












































































































































































































































































































1
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Aims and Objectives

The PID algorithm is the most popular feedback controller used within the

process industries. It has been successfully used for over 50 years. It is a

robust easily understood algorithm that can provide excellent control

performance despite the varied dynamic characteristics of process plant.

These lecture notes,

• introduce the Proportional- Integral- Derivative (PID) control algorithm.

• discuss the role of the three modes of the algorithm.

• highlight different algorithm structures.

• Discuss methods that have evolved over the last 50 years as aids in

control loop tuning.

After completion of this section of the course a student should be capable of

approaching a loop tuning problem in a competent and efficient manner and

have sufficient knowledge to effectively tune a PID control algorithm.
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The Proportional-Integral-Derivative (PID) algorithm

As the name suggests, the PID algorithm consists of three basic modes, the

Proportional mode, the Integral and the Derivative modes. When utilising this

algorithm it is necessary to decide which modes are to be used (P, I or D ?)

and then specify the parameters (or settings) for each mode used. Generally,

three basic algorithms are used P, PI or PID.

A Proportional algorithm

The mathematical representation is,
mv s

e s
kc

( )

( )
=  (Laplace domain) or mv t mv k e tss c( ) ( )= +  (time domain) (3)

The proportional mode adjusts the output signal in direct proportion to the

controller input (which is the error signal, e). The adjustable parameter to be

specified is the controller gain, kc. This is not to be confused with the process

gain, kp. The larger kc the more the controller output will change for a given

error. For instance, with a gain of 1 an error of 10% of scale will change the

controller output by 10% of scale. Many instrument manufacturers use

Proportional Band (PB) instead of kc.
1

The time domain expression also indicates that the controller requires

calibration around the steady-state operating point. This is indicated by the

constant term mvss. This represents the 'steady-state' signal for the mv and is

used to ensure that at zero error the cv is at setpoint. In the Laplace domain

this term disappears, because of the ‘deviation variable’ representation.

A proportional controller reduces error but does not eliminate it (unless the

process has naturally integrating properties), i.e. an offset between the actual

and desired value will normally exist.

A proportional integral algorithm

The mathematical representation is,

mv s

e s
k

T sc
i

( )

( )
= +









1

1
 or mv t mv k e t

T
e t dtss c

i

( ) ( ) ( )= + +








∫

1
 (4)

The additional integral mode (often referred to as reset) corrects for any offset

(error) that may occur between the desired value (setpoint) and the process

                                                          
1
 This is defined as the range over which the error must change in order to drive the controller output

over full range. The PB also tells you how large the error has to be before the manipulated variable

reaches 0 or 100%. The PB is generally centered around the setpoint causing the output to be at 50%

when the setpoint and the process output are equal.
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output automatically over time
2
. The adjustable parameter to be specified is

the integral time (Ti) of the controller.

Where does the term reset come from?

Reset is often used to describe the integral mode. Reset is the time it takes

for the integral action to produce the same change in mv as the P modes

initial (static) change. Consider the following figure,

Open Loop Response of a

PI controller to a step in ‘e’

0 Ti
time

mv

Initial step due to P

of magnitude K ce

k
T

edtc
i

1
∫ = k ec

Figure (1) The response of a PI algorithm to a step in error

Figure (1) shows the output that would be obtained from a PI controller given

a step change in error. The output immediately steps due to the P mode. The

magnitude of the step up is Kce . The integral mode then causes the mv to

‘ramp’. Over the period 'time 0 to time TI' the mv again increases by Kce.

Integral wind-up

When a controller that possesses integral action receives an error signal for

significant periods of time the integral term of the controller will increase at a

rate governed by the integral time of the controller. This will eventually cause

the manipulated variable to reach 100 % (or 0 %) of its scale, i.e. its

maximum or minimum limits. This is known as integral wind-up. A sustained

error can occur due to a number of scenarios, one of the more common being

control system ‘override’. Override occurs when another controller takes over

control of a particular loop, e.g. because of safety reasons. The original

controller is not switched off, so it still receives an error signal, which through

time, ‘winds-up’ the integral component unless something is done to stop this

occurring. There are many techniques that may be used to stop this

                                                          
2
 Different control manufacturers use different definitions for the integral mode of a controller. It can be

defined as minutes, minutes/repeat or repeats per minute. The difference is very important to note so as

to ensure problems do not occur during a tuning exercise. Remember the ‘name game’. Ti is the integral

time (minutes), if specified as repeats / minute then it is 1/Ti that must be entered into the controller,

while minutes / repeat is again Ti. This is confusing and is compounded by the fact that manufacturers

are not consistent !
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happening. One method is known as ‘external reset feedback’ (Luyben,

1990). Here, the signal of the control valve is also sent to the controller. The

controller possess logic that enables it to integrate the error when its signal is

going to the control value, but breaks the loop if the override controller is

manipulating the valve.

A Proportional Integral Derivative algorithm

The mathematical representation is,

mv s

e s
k

T s
T sc

i
D

( )

( )
= + +









1

1
 or mv t mv k e t

T
e t dt T

de t

dtss c
i

D( ) ( ) ( )
( )

= + + +








∫

1
(5)

Derivative action (also called rate or pre-act) anticipates where the process is

heading by looking at the time rate of change of the controlled variable (its

derivative). TD is the ‘rate time’ and this characterises the derivative action

(with units of minutes). In theory derivative action should always improve

dynamic response and it does in many loops. In others, however, the problem

of noisy signals makes the use of derivative action undesirable (differentiating

noisy signals can translate into excessive mv movement).

Derivative action depends on the slope of the error, unlike P and I. If the error

is constant derivative action has no effect.

Revision Exercise

Use Matlab / Simulink to explore the effect a step change in error has on the

various modes of an ideal PID control algorithm. Assume that kc = 1, Ti = 10

mins and TD = 5mins.

PID algorithms can be different

Not all manufactures produce PID’s that conform to the ideal 'textbook'

structure. So before commencing tuning it is important to know the

configuration of the PID algorithm! The majority of ‘text-book’ tuning rules are

only valid for the ideal architecture. If the algorithm is different then the

controller parameters suggested by a particular tuning methodology will have

to be altered.

                                                                                                                                                                     



5

Ideal PID

The mathematical representation of this algorithm is:

mv s

e s
k

T s
T sc

i
D

( )

( )
= + +









1

1

One disadvantage of this ideal 'textbook' configuration is that a sudden

change in setpoint (and hence e) will cause the derivative term to become

very large and thus provide a “derivative kick” to the final control element -

this is undesirable. An alternative implementation is

mv s k
T s

e s T scv sc
i

D( ) ( ) ( )= +








 +1

1

The derivative mode acts on the measurement and not the error. After a

change in setpoint the output will move slowly avoiding "derivative kick" after

setpoint changes. This is therefore a standard feature of most commercial

controllers.

Series (interacting) PID

The mathematical representation of this algorithm is:

mv s

e s
k

T s
T sc

i
D

( )

( )
= +









1

1

As with the ideal implementation the series mode can include either derivative

on the error or derivative on the measurement. In which case, the

mathematical representation is,

mv s

e s
k

T sc
i

( )

( )
= +









1

1
 where e(s) = SP - TDscv(s)

Parallel PID

The mathematical description is,

mv s k e s
T s

e s T se sc
i

D( ) ( ) ( ) ( )= + +
1

The proportional gain only acts on the error, whereas with the ideal algorithm

it acts on the integral and derivative modes as well.

Revision Exercises

1. Draw the block diagram representation of the ideal, series (interacting)

and parallel PID control laws.

2. Write down the 'time-domain' mathematical representation of the ideal

(without derivative kick) , series (interacting) and parallel PID control laws.
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3. Suppose that the controller settings for an ideal PID algorithm are given

by, kc, Ti, TD. Work out the conversion factors required to ensure that a

parallel implementation of the PID algorithm will provide the same mv

signal given the same error signal.

Controller tuning

Controller tuning involves the selection of the best values of kc, Ti and TD (if a

PID algorithm is being used). This is often a subjective procedure and is

certainly process dependent. A number of methods have been proposed in

the literature over the last 50 years. However, recent surveys indicate,

• 30 % of installed controllers operate in manual.

• 30 % of loops increase variability.

• 25 % of loops use default settings.

• 30 % of loops have equipment problems.

A possible explanation for this is lack of understanding of process dynamics,

lack of understanding of the PID algorithm or lack of knowledge regarding

effective tuning procedures. This section of the notes concentrates on PID

tuning procedures. The suggestion being that if a PID can be properly tuned

there is much scope to improve the operational performance of chemical

process plant.

When tuning a PID algorithm, generally the aim is to match some

preconceived 'ideal' response profile for the closed loop system. The following

response profiles are typical.

Servo Control

For a unit step change in setpoint (0 - 1) the two response profiles shown in

figure 2 could be obtained (depending upon the process dynamics and

controller settings),

0 20 40 60

0

0.5

1

1.5

Time (minutes) 0 20 40 60 80 100

0

0.5

1

1.5

Time (minutes)

Figure (2) Underdamped (LHS) and overdamped (RHS) system response

to a unit change in setpoint (PI control).

Terms used to describe underdamped response characteristics are,
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• Overshoot: this is the magnitude by which the controlled variable 'swings'

past the setpoint. 5/10% overshoot is normally acceptable for most loops.

• Rise time: the time it takes for the process output to achieve the new

desired value. One-third the dominant process time constant would be

typical.

• Decay ratio: this is the ratio of the maximum amplitude of successive

oscillations.

• Settling time: the time it takes for the process output to die to between,

say +/- 5% of setpoint.

These characteristics are often used as objectives during a tuning exercise.

Regulatory Control

For a unit step change in the dv, the following type of response profile may be

desired,

0 10 20 30 40 50
-1

-0.5

0

0.5

1

1.5

Time (minutes)

Figure (3) Disturbance rejection ( a typical response profile)

i.e. the disturbance initially causes the process to move away from the

desired value (which is set to zero in this figure). The controller then adjusts

the mv so that the cv slowly moves back to setpoint. In other words the

impact that the disturbance has on the closed loop system is eliminated and

the system returns to the desired value. A transfer function that could be used

to model this behaviour is,

cv s

dv s

s

s

( )

( )
=

+
λ

λ 1
(6)

where the constant λ models the ‘peak’ effect of the disturbance as well as

the speed at which the system returns to steady-state.

Tuning Rules

Rules of thumb
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The following rules of thumb are intended to give “ball-park” figure controller

settings. The settings
(1)

 assume a series algorithm, the others are for ideal

PID

Loop Type PB(%) I (mins) D (mins)

Liquid level  < 100 10 -

Temperature 20 - 60 2 - 15 I/4

Flow 150 0.1 -

Liquid Pressure
(1)

50 - 500 0.005 -

0.5

-

Gas Pressure
(1)

1- 50 0.1 - 50 0.02 - 0.1

Chromatograph
(1)

100 - 2000 10 - 120 0.1 - 20

Often, with level systems exact setpoint following is not essential, hence

proportional control is often used. Temperature loop dynamics can be slow

because of process heat transfer lags. Deadtime is possible, especially in

heat exchangers and temperature is not normally noisy. Consequently PID

control is normally preferred. Flow loop dynamics are generally fast (of the

order of seconds). Control valve dynamics are normally the slowest in the

loop. Flow systems are noisy. However, noise can often be dealt with simply

by reducing the gain.

Ziegler Nichols closed loop method

The method is straightforward. First, set the controller to P mode only. Next,

set the gain of the controller (kc) to a small value. Make a small setpoint (or

load) change and observe the response of the controlled variable. If kc is low

the response should be sluggish. Increase kc by a factor of two and make

another small change in the setpoint or the load. Keep increasing kc (by a

factor of two) until the response becomes oscillatory. Finally, adjust kc until a

response is obtained that produces continuous oscillations. This is known as

the ultimate gain (ku). Note the period of the oscillations (Pu). The control law

settings are then obtained from the following table,

kc Ti TD

P ku/2

PI Ku/2.2 Pu/1.2

PID Ku/1.7 Pu/2 Pu/8



9

Practical use of the technique

It is unwise to force the system into a situation where there are continuous

oscillations as this represents the limit at which the feedback system is stable.

Generally, it is a good idea to stop at the point where some oscillation has

been obtained. It is then possible to approximate the period (Pu) and if the

gain at this point is taken as the ultimate gain (ku) , then this will provide a

more conservative tuning regime.

Cohen - Coon

This method depends upon the identification of a suitable process model

(plant identification has been covered in previous lectures). Cohen-Coon

recommended the following settings to give responses having ¼ decay ratios,

minimum offset and other favourable properties,

kc Ti TD

P 1
1

3k p

τ
θ

θ
τ

( )+

PI 1 9

10 12k p

τ
θ

θ
τ

( )+ θ
θ τ
θ τ

30 3

9 20

+
+

( / )

( / )

PID 1 4

3 4k
p

τ
θ

θ
τ

( )+ θ
θ τ
θ τ

32 6

13 8

+
+

( / )

( / )
θ

θ τ
4

11 2+ ( / )

In the table kp is the process gain, τ the process time constant and θ the

process time delay.

Practical use of the technique

If the process delay is small (in the limit as it approaches zero) increasingly

large controller gains will be predicted. The method is therefore not suitable

for systems where there is zero or virtually no time delay.

Direct synthesis

This is a model based tuning technique. It uses an identified process model in

conjunction with a user specified closed loop response characteristic. An

advantage of this approach is that it provides insight into the role of the

'model' in control system design. A disadvantage of the approach is that a

PID controller may not be realised unless an appropriate model form is used

to synthesise the control law.
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Tuning for servo control

Let the symbol Gp represent the process dynamics and Gc the controller

dynamics. If all other dynamic elements within the loop are ignored then the

following closed loop transfer function can be derived,

cv

SP

G G

G G

c p

c p

=
+1

(6)

this can be re-arranged to give an expression for the feedback control law as,

G
G

cv

SP
cv

SP

c
p

=
−

















1

1

(7)

In other words, the controller comprises the inverse of the process model

(common to model based design techniques) as well as a specification for the

closed loop response characteristic, cv/SP.

A process model can be obtained through plant identification. The closed loop

response characteristic, cv/SP must be specified. A simple specification is,

cv

SP s
=

+
1

1λ (8)

λ is a user specified closed loop time constant.

Substituting this into equation (7) and re-arranging gives,

` G
G s

s

k s k s
c

p

p

p

p

p p

=






=
+

= +










1 1 1
1

1

λ

τ

λ

τ

λ τ (9)

where it has been assumed that the process transfer function is,

G s
k

sp

p

p

( ) =
+τ 1

(10)

ie. first order, no dead-time.

Based on this process description, the ideal form of a  PI controller results,

where,

k
kc

p

p

=
τ

λ  and Ti p= τ (11)

What do you do if you want derivative action? The first order model results

in a control law that is of the PI type. If you wish to synthesis a PID controller,

there are two options

• choose TD = Ti/4
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• model the process using a 2
nd

 order transfer function.

Revision Exercise

Starting with a second order process transfer function show that a PID control

structure can be developed using the direct synthesis derivation technique.

What are the settings of the PID controller (in terms of the coefficients of the

second order process transfer function) ?

Systems with time delay

Throughout this course, our basic assumption has been that we can model

systems using the following transfer function,

G s
k e

s
p

p

s

p

( ) =
+

− θ

τ 1
(12)

i.e. a first order plus dead-time transfer function. If this were the case, what

type of control law would result using the direct synthesis procedure?

Following the derivation presented, the following control law results,

G
G

e

s e
c

p

s

s
=

+ −








−

−

1

1

θ

ϑλ (13)

Note that the following response specification was used (as the time delay

cannot be removed from the process),

cv

SP

e

s

s

=
+

− θ

λ 1 (14)

The control law, equation (13) is of non-standard form because of the time-

delay terms. Suppose that e s− θ  is approximated by a 1
st
 order Taylor series

expansion, i.e.

 e s− θ ≈ 1 - θs

Substituting into the denominator of equation (13) and re-arranging gives,

G
G

e

s
c

p

s

=
+









−
1 θ

λ θ( )
(15)

It is not necessary to approximate the time delay in the numerator of equation

(13) as this is cancelled by an identical term in the process transfer function,

Gp(s) giving,

G
s

k s k sc

p

p

p

p p

=
+

+
=

+
+











τ
λ θ

τ
λ θ τ

1
1

1

( ) ( )
(16)

which is the form of an ideal PI controller where,
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k
kc

p

p

=
+

τ
θ λ( )

 and Ti p= τ (17)

Note the intuitive nature of the controller gain calculation: as the process time

delay increases the controller gain will decrease.

Tuning for regulatory control

With reference to the closed loop block diagram, for regulatory control the

following closed loop transfer function may be derived,

cv

dv G Gc p

=
+

1

1
(18)

This closed loop expression can be re-arranged to give an expression for the

feedback control law as,

G
G

Y

d
Y

d

c

p

=
−

















1
1

(19)

Again, the controller consists of the inverse of the process model as well as a

specification for the closed loop response characteristic, cv/dv.

The process model is obtained through plant identification however, the

closed loop response characteristic, cv/dv, must be specified by the designer.

Using the simple specification described earlier,

cv s

dv s

s

s

( )

( )
=

+
λ

λ 1
(20)

where λ is user specified. Substituting this into equation (19) and re-arranging

gives,

G
G sc

p

=






1 1

λ (21)

This is exactly the same form as equation (9) for servo control. Hence the

controller gain and integral term for a PI controller is given by,

k
kc

p

p

=
τ

λ  and Ti p= τ (22)

Final Remarks

The notes have reviewed PID control, discussed the modes of the various

control algorithms, the different structures of algorithms that exist and

standard tuning rules. The tuning rules reviewed include, Ziegler-Nichols,

Cohen- Coon, and direct synthesis. Remember:
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• the tuning rules are only valid for the 'ideal' PID control structure and any

prediction of control law settings should be adjusted if an alternative PID

implementation is used.

• the tuning rules are only valid for self-regulating processes (i.e open loop

stable processes such as those that may be described by the 1
st
 order

plus dead-time description).

Luckily most process systems are self-regulating the exception to the rule

being level systems. Tuning of level controllers will be the subject of the next

section of the notes.


























