TS-Adapter IE in S7-300 design
The integrated modem can work with either analog connections or ISDN. The
adapter has an RS232 interface for connecting an external modem, for
example, a wireless modem. The adapter is equipped with an RJ45 Ethernet in-
terface. Parameters can be assigned using TeleService V6.1 or an Internet
browser.

b TS-Adapter IE Basic in S7-1200 design
The TS-Adapter IE Basic consists of the basic unit and a TS module with the mo-
dem or an interface for connecting to an external modem. The basic unit has an
Ethernet interface for connecting to a PG/PC, or programmable controller. The
TS-Adapter IE Basic is parameterized with TeleService inside TIA Portal. It is op-
timized for use with the S7-1200, but can also be used together with the
S7-300/400.

Fig. 7.15 shows the basic structure of a remote connection using a TS adapter.

The TS adapter parameters are assigned via the direct connection. The direct con-
nection to the TS-Adapter II can also be used to connect a PC with the COM or USB
interface to an MPI or PROFIBUS network.

For remote maintenance, you need the TeleService software or the TIA Portal, a
modem on the PG/PC side, and a TS adapter on the system side. In addition, the
following functions are possible:

b PG-PLC remote connection
PRODAVE V5.0 or higher is installed on the PG/PC – this is a toolbox for process
data traffic between the PG/PC and the programmable controller – and the
TS-Adapter II on the system side. The programmable controller can also initiate
a connection: The function block PG_DIAL in the user program transmits a tele-
phone number and a freely assignable identifier (e.g. a message number) to the
TS adapter.

b PLC-PLC remote connection
The PLC-PLC remote link allows two S7-300/400 programmable controllers to
exchange process data. Each programmable controller can establish a connec-
tion via the telephone network using the function block AS_DIAL and the
TS-Adapter II. The data is transferred via the external station S7 basic communi-
cation with the system functions X_SEND, X_RCV, X_GET, and X_PUT.

b Sending text messages
On the system side, a TS-Adapter II and a GSM wireless modem are connected to

7.14 Telephone network connections with TeleService

279

the S7-300/400 station. To send a text message, the function block SMS_SEND is
called in the user program.

b Sending emails
On the system side, a TS-Adapter IE is connected to the S7-300/400 station. To
send an email, the function block AS_MAIL is called in the user program. This
transfers an email to a mail server by means of SMTP (simple mail transfer pro-
tocol).

Fig. 7.15 Controlling SIMATIC stations over a remote connection using TeleService

PG/PC

PG/PC

S

S

HMI station

HMI station

PLC station

PLC station

TeleService

TS adapter II

TS adapter II

TS adapter
IE Basic

Remote connection with TeleService

SIMATIC PANELS

SIMATIC PANELS

S

S

S

7 Operator control and monitoring

280

b Remote control of HMI stations
For remote control via an Ethernet connection, an Internet browser and the
WinCC flexible Sm@rtViewer optional software are required on the PG/PC. On
the system side, a TS-Adapter IE is connected to the HMI station, on which the
WinCC flexible /Sm@rtService or WinCC flexible /Sm@rtAccess runtime software
must be installed.

Index

281

Index

A
Addresses

Bit memory 145
Counter functions 146
Data addresses 149
Inputs 145
Outputs 145
Peripheral inputs 143
Peripheral outputs 144
Time functions 146

Addressing
absolute 149
indirect 152
symbolic 151

Analog modules 48
AS-Interface 223
Assignment list 94
Asynchronous error 186

B
Background processing

166, 171
Basic functions 139
Basic Panels 255
Bit memory 145
Blocks

Calling 201
Editing

with FBD 127
with GRAPH 136
with LAD 121
with SCL 133
with STL 130

Know_How_Protection
197

Multi-instances 202
Parameters 199
Programming

Data block 85
Logic block 81

Properties 194
Transferring 100

Box PC 53

C
Call structure 94
Cold restart 165

Comfort Panel 256
Communication

Introduction 205
Communication modules

50
Communications

Global data communica-
tions 213

IE communication 216
Open User Communica-

tion 216
PROFIBUS DP 242
PROFINET IO 225
S7 basic communication

external 211
internal 221

S7 communication 217
Constant bus cycle times

248
Counter functions 146
CPs 50
Cross-reference list 94
Cycle monitoring time 170
Cyclic interrupts 180

D
Data addresses 149
Data types

complex 156
elementary 153
Overview 153
Parameter types 158
user-defined data type 89

Dependency structure 94
Diagnostic buffer 107
Diagnostic interrupt

for S7-300/400 186
with S7-1200 191

Digital functions 139
Digital modules 47
Direct communication

wit DP 250
Direct data exchange

with DP 250

Distributed I/O
Configuring

with PROFIBUS DP 242
with PROFINET IO 225

ET 200 57
Distributed Safety 44
DOCPRO 116
DPV1 interrupts 250

E
Embedded controllers 56
ET 200 57
Expressions (SCL) 141

F
F/FH Systems 44
Failsafe controls 42
FBD see Function Block

Diagram
Field PG 61
FM modules 49
FREEZE 248
Function Block Diagram

Program elements 125
Function modules 49

G
Global addresses 143
Global data addresses 149
Global data communica-

tions 213

H
Hardware interrupts 182
High-availability control-

ler 41
Hot restart 165
HW Config 74

I
IE communication 216
Industrial Ethernet 214
Industrial PC 52
Inputs 145
Interrupt processing

cyclic interrupts 180
DPV1 interrupts 250

Index

282

hardware interrupts 182
Isochronous mode inter-

rupts 238
Multiprocessor interrupt

183
Time-delay interrupts

179
Time-of-day interrupts

177
Isochronous mode inter-

rupts 238

K
Key Panels 253

L
LAD see Ladder Logic
Ladder Logic

Program elements 121
Load memory 17
Local instances 202

M
Main program 165
Memory reset 104
Minimum cycle time 171
Mobile Panels 258
MPI 210
Multi Panels 263
Multi-instances 202
Multiprocessing 38
Multiprocessor interrupt

183

N
Network configuration 205

O
Online mode 97
Online tools 102
Open User Communication

216
Operation step (STL) 131
Operator control and moni-

toring 252
Operator Panel

OP 177B 262
OP 277 263
OP 73 261
OP 73micro 260
OP 77A 261
OP 77B 261

Operators (SCL) 141
Option packages

DOCPRO 116

S7-GRAPH 136
S7-PLCSIM 115
S7-SCL 133
TeleService 277

Optional packages
ProAgent 276
S7-PDIAG 274

Organization blocks
Overview of CPU 1200

168
Overview of CPU 300/400

162
Outputs 145

P
Panel PC 264
Parameter types 158
Part process images 170
PDIAG 274
Peripheral inputs 143
Peripheral outputs 144
PLC variable table 80
PLCSIM 115
Point-to-point connection

224
ProAgent 276
Process images 168
PROFIBUS 220
PROFIBUS DP 242
PROFINET IO 225
Program editor 81
Program source file

general 90
with STEP 7 V11 94
with STEP 7 V5.5 93

Program status 111
Programming device 61
Project editing

in STEP 7 V11 70
with STEP 7 V5.5 65

Push Button Panels 254

R
Rack PC 53
Reaction time 171
Real-time clock 173
Redundant systems 41
Runtime meter 174

S
S7 basic communication

external 211
internal 221

S7 communication 217

S7-GRAPH sequence control
136

SCL 133
SCL functions 141
SIMATIC Manager 65
SIMATIC Panel

Series 70 260
Series 170 261
Series 270 262

SIMATIC PC-based Automa-
tion 52

SIMATIC S5 modules
Connection 37

SIMATIC S7-1200 24
SIMATIC S7-200 21
SIMATIC S7-300 28
SIMATIC S7-300C 33
SIMATIC S7-400 35
SIMATIC S7-400FH 44
SIMATIC S7-400H 42
SIMATIC S7-mEC 56
SIMATIC Safety Integrated

42
SIMATIC WinAC 52
SIMATIC WinCC 266
Single step mode 114
SIPLUS extreme 46
SM modules 47-48
Software redundancy 41
Start information

CPU 1200 168
CPU 300/400 167

Start-up routine 163
Statement List

Statement structure 129
Static local data 201
Station

Components 20
Configuration 74

STEP 7 Lite 63
STEP 7 Micro/WIN 63
STEP 7 Professional 63
STEP 7 V11 63
STEP 7 V5.5 62
STL see Statement List
Structured Control Lan-

guage SCL 133
Subnet

AS-Interface 223
Ethernet 214
MPI 210
PROFIBUS 220
PTP 224

Symbol table 80
SYNC 248

Index

283

Synchronous error 184
System time 174

T
Technological functions

(S7-300) 33
TeleService 277
Temporary local data 200
Text display

TD 200 259
TD 400C 260

TIA Portal 70
Time functions 146
Time-delay interrupts 179
Time-of-day interrupts

177
Touch Panel

TP 177 262
TP 177micro 260
TP 277 262

U
UDT (data type) 89
User blocks

Overview 193
User memory 17
User program

Documenting 116
Download 98
Introduction 161
Process online 100
Programming

with FBD 125
with GRAPH 136
with LAD 121
with SCL 133
with STL 129

Protecting 105, 175
Testing

offline 115
Program status 111
single step mode 114

User-defined data type
Programming 89

V
Variable tables (VAT) 108

W
Warm restart 165
Watch tables 108
Web server 105
WinAC 52
WinCC 266
WinCC (SCADA system)

272
WinCC flexible 270
WinCC in the TIA Portal

268
Work memory 17

Abbreviations

284

Abbreviations

AC Alternating Current

PLC Programmable Logic Control-
ler

AI Analog Input

AQ Analog output

AS Automation system

ASI Actuator-sensor interface

BIE Binary Result

CB Communication Board

CFC Continuous Function Chart

CM Communication Module

CP Communication Processor

CPU Central Processing Unit

DB Data Block

DC Direct Current

DI Digital Input

DO Digital Output

DP Distributed I/O

DS Data Set

EPROM Erasable Programmable
Read Only Memory

FB Function Block

FBD Function Block Diagram

FC Function Call

FEPROM Flash Erasable Programmable
Read Only Memory (electrically
erasable fixed value memory)

FM Function Module

HMI Human Machine Interface

IM Interface Module

LAD Ladder Diagram (STEP 7)

LED Light-emitting Diode

MC Memory Card

MCR Master Control Relay

MMC Micro Memory Card

MP Multi Panel

MPI MultiPoint Interface, standard
interface of the SIMATIC S7
devices

OB Organization Block

OP Operator Panel

PC Personal Computer

PG Programming device

PLC Programmable Logic Control-
ler

PP Pushbutton Panel

PPI Point-to-Point Interface

PS Power Supply

PTP Point to Point

RAM Random Access Memory

RLO Result of Logic Operation

SB Signal Board

SCL Structured Control Language

SDB System Data Block

SDT System Defined Data Type

SFB System Function Block

SFC System Function Call

SM Signal Module

SSL System Status List

STL Statement List

TD Text Display

TP Touch Panel

UC Universal Current

UDT User Defined Data Type

VAT Variable Table (STEP 7 V5.5)

www.publicis-books.de

Hans Berger

Automating with
SIMATIC S7-1200
Hardware Components, Programming
with STEP 7 Basic in LAD and FBD,
Visualization with HMI Basic Panels

2011, 413 pages, 290 illustrations, hardcover
ISBN 978-3-89578-356-2, € 49.90

S7-1200 is the first controller of the new SIMATIC generation. The book presents the
hardware components of the automation system S7-1200 as well as its configuration
and parameterization. A profound introduction into STEP 7 Basic (TIA Portal) shows
the basics of programming and trouble shooting.

Hans Berger

Automating
with SIMATIC S7-300
inside TIA Portal
Configuring, Programming and Testing
with STEP 7 Professional V11

2012, 709 pages, 429 illustrations,
85 tables, hardcover
ISBN 978-3-89578-382-1, € 69.90

The user interface of the engineering framework TIA Portal is tuned to intuitive
operation and encompasses all the requirements of automation within its range of
functions: from configuring the controller, through programming in the different
languages, all the way to the program test. The book describes the configuration
and network configuring of the SIMATIC S7-300 components with the STEP 7 V11
engineering software in the programming languages LAD, FBD, STL and SCL.
The distributed I/O is configured with PROFIBUS DP and PROFINET IO, and data
exchange is configured via Industrial Ethernet.

Werbeseiten - Automating with SIMATIC (E5).indd 285 09.10.12 15:18

 www.publicis-books.de

Hans Berger

Automating with
STEP 7 in LAD and FBD
SIMATIC S7-300/400
Programmable Controllers

5th revised and enlarged edition, 2012,
451 pages, 163 illustrations, 109 tables, hardcover
ISBN 978-3-89578-410-1, € 69.90

This book was written for all users of SIMATIC S7 controllers. It describes elements
and applications of the graphic-oriented programming languages LAD (ladder diagram)
and FBD (function block diagram) for use with both SIMATIC S7-300 and SIMATIC
S7-400. It provides an introduction to latest version of the engineering software STEP 7
with new functions for PROFINET IO. First-time users are introduced to the field of
programmable controllers, while advanced users learn about specific applications of the
SIMATIC S7 automation system.

Hans Berger

Automating with STEP 7
in STL and SCL
SIMATIC S7-300/400
Programmable Controllers

6th revised and enlarged edition, 2012,
553 pages, 168 illustrations, 151 tables, hardcover
ISBN 978-3-89578-412-5, € 69.90

The readers learn all about elements and applications of the text-oriented program-
ming languages statement list (STL) and structured control language (SCL) for use
with both SIMATIC S7-300 and SIMATIC S7-400. It provides an introduction to the
latest version of the programming software STEP 7. First-time users are introduced
to the field of programmable controllers, while advanced users learn about specific
applications of the SIMATIC S7 automation system.

Werbeseiten - Automating with SIMATIC (E5).indd 286 09.10.12 15:18

www.publicis-books.de

Raimond Pigan, Mark Metter

Automating
with PROFINET
Industrial Communication
based on Industrial Ethernet

2nd edition, 2008, 462 pages,
271 illustrations, 237 tables, hardcover
ISBN 978-3-89578-294-7, € 59.90

This book serves as an introduction to PROFINET technology. Engineers, technicians
and students are given an overview of the concept and the fundamentals for solving
automation tasks. Technical relationships and practical applications are described
using SIMATIC products as example.

Norbert Bartneck, Volker Klaas,
Holger Schönherr (Eds.)

Optimizing Processes
with RFID and Auto ID
Fundamentals, Problems and Solutions,
Example Applications

2009, 255 pages, 86 illustrations, hardcover
ISBN 978-3-89578-330-2, € 34.90

As well as introducing Auto ID technology basics, this book presents tried and tested
applications from different areas. It shows the approach, the process and the selection of
RFID and Auto ID systems for various problems. A perspective on trends and innovative
security solutions shows possible future application options for this technology.

Werbeseiten - Automating with SIMATIC (E5).indd 287 09.10.12 15:18

 www.publicis-books.de

Industry Automation Translation Services (Eds.)
Wörterbuch Elektrotechnik,
Energie- und Automatisierungstechnik
Dictionary of Electrical Engineering,
Power Engineering and Automation
Teil 1: Deutsch-Englisch / Part 1: German-English

6th extensively revised and substantially edition, 2011,
1042 pages, hardcover, ISBN 978-3-89578-313-5, € 89.90

Dictionary of Electrical Engineering,
Power Engineering and Automation
Wörterbuch Elektrotechnik, Energie-
und Automatisierungstechnik
Part 2 English-German; Teil 2 Englisch-Deutsch

6th extensively revised and substantially edition, 2009,
994 pages, hardcover, ISBN 978-3-89578-314-2, € 89.90

The worldwide-respected standard work for translators, engineers, and technical
writers, altogether containing about 240,000 entries and 320,000 translations in
both language directions.

CD-ROM, Edition 2011
German-English; English-German
Deutsch-Englisch; Englisch-Deutsch
Windows 7/Vista/XP
ISBN 978-3-89578-315-9, € 189.00
Also available on the App Store

Nicolai Andler

Tools for Project Management,
Workshops and Consulting
A Must-Have Compendium of
Essential Tools and Techniques

2nd revised and enlarged edition, 2011,
382 pages, 136 illustrations, 55 tables, hardcover
ISBN 978-3-89578-370-8, € 39.90

The unique reference work and guide for all those practising consulting, project
management and problem solving. It presents cookbook-style access to more than
120 most important tools, including a rating of each tool in terms of applicability,
ease of use and effectiveness.

Werbeseiten - Automating with SIMATIC (E5).indd 288 09.10.12 15:18

	Cover
	Automating with SIMATIC
	Foreword
	Contents
	1 Introduction
	1.1 Components of the SIMATIC Automation System
	1.2 From the Automation Task to the Finished Program
	1.3 How Does a Programmable Logic Controller Work?
	1.4 The path of a binary signal from the sensor to the program
	1.5 Data management in the SIMATIC automation system

	2 SIMATIC Controllers – the Hardware Platform
	2.1 Components of a SIMATIC Station
	2.2 The Micro PLC SIMATIC S7-200
	2.3 The SIMATIC S7-1200 Modular Micro Controller
	2.4 The SIMATIC S7-300 modular mini controller
	2.5 Technological functions of a CPU 300C
	2.6 SIMATIC S7-400 for demanding tasks
	2.7 High Availability with SIMATIC
	2.8 Safety Integrated with SIMATIC S7
	2.9 Use Under Difficult Conditions: SIPLUS
	2.10 Process Connection with Digital Modules
	2.11 Process connection with analog modules
	2.12 FM modules relieve the CPU
	2.13 Bus connection with communication modules
	2.14 SIMATIC PC-based Automation
	2.15 ET 200 distributed I/O system
	2.16 The SIMATIC programming device

	3 STEP 7: Engineering Tool for SIMATIC
	3.1 Overview of STEP 7 variants
	3.2 Automating with STEP 7
	3.3 Editing projects with STEP 7 V5.5
	3.4 Editing projects with STEP 7 inside TIA Portal
	3.5 Configuring a SIMATIC station
	3.6 Tools for programming
	3.7 Giving the addresses a name
	3.8 Programming a logic block
	3.9 Programming a data block
	3.10 Programming a user-defined data type
	3.11 Working with program source files
	3.12 Help on Program Creation
	3.13 Downloading the user program to the CPU
	3.14 Processing the user program online
	3.15 Controlling the user program with online tools
	3.16 Finding hardware faults using diagnostic functions
	3.17 Testing with watch tables
	3.18 Testing the program with the program status
	3.19 Testing user programs offline using S7-PLCSIM
	3.20 Documentation in wiring manual format with DOCPRO

	4 The programming languages
	4.1 Ladder Logic LAD
	4.2 Function Block Diagram FBD
	4.3 Statement List STL
	4.4 Structured Control Language SCL
	4.5 S7-GRAPH sequence control
	4.6 The function library of LAD, FBD, and STL
	4.7 The function library of SCL
	4.8 Global address areas
	4.9 Absolute and symbolic addressing
	4.10 Indirect addressing
	4.11 Elementary data types
	4.12 Complex data types
	4.13 Data types for block parameters
	4.14 Further data types

	5 The user program
	5.1 Program execution with SIMATIC
	5.2 The start-up routine
	5.3 The main program
	5.4 The process images
	5.5 Cycle Time, Reaction Time
	5.6 Program functions
	5.7 Time-of-day interrupts
	5.8 Time-Delay Interrupts
	5.9 Cyclic Interrupts
	5.10 Hardware Interrupts
	5.11 Multiprocessor Interrupt
	5.12 Synchronous errors with a CPU 300/400
	5.13 Asynchronous errors with a CPU 300/400
	5.14 Error handling with a CPU 1200
	5.15 Diagnostic functions with a CPU 300/400
	5.16 Overview of user blocks
	5.17 Block properties
	5.18 Know-how protection, copy protection
	5.19 Block interface
	5.20 Calling blocks

	6 Communication
	6.1 Configuring the network
	6.2 The MPI subnet
	6.3 External station S7 basic communication
	6.4 Global data communications
	6.5 The Industrial Ethernet subnet
	6.6 Open User Communication, IE communication
	6.7 S7 communication
	6.8 The PROFIBUS subnet
	6.9 Internal station S7 basic communication
	6.10 The AS-Interface subnet
	6.11 The point-to-point connection
	6.12 Distributed I/O with PROFINET IO
	6.13 Special functions for PROFINET IO
	6.14 Isochronous mode program
	6.15 Distributed I/O with PROFIBUS DP
	6.16 Special functions for PROFIBUS DP
	6.17 DPV1 interrupts

	7 Operator control and monitoring
	7.1 Key Panels KP8, PP7 and PP17
	7.2 Basic Panels
	7.3 Comfort Panels
	7.4 Mobile Panels
	7.5 Micro Panels
	7.6 SIMATIC Panels – Series 70
	7.7 SIMATIC Panels – Series 170
	7.8 SIMATIC Panels – Series 270
	7.9 Multi Panels
	7.10 SIMATIC Panel PC
	7.11 Configuring SIMATIC HMI
	7.12 Process Diagnostics in the User Program Using S7-PDIAG
	7.13 Process Diagnostics Using SIMATIC ProAgent
	7.14 Telephone network connections with TeleService

	Index
	Abbreviations
	Future Books from Publicis Publishing

