
ASP.NET 3.5
Content Management System
Development

Build, manage, and extend your own Content
Management System

Curt Christianson

Jeff Cochran

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

ASP.NET 3.5 Content Management
System Development

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author(s), Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2009

Production Reference: 1190609

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-61-2

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Credits

Authors
Curt Christianson

Jeff Cochran

Reviewers
Jerry L. Spohn

Brigida Ivan

Acquisition Editor
James Lumsden

Development Editor
Dilip Venkatesh

Technical Editors
Gaurav Datar

Shadab Khan

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Priya Mukherji

Project Coordinator
Leena Purkait

Proofreader
Sandra Hopper

Indexer
Rekha Nair

Production Coordinator
Dolly Dasilva

Cover Work
Dolly Dasilva

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

About the Authors

Curt Christianson has been involved in the tech community since the mid 1990's
and has been a professional developer for more than a decade. He is an active
community contributor on the ASP.NET forums, as well as a Forum Moderator.
He has won six Microsoft Most Valuable Professional (MVP) awards for his work
with ASP/ASP.NET. He is writing a number of open source add-ins and starter kits.
He is based in Wisconsin, U.S.A. as a professional developer, as well as contributing
to books and articles, both printed and on the Internet.

Curt is in the process of entering into the life of a married
man—thanks to his better half Jessyca. They plan on settling down
with lots of little ones running around.

Jeff Cochran is a Senior Network Specialist for the City of Naples, Florida.
A large part of his job includes web design and coding, as well as web server
management. Jeff has nearly two decades of experience with the Internet, having
started one of the first Internet Service Providers in Southwest Florida, and has
worked with Windows and Unix-based web servers. Now primarily concentrating
on Windows technologies, Jeff has been a Microsoft MVP for Microsoft's Internet
Information Server for nearly a decade, and is active in the ASP Classic and
ASP.NET communities as well.

Jeff has been married for twenty years to Zina, a graphic designer
and, according to most accounts, the driving force that keeps him
focused on… Oh look – A Pony! In the off-hours, Jeff and Zina spend
much of their time remodeling a 1950's bungalow in Naples, Florida,
trying to keep the rain out and the cats in. Jeff also has a long-term
addiction to classic pinball machines, tropical fish, and off-road
vehicles, all of which compete with home repairs for a share of
his income.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

About the Reviewer

Jerry L. Spohn is a Manager of Development for a medium-sized
software development firm in Exton, Pennsylvania. His responsibilities
include: managing a team of developers, and assisting in architecting a large,
multilingual, multi-currency loan account system, written in COBOL and Java.
He is also responsible for maintaining and tracking a system-wide program and
database documentation web site, for which he uses DotNetNuke as the portal.

Jerry is also the owner of Spohn Software LLC., a small consulting firm that helps
small businesses in the area with all aspects of maintaining and improving their
business processes. This includes helping with the creation and maintenance of web
sites, general office productivity issues, and computer purchasing and networking.
Spohn Software, as a firm, prefers to teach their clients how to solve their problems
internally, rather than require a long-term contract, thereby making the business
more productive and profitable in the future.

Jerry currently works and resides in Pennsylvania. He enjoys spending time with
his two sons, Nicholas and Nolan.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Table of Contents
Preface 1
Chapter 1: Planning and Building your First
Content Management System 5

What a Content Management System is 6
Web Content Management Systems 7

Why use ASP.NET 8
ASP.NET membership and profiles 8
ASP.NET Master Pages and Themes 9
ASP.NET 3.5 9

Setting up your environment 10
Installing IIS 10

Operating systems and IIS versions 11
Installing IIS in Windows XP Pro 11
Installing IIS in Windows Vista 12

Installing ASP.NET 3.5 13
Installing Visual Web Developer Express 2008 13
Configuring and testing your setup 13

Configuring IIS on Windows XP 14
Configuring IIS on Windows Vista 16
Setting NTFS permissions 17
Testing IIS 18

Writing a simple content management application 20
Default.aspx 20

Content.txt 22
FCKEditor 25
Edit.aspx 25

Summary 30

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Table of Contents

[ii]

Chapter 2: Adding a Database to a Content Management System 31
Why use a database 32
Why use SQL Server Express 32
Installing and configuring SQL Server 2005 Express 33

Installing SQL Server 2005 Management Studio Express 35
Running SQL Server 2005 Management Studio Express 36

Creating a database for our simple Content Management System 37
Creating a new database with Management Studio Express 38
Windows authentication vs SQL server authentication 39

Configuring an SQL user account 39
Configuring the database to use the SQL Server account 40

Creating a database table with Management Studio Express 41
Using the SimpleCMS database in Visual Web Developer 44

Using the SimpleCMS database in the CMS application 46
Creating a new Default.aspx file 46

Configuring the data source 47
Binding the Data Source to a Repeater control 50

Creating a new Edit.aspx 51
Creating multiple content pages 55

Altering the database table 56
Adding data to the new column 57

Altering the SqlDataSource code 58
Understanding SQL Server commands 61

SQL query syntax 61
SELECT queries 63

WHERE clause 63
TOP 64
ALL | DISTINCT 64
COUNT 64
GROUP BY clause 65
ORDER BY clause 65

INSERT queries 65
UPDATE queries 66
DELETE queries 66
Other queries 66

Entities and relationships in brief 68
Entities 68
Entity relationships 69

SQL injection 72
Preventing SQL injection 73

Changing the database user account 74
Summary 75

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Table of Contents

[iii]

Chapter 3: Content Management System Architecture 77
Multi-tier architecture 78

The data store 80
The Pages table 81
The Panes table 82
The Articles table 82

The data access layer 85
Creating the typed dataset 85
Filtering data from the dataset 87
Insert method 90
Update and delete methods 91

The business logic layer 92
The ArticlesBLL class 92

The presentation layer 95
Building the Master Page 95

Summary 101
Chapter 4: Adding Security and Membership to
a Content Management System 103

ASP.NET membership 104
Configuring and using forms authentication 105

Creating a new application 105
Creating the home page 106

Create the Master Page 106
Enabling forms authentication 107
Creating the membership database 108
Configuring the SqlMembershipProvider 110
Creating the login page 113
Creating a user account with the ASP.NET configuration tool 115
Creating a login 117

Adding forms authentication to our CMS 118
Preparing an existing SQL database 118

The aspnet_regsql.exe tool 119
User accounts 121
Membership roles 122

Adding users to roles 123
Login page 125
New user registration 125
Securing content 128
Login status 130

Summary 133

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Table of Contents

[iv]

Chapter 5: Creating the Articles Module 135
Application specifications 136

The Article publication process 136
User controls 137

Building a user control 137
Additional specifications 142

Building the Articles module 142
Database layout 142
Data access layer 143
Business logic layer 145
User controls 145

Listing Articles 145
Author, Editor, and Publisher roles 153

Additional features 154
Summary 154

Chapter 6: Pages and Zones 155
Master Pages 155
Themes 159
Menus 163
Page hierarchy 173
Regions and Zones 174
Summary 177

Chapter 7: Images, Files, and RSS 179
How images and files work on the Web 180
File upload control and beyond 181
Image gallery 191
Document repositories 208
RSS feeds 216
Summary 221

Chapter 8: Administrator Control Panel 223
Basic site settings 224
User accounts 233
Articles 239
Reporting 243
Search Engine Optimization 249
Summary 250

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Table of Contents

[v]

Chapter 9: Further Possibilities 251
Upsizing to the SQL Server 251
Additional modules 254
Base pages 256
Error trapping 258
Summary 260

Index 261

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Preface
ASP.NET Content Management Systems are often at the heart of many businesses
and customer interfaces. They help you to maintain and update content on a
web site, even if you have little or no web design or programming experience.
Imagine how great you'll feel when you have all the knowledge to get your site up
and running quickly and also extend it into the future.

This book walks you through the creation of a functional Content Management
System using the ASP.NET programming language. You will learn how to build
your site in a number of ways, allowing customization. You can set up users and
groups, create valuable content for your users, and manage the layout of your site
efficiently when you have this book in hand.

What this book covers
Chapter 1 covers planning and building your first Content Management System.

Chapter 2 is about how to replace the file-based system with a database version.
It also explores SqlDataSource, and using SQL Server 2005 Express as a source for
data in our application.

Chapter 3 covers Content Management System architecture. It helps us build the
database, a data access layer, a business logic layer, and a presentation layer for our
Content Management System.

Chapter 4 discusses how to configure ASP.NET forms authentication, along with how
to provide controls for users to log in, as well as ways to secure the content displayed
on the pages.

Chapter 5 covers the basics of how to display your articles, how to create them,
and how you may want to extend them.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Preface

[2]

Chapter 6 covers the concepts of why we lay out the site in a particular way,
as well as beginning to help us understand all the pieces involved in this process.

Chapter 7 discusses a great deal about dynamically providing content to the users.
It explores streaming files and images from the database, as well as generating RSS
feeds "on the fly".

Chapter 8 covers maintaining users, adjusting permissions, approving Articles, and
viewing site settings and stats—all key aspects of the Control Panel, which could be
called the "brain" of any CMS.

Chapter 9 discusses a few additional options such as upsizing SQL server,
using base pages and inheritance, and so on that may help extend a CMS.

Who this book is for
This book is for beginning to intermediate ASP.NET users, who have managed to
learn Visual Web Developer and want to take on their first real world application.
It will help those who have used SQL Server Express, completed a few sample
projects, and who now wish to explore a Content Management System.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: To provide further uniqueness, we could
name the fields employee.employee_address and customer.customer_address

A block of code will be set as follows:

Protected Sub Page_Load(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Load
 Dim articlesAdapter As New DataSet1TableAdapters.
ArticlesTableAdapter
 GridView1.DataSource = articlesAdapter.GetData()
 GridView1.DataBind()
End Sub

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be shown in bold:

<%@ Page Language="VB" %>
<%@ Register Src="~/Controls/ImageRotatorControl.ascx"
 TagName="ImageRotator" TagPrefix="cms" %>

Any command-line input or output is written as follows:

aspnet_regsql.exe –S .\SQLEXPRESS –U sa –P SimpleCMS –d SimpleCMS_
Database –A all

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "When you
see the registration information, enter your name and company, then uncheck the
Hide advanced configuration options checkbox".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
and mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish,
please send us a note in the SUGGEST A TITLE form on www.packtpub.com
or email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/3612_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents,
mistakes do happen. If you find a mistake in one of our books—maybe a
mistake in text or code—we would be grateful if you would report this to us.
By doing so, you can save other readers from frustration, and help us to improve
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/support, selecting your book, clicking on
the let us know link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata added to any list of
existing errata. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet,
please provide us with the location address or web site name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Planning and Building your
First Content Management

System
Welcome, and thank you for picking up this book. The purpose of this book is to
walk through the creation of a basic Content Management System using the
ASP.NET programming language. During the course of this book you will learn:

•	 What a Content Management System is and is not
•	 How to build a very simple Content Management System with very

little code
•	 How to extend that Content Management System to make it more useful
•	 Why you are building a Content Management System and what it can lead to

This book assumes that you know how to create a basic application in ASP.NET 2.0
using Visual Web Developer and deploy it on an IIS web server. You should also
have a basic programming knowledge and you should have worked at least a little
with a database. We'll be using both the SQL Server 2005 Express and Visual Web
Developer, available free of cost from Microsoft.

In this chapter, we'll cover some basic needs such as setting up your
programming environment, and some basic background. You'll need to know
about Content Management Systems. We'll also jump right into coding a basic
Content Management System, and then step back to analyze what work we've done
and why we've done it.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Planning and Building your First Content Management System

[6]

By the end of this chapter, you should be able to:

•	 Identify the basic functions of a Content Management System
•	 Understand why ASP.NET is a good technology for building a Content

Management System
•	 Build a simple application that lets a user enter, edit, or delete content on

a page
•	 Explain why this basic application is the main function of any Content

Management System

So, let's get going.

What a Content Management System is
A Content Management System or CMS sounds like an easily defined subject.
It's obviously a system to manage content. But what is content, and how do you
manage it? And what is managing in the first place? These very basic questions don't
have basic answers, and in many cases, the answer depends on who you are and
what you need.

For example, a medical facility such as a hospital or clinic has plenty of content,
including patient records, billing information, instruction manuals for equipment,
employment records, press releases, employee newsletters, photos of the facility,
material safety data sheets for chemicals used, shipping and receiving documents,
vehicle registrations, medical licenses, email, training videos, contracts, letters to
donors, x-rays, and just about everything else you can think of. All are content.
Most of it needs to be managed. But is it all worth having a CMS for?

Of course not. Email is best kept with an email archiving system, which is itself a
specialized type of content management. Instruction manuals might use a Content
Management System, called a file cabinet, which predates computers. And employee
newsletters may simply be printed and forgotten. But all of this content could
potentially qualify for a Content Management System.

So, how do we narrow and define content? In our situation, we're going to narrow
the content by defining the type of Content Management System we're going to
build—a Web Content Management System. Web content consists of anything
you might want to put on a web site, mostly text and images.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 1

[7]

Web Content Management Systems
Web Content Management Systems are designed to allow users with little or no
web design or programming experience to maintain and update content on a web
site. They often provide a What You See Is What You Get (WYSIWYG) editor for
the content, along with security for granting access to update or delete content, and
some kind of workflow management for the content. Workflow management may
include entry, approval, and publishing steps so that a user can enter new content.
However, another level of security is required to approve and publish that content.
Content is often dated, sometimes with an expiration date, and reusable on other
pages of the site.

The site itself is usually templated in some manner, separating content from the
presentation layer of the CMS, and the coding for the site is hidden from the users.
In this setup, a programmer would create the application and provide enhancements
to it, a designer would create the look and feel, and content authors and editors
would work solely with the content to be displayed.

In many cases, there may be restricted content, viewable by only a specific class of
users, and there would be a user management system to handle the creation of users
and assignment of permissions. There will normally be some sort of navigation
mechanism, and a search mechanism would make retrieving content easier for
the end user. For a Content Management System to be useful, content should be
dynamic, and should be displayed to specific users, based on specific queries or
navigation choices.

A CMS is not necessarily a portal, a community site, a group of forums, or an
e-commerce site. While these sites will often have content management as part of
their functionality, they are not part of a CMS by default. On the other hand, blogs
are purely content management—articles and comments are the content, and it's
only the fact that the template creates a blog style which makes them a blog. There's
really no difference between an online newspaper and a blog, or a site full of product
documentation. All of them have specific content, whether articles, blog posts, or
documents, which needs to be managed.

Over the course of this book, we will develop a Web Content Management System,
and we'll use the acronym CMS for this. We'll program a basic content system based
on articles, along with workflow for the process. This will require a user security
system, based on membership of groups that are allowed to perform certain tasks,
and we'll add a template system to provide for the layout of the pages separate
from the content. We'll use ASP.NET, Visual Web Developer, and SQL Server 2005
Express as our environment, although you should feel free to use tools you are
comfortable with, provided they are compatible.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Planning and Building your First Content Management System

[8]

Why use ASP.NET
Why should we choose ASP.NET? There are plenty of suitable programming
languages and frameworks, including PHP, Ruby on Rails, Java, and even Classic
ASP, which would work fine. Content Management Systems have been developed in
pretty much every language and technology ever developed for computer systems,
and you might even be more familiar with them than you are with ASP.NET.

ASP.NET, specifically ASP.NET 2.0, has some definite advantages for developing a
Content Management System quickly and conveniently. A security system, complete
with membership features, is already part of the framework, and so are standard
design templates in the form of master pages. Easy configurations for database
connections and controls for displaying the data are built in, and by using Visual
Web Developer (or Visual Studio) we can take advantage of rapid development
techniques to speed up our time to deploying a usable application.

ASP.NET 2.0, as well as the extensions to it (curiously named ASP.NET 3.0 and
ASP.NET 3.5), is not a programming language, but a framework to develop
applications within. ASP.NET is language independent. You can use any language
that supports the ASP.NET framework, but for our application we will use Visual
Basic .NET. Visual Basic is a simple, forgiving language that is easy to follow in
code and has been used for hundreds of millions of lines of code in web applications
around the world. If you feel comfortable translating VB to C#, please feel free to
follow along in the language of your choice. Compiled application code resulting in
Dynamic Link Libraries (DLLs) can be accessed by any language, meaning we could
program in both VB and C# for separate parts of the application, but that would
make this book harder to follow.

ASP.NET membership and profiles
ASP.NET 2.0 introduced membership and profiles to create users, assign security
roles, and provide for authentication and validation of security credentials, all
within the ASP.NET framework. This means developers don't have to build an
authentication system for applications (unless they want to), and accounts can be
protected by one-way hashed passwords, while allowing a simple assignment of
access and authority to application pages.

Until the release of ASP.NET 2.0, developers were left to craft their own security
system for their applications, including user management functions such as
assigning and changing passwords. Add to it the functionality provided by roles
in ASP.NET, and an entire security and authentication system for a site can be
built with mouse clicks. User profiles are icing on the cake, allowing administrators
and users to control their online profile, which can be easily integrated into
an application.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 1

[9]

ASP.NET Master Pages and Themes
ASP.NET 2.0 introduced the concepts of Master Pages and Themes to help in
designing a consistent look and feel to the pages throughout a web application.
Master Pages contain common elements, including menus, controls, and graphics,
which are displayed on all pages. Content pages contain the individual content
that changes on a web page, and are merged with the Master Page when ASP.NET
renders the final HTML to the browser.

Master Pages contain ContentPlaceHolders where dynamic content is injected when
the page is rendered. A browser requests the content page, which has a declaration
for the Master Page, and ASP.NET places the content defined on the content page
into appropriate content place holders on the Master Page. The result is that should
you want to change the look and feel of your site, you change the Master Page once
for your application without touching the content pages. This allows for very simple
styling by designers without the need for them to touch the underlying code or
having to edit any content to change the look.

ASP.NET 2.0 also introduced Themes, which can be used to alter the look of a site,
including controls used on the site. Themes are a combination of control skins
(.skin files), style sheets (CSS), and graphics that are applied as a group to a page,
site, or even an entire server. Even more than with Master Pages, which require at
least minimal ASP.NET programming to use, designers can create themes that
can be used on a site to alter the look and feel, without touching any other files on
the system.

ASP.NET 3.5
Microsoft has done the programming community a disservice in the numbering of
ASP.NET versions. ASP.NET 1.0 was the first version released to the public, and
was upgraded to a 1.1 version. The next release, ASP.NET 2.0, was an entirely new
framework with many enhancements, including Master Pages and membership that
are important to our application in this book. ASP.NET 2.0 also included data access
and display controls, as well as navigation controls, which we will use.

ASP.NET 3.0 added the Windows Presentation Foundation (WPF) and Windows
Communication Foundation (WCF), but used the same ASP.NET 2.0 framework to
run these extensions. ASP.NET 3.5 added AJAX and LINQ, but still just extended the
2.0 framework. So, ASP.NET 3.5 is really ASP.NET 2.0 with "extra stuff" that makes
the framework more usable, but it doesn't really change the framework. Microsoft
would have been better off numbering these as ASP.NET 2.1 and 2.2 to avoid
confusion in the community, but we're stuck with the confusing numbering for now.
Microsoft does have some logic in changing its numbering, but it makes sense mostly
to the marketing folks and not programmers.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Planning and Building your First Content Management System

[10]

For this book, we will use ASP.NET 3.5—partly because it's the most current and
default version for Visual Web Developer 2008 and also because it adds some
functionality that we'll be using later. LINQ (Language Integrated Query) provides
a uniform query language to access any data source, treating the data as an object
and making the application extremely extensible to third-party data sources.
We'll use LINQ to SQL for a portion of our application.

ASP.NET 3.5 also provides some new data display options such as ListView and
Datapager, and provides much better support for nested Master Pages than earlier
versions. AJAX, included in ASP.NET 3.5, also allows for a richer user experience,
though we won't be making use of it in our basic application.

Setting up your environment
To do any programming, it's important you set up your development environment
in a way that is conducive to easy, quick, and manageable programming techniques.
This doesn't just mean stocking up on Mountain Dew and Hot Pockets, but also
configuring your computer to best develop the specific application you're working
on. In our case, we're going to configure ASP.NET 3.5, IIS, and Visual Web
Developer on a workstation operating system. We'll also use Microsoft's SQL Server
2005 Express in our project. You always want a development environment as close
to the environment you will deploy your application in, so we'll use IIS instead of
the built-in development server in Visual Web Developer. If you are working on a
system that doesn't support IIS, such as Windows XP Home, you can work with the
development server and deploy to a web server with IIS, though you may need to
reconfigure more settings that way.

Installing IIS
Internet Information Services is Microsoft's web server, and comes with all versions
of Microsoft's Windows Server products and many of its workstation operating
systems such as Windows XP Pro and Windows Vista Ultimate. The version of IIS
is tied to the operating system—Windows XP has version 5.1 and Windows Vista
has version 7.0. For our development, it really won't matter which version you use,
but there may be some configuration changes based on the version you have. IIS,
regardless of version, is not normally installed on a system by default. If your system
does not have IIS installed, you will need to install it using your original operating
system disk.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 1

[11]

Operating systems and IIS versions
Not all Windows operating systems have IIS, and some have only a limited version
of IIS included. The following table lists what versions you'll find on which
operating systems:

Operating System Version Limitations
Windows XP Home None No IIS available
Windows XP Pro 5.1 Only one site, 10 connections
Windows Vista Home Basic None No IIS available
Windows Vista Home Premium 7.0 Throttled to 10 concurrent connections
Windows Vista Business 7.0 Throttled to 10 concurrent connections
Windows Vista Ultimate 7.0 Throttled to 10 concurrent connections
Windows Server 2003 6.0 None
Windows Server 2008 7.0 None

European editions of Windows Vista, N editions, have the same IIS version
as their counterparts.

Installing IIS in Windows XP Pro
In Windows XP Pro, IIS is installed using the Add or Remove Programs applet
found in the Control Panel.

1. Choose Add/Remove Windows Components on the left menu.
2. Highlight Internet Information Services (IIS) and click the Details button.
3. Check Documentation.
4. Check the Internet Information Services Snap-In.
5. Highlight World Wide Web Service and click Details.
6. Check the World Wide Web Service.
7. Click OK twice and then Next.

The IIS installation progress dialog will open and installation will complete quickly.
You may be asked to insert the CD for the files.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Planning and Building your First Content Management System

[12]

Installing IIS in Windows Vista
To install IIS in Windows Vista, you must be an administrator or run as an
administrator. In Windows Vista, IIS is installed using the Programs option
in the Control Panel.

1. Click on Start and then Control Panel.
2. Choose Programs, then Turn on or off Windows features.
3. Expand Internet Information Systems and make sure the following

are checked:
•	 Under Web Management Tools:

	° IIS Management Console
	° IIS Management Scripts and Tools
	° IIS Management Service

•	 Under World Wide Web Services:
	° Application Development Features—all
	° Common HTTP Features—all except Directory Browsing

4. Accept all other defaults and click OK to start installation.

You may be asked for the Windows Vista DVD, depending on how your system
is configured. Don't worry about ASP.NET installation at this time.

Installation order
It is important that you install IIS before you install ASP.NET so that
ASP.NET will recognize that it will be used in IIS. If you have ASP.NET
installed first, you will need to register IIS with ASP.NET before using it.
You can do this using the aspnet_regiis.exe command found in all
versions of the ASP.NET framework.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 1

[13]

Installing ASP.NET 3.5
For our application, we'll be installing ASP.NET version 3.5, along with the 2.0 and
3.0 versions of the framework. The easiest way to install the ASP.NET frameworks
is to use Windows Update, available in Windows XP and higher versions. Simply
connect to Windows Update, expand the Optional Software section, and then choose
everything related to ASP.NET. Repeat this process until you have installed all the
security fixes and updates for all versions of ASP.NET.

Installing Visual Web Developer Express 2008
You can download Visual Web Developer Express 2008, or VWD, from the
Microsoft web site at http://www.microsoft.com/express/. Install VWD by
following these steps:

1. Download Visual Web Developer Express and run the setup file.
2. Choose Next, and then accept the license terms.
3. Check the MSDN library option unless you are short on drive space or have

a slow download link.
4. Accept the default installation location and click Install.
5. Restart your system when asked.

If ASP.NET is not installed, the VWD 2008 setup will install it for you. You can
choose to use VWD 2005, but you will not have the IntelliSense or settings for the
3.5 framework as part of the IDE. You must register Visual Web Developer 2008
Express to continue using it after 30 days, but registration is free.

Configuring and testing your setup
With all the software installed, your development environment still needs to be
configured and tested. We do this in stages so that a failure at any stage is easy to
diagnose. If we configured everything and then tested, it could be a problem with
IIS, ASP.NET, SQL Server Express, Visual Web Developer, or almost anything else.
The basis for serving a web site is web server software. In Windows it's IIS, so the
first thing we'll configure and test is IIS.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Planning and Building your First Content Management System

[14]

Configuring IIS on Windows XP
As we'll be developing our application in IIS, it's important that we configure IIS
appropriately. Start by opening the IIS Manager in Administrative Tools and
selecting the Default Web Site. Right-click this and choose Properties, displaying
the properties dialog shown below:

The two tabs we are most interested in are the ASP.NET tab and the Documents
tab. On the Documents tab, we set the default document and the file that IIS serves
when no file is specified on the URL. Select the Documents tab and you will see a
predefined list of default documents, in the order IIS will use if it finds them. For our
application, we will use only Default.aspx as our default document. To help secure
our site, we will remove all the other file names listed so that IIS will not serve them,
even if they exist. After deleting these, and adding Default.aspx if it wasn't in your
list to start, your Documents tab should look like the given screenshot:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 1

[15]

The other tab we need to configure is the ASP.NET tab. On this tab we will set the
ASP.NET version that our application will use. This can be confusing, as even though
we will be using ASP.NET 3.5, the version set in IIS is ASP.NET 2.0. Remember,
ASP.NET 3.0 and 3.5 are just extensions to ASP.NET 2.0, not a completely new
version of the framework.

In the IIS Manager, select the ASP.NET tab. In the ASP.NET drop-down list,
make sure that you select the 2.0 version of the framework, as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Planning and Building your First Content Management System

[16]

For IIS to serve ASP.NET applications, the folder that the application is in has to
be defined as an application in IIS. By default, the root folder of a web site is an
application, and that's what we will use for our CMS project. This is why you see the
file location of c:\inetpub\wwwroot\web.config in the IIS ASP.NET configuration
tab. If you are developing in a virtual folder or a subfolder of the root of your site,
you will need to set that folder as an application in IIS. Chapter 12 has a section on
setting folders as applications in IIS.

Configuring IIS on Windows Vista
Windows Vista uses IIS 7, as does Windows Server 2008. This makes Vista an
excellent development environment if the deployment server will be Windows
Server 2008, as both Windows Vista (with Service Pack 1) and Windows Server 2008
share identical IIS versions. In addition, IIS 7 uses XML configuration files, making it
very easy to deploy an application or entire site.

Open the IIS Manager in Vista under Administrative Tools and navigate to the
default web site in the left menu. The Default Web Site page is displayed, and
under the IIS section you'll find Default Document. Double-click it and the Default
Document pane will open. Highlight any document that is not Default.aspx and
delete it. If you do not have a Default.aspx document listed, click Add under the
Actions menu on the righthand side and add it. When you have finished,
the Default Document pane should look as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 1

[17]

Windows Vista is easier than Windows XP when it comes to configuring the
ASP.NET framework version. To begin with, Windows Vista and IIS 7 install out
of the box, and configure for the ASP.NET 2.0 framework. Also, Windows Vista
ASP.NET versions are configured on an application pool basis, so selecting the
correct application pool is all you need to do for your application to run under
ASP.NET 2.0. The default installation of IIS 7.0 includes two application pools,
one using the new IIS 7 integrated pipeline and the other using the classic ASP.NET
pipeline found in earlier versions.

This means that in the integrated pipeline, all requests to the server are processed by
the ASP.NET DLL, while in the classic pipeline, requests are processed based on the
file extension mapping. You normally need to worry about this only when you are
migrating an application, but you can find a list of breaking changes for ASP.NET
2.0 applications running in the integrated pipeline at http://learn.iis.net/page.
aspx/381/aspnet-20-breaking-changes-on-iis-70/.

For Windows Vista and IIS 7, all you need to do at this time is verify that the default
application pool is set to version 2.0, as shown in the following screenshot:

Setting NTFS permissions
There is one additional step we need to take in setting up our web site. Since we
will be altering files on the site using ASP.NET, we need to give permission to the
ASP.NET process account to do so. For this we use NTFS permissions, also known
as Windows file and folder permissions, to allow the proper account access to
the system.

The default ASP.NET process account in Windows XP and IIS 5.1 is the ASP.NET
account, while in Windows Server 2003 and IIS 6, as well as all versions of Windows
with IIS 7, it is the NETWORK SERVICE account. These are less privileged accounts
that the ASP.NET process runs under to provide additional security. Unless you
have changed the default account, these are the accounts that need access to our
web site files and folders.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Planning and Building your First Content Management System

[18]

To set NTFS permissions for these accounts, we need to open the file system using
Windows Explorer or My Computer. In Windows Vista, you must be signed in as
a local administrator to set permissions. Navigate to the root of your web site, the
default is C:\inetpub\wwwroot\, and right-click on the folder, choosing Properties.
On the Security tab, we need to add the proper account for our version of Windows.
These accounts are hidden accounts, so simply type in the proper account name
rather than searching for it. Also, these are local accounts. Therefore, if your system
is part of a Windows domain, you may need to specify the system name such as
{SystemName}/ASPNET before the account. Grant this account Full Control to the web
folder. When you're finished, the Security dialog should look something like this:

Testing IIS
There is no point in writing any application code if it won't work, so we need to test
our installation and make sure that IIS will serve an ASP.NET page. The traditional
test method for programming and web sites is with a "Hello World!" application,
basically one that simply prints some text to the screen. We want one that uses some
ASP.NET functionality, so ours won't simply display "Hello World!" in a browser
window, which can also be done in plain HTML. What we need is an application
like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 1

[19]

<%@ Page Language="VB" %>

<script runat="server">
 Sub Page_Load(Sender As Object, E As EventArgs)
 HelloWorld.Text = "Hello World!"
 End Sub
</script>

<html>
<head>
<title>ASP.NET Hello World</title>
</head>
<body>

<p><asp:label id="HelloWorld" runat="server" /></p>

</body>
</html>

Save this code as Default.aspx in the root of your web site, c:\inetpub\wwwroot\
would be the default, and you have a simpler application that uses an ASP.NET label
control to display "Hello World!" in a browser. You can display this within Visual
Web Developer, but that uses the development server contained in VWD 2008.
What we want is to display this in the same way a browser would display it when
browsing our CMS application.

Open a web browser and browse to http://localhost/. You should see a display
similar to this:

Okay, nothing spectacular, but it does prove that IIS is configured correctly to serve
ASP.NET pages.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Planning and Building your First Content Management System

[20]

Localhost
The location "localhost" that we browsed to has special meaning in the
networking world. This name resolves to an IP address of 127.0.0.1,
which is reserved in networking to mean the system that you are
sitting at. In other words, using http://localhost/ in a browser
will always bring up the web server on the system you are physically
browsing from. It cannot be used from a second system, as "localhost"
resolves to that second system on that second system.

Writing a simple content management
application
Alright, we've spent half this chapter just setting up a development system,
and now it's time to actually develop something. This application will be the
world's simplest Content Management System, and pretty much useless in the real
world, but we'll be getting our hands dirty on creating the basics of all web Content
Management Systems.

At the heart of any Content Management System is the ability to change content
without doing any programming. Most CMS users will be unskilled in development,
web design, or even the basics of HTML, but they will be skilled in creating the
content they wish to be managed. This application will allow them to add,
delete, and change simple content on a very simple web page.

We'll walk through creating this application in Visual Web Developer, though in
future chapters I'll assume that you can find your way through VWD well enough
to write the application with just code snippets. All the code for every chapter is
available for download (see the appendix for instructions).

Default.aspx
Our application is going to consist of two pages:

•	 Default.aspx: The page presented to the viewer
•	 Edit.aspx: The page that handles the editing of the content on

Default.aspx

We're going to use a few simple ASP.NET controls to accomplish this.
First, let's create the Default.aspx page.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 1

[21]

Open Visual Web Developer, and create a new file by choosing File | New File
on the menu, and then selecting a Visual Basic Web Form as shown in the
following screenshot:

Visual Web Developer creates an ASP.NET form with basic HTML and a script
block, and we'll use that as our base for this application. Immediately save this file
as Default.aspx in the root of your web site, normally C:\inetpub\wwwroot\ on a
fresh installation of IIS. Go ahead and overwrite the "Hello World!" Default.aspx
we created earlier. We know that our development environment is working.

We'll first need a place for the content. In this example, we'll be using only text as
the content, and a Textbox control will do fine. We will also need a link to take us to
the Edit.aspx page so we can edit the content. We'll use a simple Hyperlink control
for this. The following code will create a Textbox control and the Hyperlink when
inserted in the <div> in the Default.aspx created by VWD:

<asp:Label ID="Label1" runat="server"
 Height="300px" Width="500px"
 Text="This is where the content will be." >
</asp:Label>

<asp:HyperLink ID="HyperLink1" runat="server">Edit Text
</asp:HyperLink>

You'll notice we have no NavigateURL for the Hyperlink control yet. We still
need to create the Edit.aspx it will point to. We also need to populate the Label
control with the text for our content, and we need to store that content for future
use or editing. Right now it is being populated with the Text attribute of the Label
control. However, to change the text, you would need to open the ASP.NET code
and edit it—something that a CMS is designed to avoid.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Planning and Building your First Content Management System

[22]

In our main CMS project, we'll use a database for content. However, as databases
aren't fully covered until Chapter 2, for this example, we'll use a simple text file to
store our content. The principal is the same as using a database, and many content
management systems have been built that store content in the file system instead
of a database.

Content.txt
Before we can read a text file into the Label control, or edit it with Edit.aspx, we
need to have the text file. Create a simple text file named Content.txt in the root of
your web site, using any text editor such as Notepad. For this example we've used
"Greeked" text—a publishing layout tool that consists of random Latin words and
phrases, which when printed on a page or viewed in a web page, have the general
look of text that will eventually appear there. You've probably seen this used in
sample web sites, and it's often referred to as Lorem Ipsum text after the first words
normally found in it. You can create your own by using the Lorem Ipsum generator
at http://www.lipsum.com/ For our sample, we'll use two paragraphs, saved in the
Content.txt file.

We need to alter our code to display the Content.txt file in the Label control,
and it should look something like this:

<%@ Page Language StreamReader ="VB" %>
<%@ Import Namespace="System.IO" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<script runat="server">
 Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 Dim Filetext As String = Server.MapPath("Content.txt")
 Dim objStreamReader As StreamReader
 objStreamReader = File.OpenText(Filetext)
 Dim Content As String = objStreamReader.ReadToEnd()
 Label1.Text = Content.Replace(vbCrLf, "
")
 objStreamReader.Close()
 End Sub
</script>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Basic CMS</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Label ID="Label1" runat="server"

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 1

[23]

 Height="300px"
 Width="500px">
 </asp:Label>

 <asp:HyperLink ID="HyperLink1" runat="server">Edit Text
 </asp:HyperLink>
 </div>
 </form>
</body>
</html>

We used a StreamReader class to read the text file Content.txt, and then replaced
the CR/LF characters in the text file with
 characters, which are understood by
the browser and loaded the result into the Label control. Let's run through the code
for this.

We needed to import the System.IO namespace because we'll use the File class
to open the text file and read it, so we added the line:

<%@ Import Namespace="System.IO" %>

Our script uses the Page_Load event to run so that our text file will be loaded into
the Label control whenever the page is loaded into a browser. We are reading
the file through a StreamReader object that is returned by the OpenText method
of the File class, so the following lines define the name of the file and create the
StreamReader object:

 Dim Filetext As String = Server.MapPath("Content.txt")
 Dim objStreamReader As StreamReader

Then we open the Content.txt file and create a string using the StreamReader
object with these lines:

 objStreamReader = File.OpenText(Filetext)
 Dim Content As String = objStreamReader.ReadToEnd()

In the next line, we set the Text attribute of our Label control to be the contents of
the string, but we replace the CR/LF characters of the text file with a
 HTML
command that the browser will understand:

 Label1.Text = Content.Replace(vbCrLf, "
")

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Planning and Building your First Content Management System

[24]

We then close the StreamReader object. If you don't do this, you can get
unpredictable results from future attempts to access this file. And good
programming dictates that if we open something, we close it when we're done.

 objStreamReader.Close()

We've also modified our Label control to remove the Text attribute we had
assigned, as this will now be assigned by our application code:

 <asp:Label ID="Label1" runat="server"
 Height="300px"
 Width="500px">
 </asp:Label>

When you test this code, you will see results similar to this:

Our content is displayed in the web page and we no longer need to edit the code
directly to change it. Of course, we still need to edit the Content.txt file to change
it, which is only possible by someone with direct access to the file through the
Windows file system. That's better than having to edit the code, but it's not very
convenient and it certainly can open security risks if you need to provide access
to the files in the root of your web site. We need to create a better way to edit the
content, without needing physical access to the content storage file.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 1

[25]

FCKEditor
We will create a second ASP.NET page to handle editing the Content.txt file.
While we could simply write new text to the Content.txt file, that isn't a very clean
way of handling editing of content, so we'll use a third-party application called
the FCKEditor. This program is distributed under the GPL, LGPL, and MPL open
source licenses, and is perfect for open source projects or your own personal projects.
FCKEditor got its name from the program's author, Frederico Caldeira Knabben,
and can be integrated into an ASP.NET application using the FCKEditor.Net control,
licensed in the same manner.

FCKEditor may be downloaded from http://www.fckeditor.net/, and you
will need both the editor and the ASP.NET control. Once you have downloaded
the compressed files, the ZIP file you download can be unzipped directly to your
web site's root and it will expand into the properly named folders. You can test
the installation by browsing to http://localhost/FCKeditor/_samples/
default.html. This should bring up a sample of the FCKEditor.

To use FCKEditor in an ASP.NET page, we need to install the second file you
downloaded, the FCKEditor.Net control. Expand the downloaded file, open the
folders, and find the path /bin/Release/2.0/. The FredCK.FCKeditorV2.dll
file in that folder is all we need to install in our application. Create a /bin
folder under your web site root, at c:\inetpub\wwwroot\bin\, and copy the
FredCK.FCKeditorV2.dll into it.

Edit.aspx
Now that we have the FCKEditor installed in our application, we need to create the
Edit.aspx page that uses it to edit our content. Start a new Visual Basic web form in
Visual Web Developer, and just below the <%@ Page Language="VB" %> line, add this
line of code:

<%@ Register Assembly="FredCK.FCKeditorV2" Namespace="FredCK.
FCKeditorV2" TagPrefix="FCKeditorV2" %>

This will register the FredCK.FCKeditorV2.dll in our page. To add the editor to the
page itself, add this line of code between the <div> statements:

<FCKeditorV2:FCKeditor ID="FCKeditor1" runat="server"></FCKeditorV2:
FCKeditor>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Planning and Building your First Content Management System

[26]

This creates an instance of the editor in our page. If you browse to your page with
the URL http://localhost/Edit.aspx, you should see a page something like this:

You can use the control to enter text, format it, and… well, not much else. We need
a way to save this text as the Content.txt file we use for our Default.aspx page.
You can download the code for our Edit.aspx page from Packt's official web site,
or you can type the code in from the following walkthrough of the code:

Creating and Understanding Edit.aspx

Let's walk through the Edit.aspx code, so you can understand the process the code
follows. See the following block of code:

<%@ Page Language="VB" Debug="True"%>
<%@ Import Namespace="System.IO" %>
<%@ Register Assembly="FredCK.FCKeditorV2"
 Namespace="FredCK.FCKeditorV2"
 TagPrefix="FCKeditorV2"
%>

This block of code imports the System.IO namespace that we use to read and write
our Content.txt file, just as in our Default.aspx page. See the next line:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 1

[27]

It simply identifies the Doctype for the browser, so it knows how to interpret the
rendered HTML. This was the default inserted in our code by Visual Web Developer
when we created a new form. If you want to know more about the Doctype
specification, you can refer to the Word Wide Web Consortium's list of recommended
doctypes at http://www.w3.org/QA/2002/04/valid-dtd-list.html.

Our script block consists of two subroutines. The following snippet is the
first subroutine:

<script runat="server">
 Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not Page.IsPostback Then
 Dim Filetext As String = Server.MapPath("Content.txt")
 Dim objStreamReader As StreamReader
 objStreamReader = File.OpenText(Filetext)
 Dim Content As String = objStreamReader.ReadToEnd()
 objStreamReader.Close()
 FCKeditor1.Value = Content
 End If
 End Sub

This subroutine is nearly identical to our Default.aspx page code for loading the
Content.txt file into the Label control. You will notice the following two changes:

1. We only do this if the page is not a postback from itself, to prevent reading
the text file again after we have edited it but not saved it.

2. Instead of setting the text in the Label control to match the Content.txt file,
we set the Value of the FCKEditor control. This loads the Content.txt file
into the FCKEditor, so we have what already exists and can edit it.

The second subroutine is new to the Edit.aspx page.

 Protected Sub Button1_Click(ByVal sender As Object, ByVal e As
 System.EventArgs) Handles Button1.Click
 Dim Outfile As String = Server.MapPath("Content.txt")
 Dim objStreamWriter As StreamWriter
 objStreamWriter = File.CreateText(Outfile)
 objStreamWriter.Write(FCKeditor1.Value)
 objStreamWriter.Close()
 Server.Transfer("Default.aspx")
 End Sub
</script>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Planning and Building your First Content Management System

[28]

This subroutine is almost the opposite of the first. Instead of a StreamReader object,
we use a StreamWriter object, which will write our text to the Content.txt file.
The StreamWriter writes the value of the FCKEditor control to Content.txt.
The subroutine closes the StreamWriter and uses a Server.Transfer to send the
browser back to the Default.aspx page, where the Content.txt file is again read
and displayed, this time with the altered content.

Server.Transfer vs HyperLink
ASP.NET provides a number of methods for browsing from one
page to another. We've used a HyperLink, which merely sends
a request for the new page from the browser, and we now use a
Server.Transfer to move back to the Default.aspx page.
Using Server.Transfer ends control of the current ASP.NET
page and transfers control to the destination page, and can be used
to maintain session information between pages. In this case, we are
using it simply because it has a slight performance boost over other
possible methods, though in this application you would never notice.
It is also easier to code in a button_click.

The page code displays our page with the FCKEditor control, the button that activates
the subroutine to save the content, and a hyperlink that simply returns the browser to
the Default.aspx page without saving anything to the Content.txt file.

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Sample CMS Content Editor</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <FCKeditorV2:FCKeditor ID="FCKeditor1"
 runat="server"
 Height="400"
 Width="800">
 </FCKeditorV2:FCKeditor>

 <asp:Button ID="Button1" runat="server" Text="Save Content" />

 <asp:HyperLink ID="HyperLink1" runat="server"
 NavigateUrl="Default.aspx">
 Cancel and Return to Original Page
 </asp:HyperLink>
 </div> </form>
</body>
</html>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 1

[29]

The final Edit.aspx page should look something like:

Let's try out our simple CMS. Change some of the text, add your own, make some
of it bold or italics, and save it. Your changes will show in the Default.aspx page.
Of course, it's still ugly. Let's give it at least a little formatting, a title, and some
structure. In later chapters, we'll deal with much more advanced formatting and
design work, but we'll start with a few simple HTML changes for now. In the <body>
of your Default.aspx page, add or change the highlighted lines:

<body>
 <form id="form1" runat="server">
 <table width="500" border="0" cellpadding="4"
 cellspacing="0" align="center">
 <tr>
 <td>
 <h1>The World's Simplest CMS</h1>
 <hr />
 <asp:Label ID="Label1" runat="server"
 Width="500"></asp:Label>
 <hr />
 </td>
 </tr>

 <tr>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Planning and Building your First Content Management System

[30]

 <td align="center">
 <asp:Button ID="Button1" runat="server"
 Text="Edit Content" />
 </td>
 </tr>
 </table>
 </form>
</body>

We have created a table for our page to be displayed in, centered that table, and
added a headline. We also added horizontal lines to define our content block, and
centered the button used to edit our content. These are some extremely simple
changes, using only basic HTML. However, these changes dramatically improve
the look of our basic CMS, or at least make it look like we didn't just concentrate on
writing code.

Summary
In this chapter, you learned what a Content Management System is and why
ASP.NET is a good technology to use in developing a CMS. We walked through
getting installed the Internet Information Services, the ASP.NET 3.5 framework,
Visual Web Developer 2008 Express, and Microsoft SQL Server 2005 Express. We
also configured a development environment to use VWD and IIS on our system.

The very basic CMS sample we programmed in this chapter shows the basics of
 a CMS system. We have a storage area for content—the file system and a file named
Content.txt in this case. We have a mechanism for an average user to edit this
content, using the FCKEditor control. And we have the code that reads our
Content.txt file and writes changes back to the same file. This is what makes a
Content Management System work—the ability to store and recall content, the ability
to change the content without programming skills, and the permanent retention of
content when it is not being accessed.

The final code for this chapter can be downloaded from Packt's official web site.
The full code is slightly different from that presented in this chapter in that it is
commented for you to understand. This chapter started from scratch, but future
chapters will build on this base. Therefore, you will find that the starter code for
many of the chapters can be downloaded as well.

In the next chapter, we'll add a database to our CMS as the storage mechanism,
allowing us far more flexibility in storage than the file system does. In future
chapters, we'll take this rather plain looking site to new design levels, add a security
system so that users will only be able to perform tasks they have permission for,
and build some more useful content management functions into our application.
So, if you're ready, we'll get started with Microsoft SQL Server 2005 Express.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a
Content Management System
The simple Content Management System we developed in the last chapter worked,
but there were plenty of drawbacks to the system we created. One of the major
drawbacks was the use of the file system for storing content. Files can be insecure,
text files can be unwieldy in size, and you can hold only text content in one. We
could use other file types, maybe save the text as HTML to overcome some issues,
but that means our content and our presentation are part of the same file. In a CMS,
this is one of the issues we need to avoid.

Imagine something as simple as your boss deciding that headings in the pages
will now be formatted as a <h2> heading with a purple font color. If we stored 500
pages as simple files that included the HTML, we would have to edit 500 files to
change every heading. And you know that, once we finished that task, the company
president would want the headings formatted simply as bold text in green. And we
would have to change all 500 files again. Even with a search and replace function that
works across files, we would still have to check every page to make sure the changes
take place. I don't know about you, but I would either rewrite the application or
quit the company. As we both need to pay the rent and buy food, let's change the
application to use a database to store our content.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[32]

In this chapter, we will cover:

•	 Why to use a database
•	 How to install, configure, and use SQL Server Express
•	 How to install and use SQL Management Studio Express
•	 Creating your database, creating a user, and setting user permissions
•	 Connecting our CMS to the database
•	 Managing data from our CMS application

Why use a database
That's actually a fair question. After all, there are other storage mechanisms such as
XML files, which could be used. But none of the other storage possibilities allow us
the flexibility, and especially the programmability, of a database. A modern database
is capable of holding many millions of records, while being able to search for and
retrieve records fitting specific conditions. Exactly what we need to store for our
CMS—the content or data.

Databases provide additional advantages over file-based storage such as our simple
CMS or even an XML file. While a file on the system can get fragmented through
constant changing, causing slower access times, data in a database can be changed at
will without changing the access time. Compared to XML files, which get unwieldy
after the size of the file exceeds the available memory resources, databases have near
unlimited storage capacity. This means our CMS can scale from a simple family web
site to a corporate publishing portal.

Why use SQL Server Express
Microsoft has a long history in databases, producing one of the most popular
database systems on the planet, Microsoft's SQL Server. Over the years, Microsoft
has improved SQL Server, and they have always provided a development or
personal version for programmers to use. This means programmers don't need
to pay outrageous licensing fees to simply develop against SQL Server, and
then pay those fees again when the application is deployed. In Microsoft's latest
implementations of SQL Server, this development version is called SQL Server
Express. Both Microsoft SQL Server 2005 (which we will use) and its recently
released SQL Server 2008 come in Express versions.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[33]

Licensing for these versions is also very advantageous to our project, as the use
of the Express version is free. That's right, a fully functional Relational Database
Management System (RDBMS) that can be used for no charge. There are limitations
such as the size of the database and the lack of management tools built into the
database package, but they are not an issue in our case. Our database will never
grow too large while we create this project, and Microsoft has a free management
tool for SQL Server 2005 Express, which will meet our needs.

There are two other advantages to Microsoft SQL Sever Express versions. The first
is that they easily transfer to a full version of the software. The database files in both
the full versions and the Express versions are the same. This means that if we ever
did run out of space on the Express version, we could super size the database by
migrating to the full SQL Server version.

The second advantage is that Visual Web Developer, which we are using for
development, already has an understanding of Microsoft SQL Server, including the
Express version. This means we can use the tools in Visual Web Developer to create
our database and connections, and the connections will just work. As with everything
created in a development environment such as Visual Web Developer, there are ways
we can improve the default functions. However, when just starting out, it is critical to
have a development environment that understands what you're doing.

Installing and configuring SQL Server
2005 Express
When you download Microsoft Visual Web Developer 2008 Express, you have the
option of downloading Microsoft SQL Server 2005 Express from the same page.
When given an option, choose to download Microsoft SQL Server 2005 Express with
Advanced Services. This includes Management Studio Express and Full Text Search,
both of which are especially handy to have. The SQL Server 2005 Examples and SQL
Server 2005 Books Online are not critical for our CMS application, but you will most
likely want them if you intend to do any SQL Server programming or extend the
application you create in this book.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[34]

Once you download the SQL Server 2005 Express executable, run it and accept the
licensing agreement. The installation wizard will configure the required components,
and will then check your system. Once that is finished, and you have installed
everything it asks for, the SQL Server 2005 Express installation will start. When
you see the registration information, enter your name and company, then uncheck
the Hide advanced configuration options checkbox. We need to change some
configuration settings, so your screen should look something like:

The next installation choice you will have is feature selection, which is chosen to run
everything from your hard drive. We won't use everything, but it's easier to have it
already installed than to install a new feature the first time you choose to use it. The
next choice is how you want to install SQL Express, choose Named Instance and the
default name of SQLExpress. Accept the default values for each step, except when
you come to the Authentication Mode dialog. Here, we want to set SQL Server 2005
Express to allow Windows or SQL logins, called Mixed Mode authentication. Select
Mixed Mode (Windows Authentication and SQL Server Authentication) and enter
SimpleCMS as a password for the sa logon account, as shown below:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[35]

In SQL Server, the sa account is the system administration account, similar to the
Windows Administrator account. Continue the setup process, accepting the default
choices until the setup is complete.

Installing SQL Server 2005 Management
Studio Express
If you didn't install SQL Server 2005 Management Studio Express with SQL Server
2005 Express, it can be downloaded individually or as part of the SQL Server 2005
Express Edition Toolkit, which includes Business Intelligence Development Studio
(BIDS). BIDS will let you create and manage SQL Server Reporting Services
(SSRS), which provides reports on SQL Server operations, as well as allowing you
to generate reports from your database. We won't be using BIDS in our project, so
we only need Management Studio Express, but you can install either version to work
through this book.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[36]

When you download Management Studio Express, you will have a Microsoft
installation file, or MSI, called SQLServer2005_SSMSEE.msi in your download
location. In a Windows system, an MSI file can be run as an executable, so simply
double-click the filename to begin the installation. Agree to the licensing and accept
all the defaults, unless you need to change the installation location. When the
installation finishes, you should find SQL Server Management Studio Express in the
SQL Server 2005 program group on your start menu.

Running SQL Server 2005 Management
Studio Express
When you start Management Studio Express, you will be presented with a login
dialog for the SQL Server. It will have your server name and use Windows
Authentication for the connection. This works fine on your local system for
development, but if you intend to use Management Studio Express on a hosted
web site, you will likely be required to use SQL Authentication for access. If that
is the case, your hosting service should be able to provide you with the name of the
SQL Server, as well as the login details.

Clicking Connect will connect Management Studio Express to your SQL Server. If
you expand the Databases folder, and then expand System Databases, you will see
four default databases required for SQL Server—master, model, msdb, and tempdb.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[37]

These four databases are used by SQL Server to store information for SQL Server
itself, and you should never need to touch them. The database we create for our
application will be separate from these and that will be the only database we use.
SQL Server 2005 Express allows the creation of multiple databases, but for our
application we will only create one, both because it makes our application simpler
to manage and because many web hosting services charge extra for hosting
additional databases.

Management Studio Express allows us to perform some important tasks on our
database. If you right-click on the master database and choose Tasks, you will see
the important Backup and Restore tasks, as well as a Shrink task that allows us to
compress the space used by our database. On a web host, this is important because
extra space often costs extra. However, in any SQL Server installation, a smaller
database will be a better performer. Shrinking the database is a double-edged sword
though, since it can lead to fragmentation of the database. It can also be useless,
since a database needs some extra space to function and will need to grow larger
as it needs the space. Shrinking is most useful in development or updating a
database, especially after a table is altered or dropped and large amounts of space
may end up empty.

Creating a database for our simple
Content Management System
The simple Content Management System we developed in Chapter 1 suffers from
many problems, one of which is the limited storage capabilities provided by the file
system. The way to overcome the limitations and problems with file system storage
is through the use of a database, so we'll create and use an SQL Server 2005 Express
database for this project. There are quite a few ways to create this database, some
easy and some less so, but we'll work through a process that would be similar to
using any other database server, rather than relying on the development shortcuts
found in many ASP.NET tutorials.

We are going to create a database and some initial structure using SQL Server
Management Studio Express, instead of using wizards to create a database with a
mysterious underlying structure, so that you can learn some ASP.NET techniques
for working with data connections. At some point you will need a deeper knowledge
of the database you use, and databases in general, than an ASP.NET tutorial can
give. I apologize in advance that this book won't come anywhere near making you a
SQL Server Guru, but I hope that you will at least understand the basics behind the
product we'll create.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[38]

Creating a new database with Management
Studio Express
Open Management Studio Express and right-click Databases in the Object Explorer
pane. Choose New Database, and the New Database dialog will open. Enter
SimpleCMS for a name, then scroll the Database files window to the right until you
can see the Path field. The default path for the database is under the Microsoft SQL
Server folder hierarchy, but we want to change that. While the database will function
fine in the default location, and for many SQL Server applications, you may have a
reason to leave it there—we want to simplify our web site management and locate
the file within our web site hierarchy. And there is a special place we want to put it.

ASP.NET and Visual Web Developer have some unique folder names that
are recognized as special within the VWD development environment. One is
the /bin folder we used for the FCKEditor in Chapter 1, and another is the
/App_Data folder. This folder has a unique relationship to VWD in that any
database in that folder is automatically added to the Database Explorer in VWD
for the application this folder appears in.

So, we want our database to be located in the /App_Data folder of our web site. First,
in the web site root folder (the default is C:\Inetpub\wwwroot\), create a folder
named App_Data. To set the Path for our database, click on the default path and
change it to C:\Inetpub\wwwroot\App_Data for both the database and log files,
as shown below:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[39]

When you click OK and finish the new database wizard, you should find that
two new files, SimplCMS.mdf and SimpleCMS_log.ldf, have been created in the
App_Data folder that you created earlier.

Windows authentication vs SQL server
authentication
We are using SQL Server authentication for access to our database to make
development and deployment simpler. You will find that many hosts will run SQL
Server in such a manner that you can use Windows authentication, though you will
need to reconfigure the connection string in your application. If you use SQL Server
authentication, the same account will exist on your server and on the development
workstation, so developing and deploying your application won't require changes to
the connection string when your application is installed on different systems.

Configuring an SQL user account
We are going to use SQL server authentication for our application's connection to the
database, so first we need to create a SQL server user account. Open Management
Studio Express and expand the Security folder in the Object Explorer pane.
Right-click on Logins and choose New Login. Enter SimpleCMSUser and check the
SQL Server authentication radio button. Use SimpleCMS as a password and uncheck
the Enforce password policy checkbox. Set the Default Database to SimpleCMS
and leave the Language at the default. You should have an account that looks
something like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[40]

Configuring the database to use the SQL Server
account
With the SimpleCMSUser account created, we now need to configure the SimpleCMS
database to use this account. In Management Studio Express, expand the SimpleCMS
database, expand Security, and then expand Users. You will see a few default users
created when we created the database, including dbo and guest. If you right-click on
the dbo user and choose Properties, you will find this user belongs to the db_owner
role. As it sounds, the database owner has pretty much full control over the database,
much as the Administrator account has full control over Windows. We're going to
break with good security guidelines and grant our account the same access to the
database. The overall increase in security risk is extremely minimal in our case,
and many production systems run with this same security. If you have a database
administrator who fully understands SQL server account security, by all means
follow their advice. However, for our application and for our specific use, we'll accept
the minimal risk increase in return for the greater programming flexibility.

Close the Properties window for the dbo user account, and right-click on Users then
select New User. Enter the username of SimpleCMSUser, and browse to the Login
name of SimpleCMS User. Now, browse to the Default Schema of dbo and check the
role membership for db_owner. The SimpleCMS user should look something like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[41]

When you click OK, you will have the new user created for the SimpleCMS database.
This is the user account we will use for accessing the database for our application.

Creating a database table with Management
Studio Express
Databases store information in tables, something like a spreadsheet, and we will
need at least one table to use in our simple CMS. We'll get into the databases and
structures in the next chapter, but for now let's create a very simple table to store our
content. All we really need is a column for the content anyway, mirroring our single
content.txt file we created in the last chapter. To create the table in Management
Studio Express, expand the SimpleCMS database we created and right-click on
Tables, then select New Table… as shown below:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[42]

This will create a new table, but we need to define the columns and we'll want to
change the default table name to one we can remember. Change the table name in the
Properties pane to Content by clicking on the default name and editing it. The first
column in the table has no default name, so name it Content as well. When you click
in the Data Type column, you'll see a drop-down menu, select a data type of ntext and
make sure Allow Nulls is checked. The table should look something like this:

Click on File | Save All, and the new database and table are ready for us to use.
We've created a very basic table here and made some choices that may not be the
best for a production environment. For example, we've allowed a null entry in our
content field. In reality, we would never want the content to be null, or non-existent,
we would want something in there. Not allowing nulls in the database would be one
method of forcing the field to always contain something to display to the end user,
even if it was just a line that said, "Sorry, nothing to see here, please move along."
But for our immediate purpose, allowing nulls avoids having to write code that deals
with attempting to enter nothing into the database and receiving a cryptic error that
stops our application from continuing. Besides, at this stage, we don't really want
anyone else to look at our web site anyway.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[43]

Dealing with null data
There are several ways to deal with null data entries in a web
application. One is by not allowing null data into the database,
enforcing data integrity through the database structure. This would
be the way a database programmer would handle the problem, using
stored procedures that supplied data even if the user didn't. A second
method would be for the application programmer to write code that
created the record with default data, and then accepted user input to
change the defaults. This has an advantage that null data fields are
always filled with the same data if the user doesn't input any. However,
a lazy user may just allow the default to pass through, instead of
entering what they really needed to.
Perhaps the most common web application solution is the use of
required inputs, and ASP.NET provides developers with the ability
to require fields within a data input screen. You've surely seen forms
having the name, password, and email fields mandatory, whereas
the address or phone fields are optional. This ensures that the name,
password, and email fields of a database are never null, but allows null
entries in the other fields.

Even though we allow null data, we don't actually want null data in our database
because it wouldn't make sense to display nothing. We'll add some
simple data so that our application isn't left with nothing to show when a web
page is requested. In the Object Explorer pane of Management Studio Express,
browse to the Content table we just created. Right-click it and choose Open Table
as shown below:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[44]

This will open the table in the center pane and allow you to enter data into the
Content field of the table. Click on the record and a new record will open. Type in
"Enter your content here…" without quotes. Exit Management Studio Express, as
soon as you move off the field you entered the record is saved. This is the text that
will display in our CMS application's Default.aspx page until we edit it.

Using the SimpleCMS database in Visual
Web Developer
We've created the database, and now it's time to put it to use. We'll be changing
our code in Chapter 1 from accessing a text file to reading and writing to a field in a
database table, and really it's not that different from using a text file. The process is
the same, with the only change being the data source, a database versus a text file.

The first thing we need to do is make the database usable in Visual Web Developer.
Open VWD and open the web site we started in Chapter 1. If you expand the
App_Data folder in Solution Explorer, you should see the SimpleCMS database we
created previously, as shown below:

If you right-click the SimpleCMS.mdf database file and choose Open, you should
see the database open in Database Explorer. You can expand the Tables section and
see the Content table we created earlier, as shown next:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[45]

Solution Explorer and Database Explorer will be instrumental throughout the
process of building our CMS because most of the work we need to do can be
accomplished here. If you right-click Tables in Database Explorer, you will see the
option to create a new table, which will bring up a similar table creation dialog to the
one we used in Management Studio Express.

System Error 32:'The process cannot open the file…'
You may experience an error similar to Unable to open the physical
file "C:\inetpub\wwwroot\App_Data\SimpleCMS.mdf". Operating
System error 32:"The Process cannot access the file because it is
being used by another process". There is an annoying problem with
using Microsoft SQL Server Management Studio Express to create the
database as we did in that the database is attached to Management
Studio Express and we can't also attach it in VWD.
To fix this, open Management Studio Express, expand Databases and
right-click the SimpleCMS database. Choose Tasks | Detach and the
database will be detached from Management Studio Express. You can
then follow the steps above to open the SimpleCMS database in Visual
Web Developer without the error.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[46]

Using the SimpleCMS database in the
CMS application
Okay, we have a database. Now let's make use of it by replacing our text file in our
Simple CMS application with a database as the storage for our content. First, we'll
create a data source that uses our database, and then we'll bind our display to the
data source. We'll also configure our application to update the data in our database
using our FCKEditor control.

Creating a new Default.aspx file
Open Visual Web Developer 2008 and open the web site we created in Chapter 1; it
should be in the c:\Inetpub\wwwroot folder by default. Delete (or rename if you
want them for reference) the files content.txt, Default.aspx, and Edit.aspx
from the web root. These files used the file system for storing the web site content,
but now we have a database for this purpose. We will change almost all of the code,
so it is easier to start from scratch in this case.

In VWD, click on File | New File to open the Add New Item dialog. Choose Web
Form, name it Default.aspx, and make sure the Place code in separate file checkbox
is checked, as shown below:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[47]

This creates two files, Default.aspx and Default.aspx.vb, the second one being
the code-behind file. In the first chapter, we used inline code because the application
was quite simple at that stage. For the rest of the application, we will use the code
behind technique to separate code from presentation.

Configuring the data source
Using a database in an ASP.NET application requires a data source to be created
for the application to access the data. The data source control handles the task of
retrieving the specific data with almost no code, making coding quicker and more
accurate. Many types of data sources exist, from XML files to OLEDB and ODBC
data sources, to databases such as the SQL Server 2005 Express database we are
using. Controls for these sources exist in the ASP.NET 2.0 framework such as the
XmlDataSource control for accessing an XML file. Using these existing controls
makes development faster and reduces potential coding errors.

For our application, we will use the SqlDataSource control. The name of this control
makes it seem like it works with SQL Server, but it allows access to any OLEDB or
ODBC database, meaning it can be used on Microsoft Access databases as well. For
our use the name is perfect, since we'll use SQL Server 2005 Express. We can create
an SqlDataSource control for our database quite easily using the drag-and-drop
functions in Visual Web Developer 2008.

In Source View in VWD, expand the Data section in the Toolbox, then drag a
SqlDataSource control to the <div></div> section of the code, as shown below:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[48]

In the Properties window for the SqlDataSource control, at the bottom is a link
to Configure Data Source. Clicking this opens the data source configuration
wizard, starting with the Connection dialog. Since we have no connections to
choose from, we need to create one, so click on New Connection and the Add
Connection dialog appears.

The default data source is Microsoft SQL Server Database File (SqlClient), but
we want to connect to SQL Server Express itself, not just our database file. Click
on the Change button and choose Microsoft SQL Server as the data source. The
Add Connection dialog will change to match the new data source choice. Select
the SQLEXPRESS named instance from the SQL Server drop-down list, there will
most likely only be one listed. Select Use SQL Server Authentication, and enter
SimpleCMSUser as the user account and SimpleCMS as the password, choosing to
save the password. Choose the SimpleCMS_Database from the database drop-down
list. Your Add Connection dialog should look something like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[49]

Click on the Test Connection button and you should see a message that the
connection succeeded. Click OK and return to the Configure Data Source wizard.
Choose Next, and then choose to save the connection in the application configuration
file. This is the web.config file, which is used to hold your application's
configuration information.

In the Configure the Select Statement dialog, check the checkbox next to Content
and the SELECT Statement should look like this:

SELECT [Content] FROM [Content]

We'll walk through a few SQL commands later in the chapter, but this statement
simply says to "Select the Content field from the Content table", which is the field we
created in our database earlier. Click on Next and then Test Query, and you should
see the default content we entered in our database—"Enter your content here…".

Finishing the wizard will add the SqlDataSource configuration to both our
Default.aspx file and a new web.config file. The Default.aspx code should
have changed to something like:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:SimpleCMS_
DatabaseConnectionString %>"
 SelectCommand="SELECT [Content] FROM [Content]">
</asp:SqlDataSource>

This sets up our SqlDataSource, using the ConnectionString stored in the
web.config file, along with the query we created in the wizard. The new
web.config file, in addition to a lot of default settings and comments, has a
connectionStrings section in it that looks something like:

<connectionStrings>
 <add name="SimpleCMS_DatabaseConnectionString"
 connectionString="Data Source=HP\SQLEXPRESS;
 Initial Catalog=SimpleCMS_Database;
 Persist Security Info=True;
 User ID=SimpleCMSUsersa;Password=SimpleCMS"
 providerName="System.Data.SqlClient"
 />
</connectionStrings>

Now that we have a connection with a data source, we need a way to display
that data.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[50]

Binding the Data Source to a Repeater control
In ASP.NET, there are a number of controls that can be bound to specific data and
data sources. The GridView, FormView, and DetailsView are most common, but
even a drop-down control can be data-bound. For our Default.aspx page, we'll use
a Repeater control. The control in our case is misnamed. As we have only a single
piece of data to display, there won't be anything to repeat. However, a Repeater
control is a good way to display reoccurring data in a template such as a list of
business addresses or books in a library collection. The advantage for us is the ability
to use a template for each item—in our case, just the one item in the list of data. A
Repeater control is read only, that is, you cannot change the data displayed. We'll
handle this when we create our new Edit.aspx file.

To create the Repeater control, simply drag a Repeater control from the Data section
of the Toolbox to a location just below our SqlDataSource control, still inside
the <div></div> in our web form. We will then add a <ItemTemplate> to our
Repeater, which will provide the template to display our data retrieved from our
SqlDataSource. Add the required code to your Default.aspx page, so the Repeater
control section looks like:

<asp:Repeater ID="Repeater1" runat="server"
 DataSourceID="SqlDataSource1">
 <ItemTemplate>
 <asp:Label ID="Label1" runat="server"
 Text='<%# Eval("Content") %>'
 />
 </ItemTemplate>
</asp:Repeater>

In the <asp:Repeater> control, we bind the control to our data source by setting
the DataSourceID to the name of the data source—SqlDataSource1 in this case.
Our <ItemTemplate> contains just a simple Label control. However, we set
the Text attribute to the data we retrieved in the SelectCommand from our
SqlDataSource—in this case evaluating the Content field and displaying it. Once
you have saved the code, you should be able to open a web browser and browse to
http://localhost/ and see a page similar to this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[51]

Creating a new Edit.aspx
Okay, displaying the content wasn't so hard. But now we have to edit it in an
ASP.NET page, as we can't easily call up a database tool to edit our web content
and it's no longer a simple text file. We need to create the Edit.aspx page. Start by
adding a new Web Form in the Visual Web Developer, naming it Edit.aspx and
making sure Place code in separate file is checked, just as we did when adding
the new Default.aspx file. We will use the same SqlDataSource as we did in
Default.aspx to load the content into our FCKEditor control, so add the following
code inside the <form> tags in the auto generated code:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:SimpleCMS_
DatabaseConnectionString %>"
 SelectCommand="SELECT [Content] FROM [Content]">
</asp:SqlDataSource>

We also need to add the FCKEditor to our page, which requires registering it on
the page as we did in Chapter 1. Add the following code to the top of Edit.aspx,
immediately below the page definition line:

<%@ Register
 Assembly="FredCK.FCKeditorV2"
 Namespace="FredCK.FCKeditorV2"
 TagPrefix="FCKeditorV2"
 %>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[52]

We'll add our FCKEditor in a FormView control, replacing the Repeater control we
used in the Default.aspx file to display our content, as the Repeater control is a
read only control and cannot be used to edit the data bound to it. First, we create the
FormView with the following code:

<asp:FormView ID="FormView1"
 runat="server"
 DataSourceID="SqlDataSource1"
 DefaultMode="Edit">
</asp:FormView>

This creates our FormView control and sets the data source to our SqlDataSource
control. A FormView control displays a single record from the data source—our
database in this case. However, unlike the Repeater control, we can edit the data
returned, and eventually save it back to our data source. The FormView also allows
us to specify an EditItemTemplate, as we did with our ItemTemplate in the
Repeater control, which allows us to use the FCKEditor control to edit our content
instead of just seeing our record in a table.

Other ASP.NET databound controls that allow editing
In addition to the FormView and Repeater controls, ASP.NET has a
number of other databound controls that display data from a DataSource
control. These controls are composite controls, and will often have other
controls such as a Label or TextBox within their layout. The Gridview
control does as its name suggests, display data in a grid or table, along
with sorting, paging, and the editing of a single row of data. The
DetailsView displays only a single record at a time, but allows paging
through multiple records, as well as the editing of those records. It is most
often used in conjunction with a master control such as a GridView, in
order to show a single selected record for editing.

We will add our FCKEditor control the same way we did in the Default.aspx
page, this time as an EditItemTemplate in our FormView control, using the
following code:

<EditItemTemplate>
 <FCKeditorV2:FCKeditor ID="FCKeditor1" runat="server"
 Value='<%# Bind("Content") %>'>
 </FCKeditorV2:FCKeditor>
</EditItemTemplate>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[53]

If you now open Edit.aspx in a browser window, you should see something similar
to this:

Of course, editing the content won't do much good if we can't save it back
to the database. For that, we need to do two things. First, we need to add an
UpdateCommand to our SqlDataSource control so that we can update the content.
This is quite simple, as we simply need to add the following line right below our
SelectCommand in the code:

UpdateCommand="UPDATE [Content] SET Content=@Content">

This updates the Content table in our database by setting the Content field to
the Content in our FCKEditor control. But it won't do it unless we invoke the
UpdateCommand, which we'll do from a LinkButton. Add the following code below
the FCKEditor control in the EditItemTemplate:

<asp:LinkButton ID="button1"
 runat="server"
 CommandName="Update"
 Text="Update"
/>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[54]

Your Edit.aspx page will now look something like:

Testing the new Edit.aspx page is simple—just change the content and click
Update. If you type in This is new content over the top of the existing text and click
Update, you should see the following if you open Default.aspx:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[55]

Creating multiple content pages
We've now replicated our file-based CMS in a database, but it's still just a single
page you can update with new content. If this was all we were going to do, it would
be much easier to have a static HTML page and just edit the content in it with a
HTML editor, or even Notepad. The reason we've moved to a database is to create a
dynamic site, with different content available in different pages, all easily changed
by the user. No, a single page Content Management System won't do. Or will it?

We have had a single page for our content up to now because we only created one
file and set it to use one piece of content, whether from a database or a text file. We
could create a second page, call it Page2.aspx, duplicate the Default.aspx code
and the Edit.aspx code, create a new table in our database for Page 2, and operate
just like we have for the Default.aspx page. But that's a lot of work. And it defeats
the purpose of a CMS, especially since creating new pages would mean creating
everything over again. So, we will have a single page in our CMS.

Okay, that doesn't sound right, but you need to understand that a page could have
different meaning in different contexts. A page in a web site, like that of a magazine,
is different from every other page. We change pages by clicking links, often in a
menu, just as we would turn a page in a magazine. But a web site is not a magazine.
We have the ability to create that page on the fly as it's requested, piecing together
data from multiple sources such as text, pictures, headlines, and so on. A page,
in terms of ASP.NET code, is really just a file in our application. That file, such as
Default.aspx, can display multiple web pages just by changing the content used to
create the page in the web site.

Until now, we selected data only from a single location, based on no input from the
user, just the developer's whims. That's not very useful to the user, and it's rather
boring for the developer. It would also make for a very short book, as this would be
the last chapter. The user wants more information and a better web experience. The
developer wants a more challenging application to develop. The content providers
want to be able to display more content in a more friendly manner. And the book
publishers want a longer book. So let's keep going, shall we?

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[56]

Altering the database table
Our database is currently set up to mirror our single file that we used in Chapter 1.
There is no provision for keeping track of the page that the content should appear
on, so we really can't store content for multiple pages in it. We need to modify the
table structure to accommodate pinning content to a page.

To do this, open SQL Server Management Studio and open the SimpleCMS database
from the App_Data folder. You may need to attach to the database in SQL Server
Management Studio. In Object Explorer, expand the SimpleCMS database, expand
Tables, and then the dbo.Content table. Right-click on Columns and choose New
Column. This will open the dbo.Content table with a new column ready for input.
Enter a column name of PageName, with a data type of nvarchar(50), and check to
allow nulls. We need to allow nulls because we already have a record in the table,
which will have a null entry in the new column when we create it. We'll populate it
later. Your new column should look something like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[57]

Adding data to the new column
We already have a record with data in the Content field of our new table, but it has a
NULL entry for our new PageName field. We need to add the name of our page that
will display the content we created and edited in the previous section. To do this,
right-click on the dbo.Content table in Object Explorer and choose Open Table.
This opens our table and allows us to enter data directly into the database fields.

Start by changing the NULL entry in the PageName field in the first record to
Home. This will be the content displayed in our site's home page. You'll notice
that the Content field is populated with <p>This is new content</p>, which is
the data saved to our database from the FCKEditor control when we tested our
Edit.aspx page.

While you're on this screen, add a new record by clicking in the empty field next to
the asterisk and typing Content for page two. Add a PageName of Page2 for the
PageName field for this same record. Add a third record with Content for page
three in the Content field and Page3 in the PageName field. Your table should look
like this:

You'll notice the red exclamation point on the record until you move the
cursor to another record. This indicates the record has not been saved to
the table. As soon as you move off this record, it is saved to the database
without needing to do anything special to save your data. SQL Server, as
with all Microsoft databases, saves a record as soon as possible to prevent
any loss of data in the case of a power failure or any other disruption.
This is important both to maintain data security and to maintain
integrity. The record is locked, as it is written to prevent two users from
editing the same record, and only one user's changes are effected. Until
you move off the record in the interface, you may still be editing it, so
changes are unsaved and could be overwritten or lost. This is a good
reason not to edit records directly in database tables unless there is no
possibility of someone else being in the database at the same time.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[58]

We now have data for three separate pages in our database. If you were to run the
SimpleCMS application in your browser, you would have unexpected results, as we
have written code to deal with only a single record and we have done nothing to
specify the specific record we want. To do that, we need to change the SqlDataSource
to include a query for our data that will result in a single record.

Altering the SqlDataSource code
Our current SqlDataSource uses a SelectCommand in the Default.aspx file, and
both a SelectCommand and an UpdateCommand in the Edit.aspx file. In all cases, this
SelectCommand simply selects the Content field from the Content table, without
selecting a specific record from which the Content field is read. This was fine when
we had a single record, but now as we have three records, we need a way to select
just the record we want and then the Content field from that record. We will use the
PageName field to select the record.

SQL queries can have a WHERE clause to specify specific parameters to match in the
query. We'll cover this more completely later in the chapter, but a simple example
will make it easier to understand the concept. Suppose you had to select a specific
person from a crowd of people. Each person has a number of attributes—some are
male, some are old, and some have blonde hair. But to select a single unique person
out of the crowd, you need an attribute that is unique to that person. Suppose every
person had a different name. There was Jim, and John, and even Mary, but no two
people had the same name. If you asked all the men to come forward, you might
get dozens of people. If you asked everyone with blonde hair, maybe dozens more.
Even if you asked for all the blonde males in the crowd, chances are you would have
several step forward. But if you asked for Richard, only Richard would step forward.

Now, suppose everyone in the crowd has a sign, all with different words or symbols.
If you wanted to know the sign a specific person had on him/her, you would ask
for the sign that Armando is carrying. As there is only one Armando in the crowd,
you get only one sign. And you've just created a query for a specific piece of data,
the sign, carried in a specific record, Armando's. The query would be something like
"Give me the sign that Armando has". Or in terms of our database and the Content
field, "SELECT Content FROM Content WHERE PageName = Page2".

We just need to add that to our SqlDataSource. We don't want a specific record
to always show when we use that SqlDataSource, we just want to change the
SqlDataSource, so we can specify a PageName to select the Content from. We do that
by using a variable. If you change the SelectCommand in the Default.aspx, and
both the SelectCommand and the UpdateCommand in Edit.aspx to the code shown
below, we'll have that ability:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[59]

SelectCommand="SELECT [Content] FROM [Content]
 WHERE PageName=@PageName"
UpdateCommand="UPDATE [Content] SET Content=@Content
 WHERE PageName=@PageName"

This allows us to specify the PageName variable when we use the SqlDataSource. We
will do that by using a query string, which is appended to the URL to specify the
page we want to view. To read the query string, we use a QueryStringParameter
for both the SelectCommand and UpdateCommand in our SqlDataSource. To do this,
add this code directly below the modified SelectCommand and UpdateCommand in
the Edit.aspx file:

<SelectParameters>
 <asp:QueryStringParameter Name="PageName"
 QueryStringField="PageName" Type="string"
 />
</SelectParameters>
<UpdateParameters>
 <asp:Parameter Name="Content" Type="string" />
 <asp:QueryStringParameter Name="PageName"
 QueryStringField="PageName" Type="string"
 />
</UpdateParameters>

This code adds parameters to the SelectCommand and UpdateCommand in our
SqlDataSource. The QueryStringParameter accepts a QueryString called PageName
from the URL, and adds that QueryString value as a parameter to the SELECT and
UPDATE queries that go to SQL Server Express in our WHERE clause. This query then
matches the PageName field in the database to the PageName QueryString value,
returning only that record having that PageName value in the PageName field.

The ASP.NET QueryString
A QueryString in ASP.NET, as well as other dynamic web languages
such as Classic ASP, is a method for passing parameters between web
pages, using the URL to pass the parameter. The URL with a query
string attached takes the format of the page URL—a question mark
followed by a parameter and value, or sometimes a series of parameter
and value pairs. The code on the destination page then reads the query
string from the URL. You probably recognize these query strings in
many of your favorite web sites; they show up in the following format:
http://www.samples.com/Default.aspx?PageName=Home

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[60]

To test your new SqlDataSource, browse to the following URL in a web browser:

http://localhost/Default.aspx?PageName=Home

You should see a page similar to this:

If you change the URL to http://localhost/Default.aspx?PageName=Page2,
you should see the page change to:

Later on in the development of this application, we'll add more functionality such as
menus to navigate between pages. But, for now, we have walked through the process
of replacing our file-based CMS with a database version. We have also written the
database and application to handle multiple pages, something we couldn't easily do
with a single text file as our source of content. As we move further, you'll need to
know some basic SQL Server commands and techniques.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[61]

Understanding SQL Server commands
The nice part about learning Microsoft SQL Server query language is that there really
aren't a whole lot of commands to learn. When you're trying to look something up,
you use a SELECT query. Adding data uses INSERT for a new record and UPDATE
to change an existing record. And when you want to get rid of data, you use the
appropriately named DELETE query. Other than commands that work with the
database and table structure itself, the rest are simply commands used to modify
the query.

Rows / Records and Columns / Fields
When databases were simple non-relational tables for storing data,
the idea of rows and columns was used to describe the actual data
in the database. As the database expanded, and became larger and
more flexible, rows and columns didn't seem correct. Therefore, the
terms records and fields were used instead. Through common use
and the hold over of older definitions, rows and records are now used
interchangeably as are columns and fields. This book will flip between
them—don't let the different terms confuse you.

SQL query syntax
SQL query syntax is extremely simple, though it can get quite complex. At the
most basic, it consists of a query type, the data you want to retrieve, and where to
retrieve it from. There are some conventions to writing a query and some required
information, but most of the query is optional, as long as the meaning of the query
is not ambiguous. However, there are some best practices you should learn and
obey, to ensure that the more complex queries you write are easily understood
with no ambiguity.

Query notation generally has any SQL command in capital letters such as SELECT,
FROM, WHERE, and so on. In addition, specific data values must be enclosed in
single quotes and the semi colon terminates a query statement. A well-formed query
might look like:

SELECT UserName FROM Users WHERE Email ='jsmith@aol.com';

White space and line breaks are generally ignored in SQL queries, and you will
see queries broken across multiple lines to either make them more understandable
or simply because they fit better on the page. A single line query will usually be
understood without the semi colon terminator, but coding standards requiring
the semi colon as a terminator in all cases make for better programs and
easier-to-maintain code.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[62]

A best practice for writing any query is to always specify exactly the data you want,
using the format of {TableName}.{ColumnName}, so there is no ambiguity in where
the data resides. The above query would look more like the following one with table
names specified:

SELECT Users.UserName
FROM Users
WHERE Users.Email ='jsmith@aol.com';

Now, this is a simple query from a single table, so it's unlikely you or the system will
be confused about what table the Email column is in. But you might find a query that
looks like:

SELECT Users.UserName, Roles.RoleName, Portals.PortalName
JOIN Users, Roles
ON Users.UserID = Roles.UserID
JOIN Users, Portals
ON Users.UserID, Portals.UserID
Where Users.Email LIKE'%@aol.com';

With that many tables with a UserID field, it's easier to get confused. By specifying
the table name, along with the column name, the confusion is cleared up.

Out, out damned Asterisks!
The asterisk character, *, is used in simple queries to indicate all
columns in a table. The query:
SELECT * FROM Users;
is a way of saying "Give me all fields in all records from the user's
table". It's also sloppy. Very rarely will you want all the fields
in a record. You will usually want pertinent information such as
FirstName and LastName, not everything you track, including shoe
size. Specifying the exact fields you want to be returned will help both
eliminate mistakes and reduce the size of the data returned by the
query. The more data you get back, the slower your application will
run. After all, you would ask something like "Can you give me the
names of everyone we hired in 1992?" rather than "Can you send me all
the employment records for 1992?" Why dig through boxes and folders
when you just want a list of names? Listing out all the specific columns
you need to use is always a better alternative to the dreaded asterisk.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[63]

SELECT queries
The most used query is probably a SELECT query which, like it sounds, is used to
select data from a database. The query returns data in the order of the fields listed in
the query, and can be modified through the TOP and the ALL|DISTINCT options.
Data can also be returned in a specific order or grouped by fields. A typical SELECT
query would be:

SELECT StudentName, Grade FROM Gradebook;

WHERE clause
The most common clause added to a query is the WHERE clause, allowing a selection
to be filtered to a specific value or range in a field. Typical WHERE clauses might be
used to select all students who got an A, or any student who got a C or better:

SELECT StudentName, Grade FROM Gradebook WHERE Grade ='A';
SELECT StudentName, Grade FROM Gradebook WHERE Grade <'D';

LIKE
A modifier to the WHERE clause is LIKE, which can be used to select values where the
exact value isn't known. A common situation would be looking for the grade of a
student named "Peter Westin", but not knowing if he is listed as "Peter Westin",
"Pete Westin", or even "Peter James Westin". This can be solved by using LIKE:

SELECT StudentName, Grade
FROM Gradebook
WHERE StudentName LIKE'Pete%';

This returns all records where the student name begins with "Pete", so it will match
all the possibilities listed above. Unfortunately, it will also return "Pete Marshall",
"Petersen Lowenstein", and "Peteya Russinovich"—a good reason to specify first
name and last name as separate fields.

AND | OR
AND and OR can be used to add additional parameters to a WHERE clause, further
narrowing the selection returned. An example to limit our results to only Seniors or
Freshmen with a Grade of "A" might look like this:

SELECT StudentName, Grade, ClassLevel
FROM Gradebook
WHERE Grade ='A'
AND ClassLevel ='Senior'
OR ClassLevel ='Freshman';

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[64]

TOP
SELECT queries can be modified using TOP to select only a specific range of data.
TOP takes a number and returns that number of records based on the order of the
data. The number may not actually be the number of records returned, as TOP treats
all ties with the same priority. A query to select the TOP 10 ordered by grade could
return 10 or more records. Suppose that five had a grade of 100 and nine had a grade
of 99. TOP 10 would return 14 records, as it can't distinguish between the nine grades
of 99 as to which is higher than the other. A typical TOP selection might look like
the following:

SELECT StudentName, Grade FROM Gradebook ORDER by Grade DESC;

ALL | DISTINCT
ALL and DISTINCT are two options for modifying a selection to either all elements
in a specific group or just a single element from each group. Suppose you had
records in a table with a Grade of A, B, C, or D. A SELECT query that is grouped by
grade using the ALL option would return all records with a grade of A, then all with
a grade of B, and so on. DISTINCT would return only a single record for each grade.
Therefore, if you had thirteen grade A, nine grade B, no grade C, and five grade D, it
would return one record for A, one record for B, and one record for D. Typical ALL
and DISTINCT selections might look like:

SELECT ALL Grade FROM Gradebook ORDER BY Grade;
SELECT DISTINCT Grade FROM Gradebook ORDER BY Grade;

COUNT
The COUNT option in a selection doesn't return data, it returns a count of the
records matching that query. It requires a name and a field to count, and would
return a numeric value by the name. A typical COUNT option, used to count the
number of times each grade appeared in the Gradebook table, might look like:

SELECT Grade, Count(*) AS Students FROM Gradebook GROUP BY Grade;

and might return data that looks like the following:

Grade Students
A 13
B 9
C 0
D 1

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[65]

GROUP BY clause
The GROUP BY clause groups the data results by the field specified. It is used to
combine records with similar values into smaller results. GROUP BY is often used in an
aggregate function such as COUNT, or to prevent duplicate records from affecting
the results of the query. A typical GROUP BY clause would be used as in the COUNT
query above.

HAVING clause
HAVING is an option for the GROUP BY clause that uses a comparison to filter results
from groups, similar to a WHERE clause. WHERE is applied to every record in a table,
while HAVING is applied to the group. A typical use for the HAVING clause would be
to select only those grades received by five or more students in our COUNT example
above, as shown next:

SELECT Grade, Count(*) AS Students
FROM Gradebook
GROUP BY Grade
HAVING Students > 4;

ORDER BY clause
The ORDER BY clause is used to determine the order records are returned
in—ascending (ASC) or descending (DESC). If left out of a query, records are
returned in the order in which they appear in a database, and the order will be
unpredictable. Therefore, it is recommended to specify the order, whenever it is
desired to have the output in a particular order. A typical ORDER BY clause
would be:

SELECT StudentName, Grade FROM Gradebook ORDER BY Grade ASC;

It may seem odd, but this query orders the student and grade, according to the
grade, from highest grade to lowest. This is because while number grades descend
from 100 to 99 to 98 and so on, letter grades ascend from A to B to C, and so on.

INSERT queries
INSERT, UPDATE, and DELETE queries are used to add, modify, and remove
records in the database. An INSERT query will insert a new record with the data in
the appropriate fields, and has a very specific format. When inserting a new record,
all the fields are normally empty or null, unless the database was configured with
a default value. Any field you do not provide a value for will remain null, and you
must provide values if the database does not allow null entries for a specific field.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[66]

The format of an INSERT query is as follows:

INSERT INTO {Table Name} ({Field Names}) VALUES ({Field Values});

{Field Names} is a list of field names in which the values will be inserted, separated
by commas, whereas {Field Values} is the list of values to be inserted into those
fields, also separated by commas. The values are inserted into the fields, in the order
in which the fields appear in the {Field Names} list, and there must be an equal
number of values as there are field names. A typical INSERT query might look like
the following:

INSERT INTO Gradebook (StudentName, Grade, ClassLevel)
VALUES ('Kurt VanGelder','B','Junior');

UPDATE queries
An UPDATE query is identical to an INSERT query, except that it operates on
an existing record instead of inserting a new record. An UPDATE can be used
on a single field in a record, or on any number of fields, simply by providing the
appropriate field names and values. For instance, if our student from the INSERT
query changes his grade to A, we can change his record with the following query:

UPDATE Gradebook SET Grade ='A'
WHERE StudentName ='Kurt VanGelder';

DELETE queries
A DELETE query is just want it sounds like, a query that deletes a record. DELETE
queries operate only on the entire record. If you need to delete just the data in a
field in a record, use an UPDATE query to change the field value to null. A typical
DELETE query might be:

DELETE FROM Gradebook WHERE StudentName ='Kurt VanGelder';

Other queries
There are other types of queries, though they will be used less often. A MERGE
query will combine data from two or more tables, sort of a combination INSERT and
UPDATE in one. You will also see SQL commands that create a table, alter a table, or
drop a table from the database, changing the structure of your database and tables as
your application needs change.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[67]

One type of command you will see are transactions in SQL, especially in the
manipulation of financial data, which protects data integrity when multiple queries
are executed to process a transaction. A transaction in SQL might look something
like this:

START TRANSACTION;
 UPDATE Credit.Account
 SET Credit.AccountTotal = Credit.AccountTotal - 10000.00
 WHERE Credit.AccountNumber = 61644871;
 UPDATE Debit.Account
 SET Debit.AccountTotal = Debit.AccountTotal + 10000.00
 WHERE Debit.AccountNumber = 41665790;
IF ERRORS = 0 COMMIT;
IF ERRORS <> 0 ROLLBACK;

This transaction first updates a Credit.Account record to take out $10,000, and
then updates Debit.Account to add $10,000. If an application crashed or there
was another failure during the transaction, and one of the UPDATE queries didn't
complete, the financial records would be out of synch. The transaction solves this
issue, as the transaction is not committed in the database until all parts of the
transaction have completed successfully, otherwise all changes are rolled back and
undone. Imagine a world where you wrote a check for rent and it was taken from
your bank account, but never added to your landlord's bank account. Your bank
says you don't have the money and your landlord says he doesn't either, so
you're being evicted. We won't use transactions in our application for this book,
but you might want them if you extend this Content Management System to include
e-commerce functions.

It is well beyond the scope of this book to teach you SQL, but as we create our
Content Management System, we may need to review some SQL statements again.
You may want to look at http://www.sqlcourse.com/ for a quick interactive
introduction to SQL queries and syntax. You can install SQL books online (from the
same web site you downloaded SQL Server 2005 Express) for a complete reference
to SQL Server, especially command syntax.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[68]

Entities and relationships in brief
SQL Server works on the principle of RDBMS. This means that tables and data
can be related to each other, and in fact should be. We'll work with some of these
relationships in designing the architecture of our application in the next chapter.
Also, it's important that you have an idea of what entities and relationships are,
and how they work.

Entities
In database terms, an entity is a specific object having features, called attributes,
which can be used to describe it. You are an entity. Your attributes include
your first name, last name, email address, phone number, and shoe size. Some
attributes are important—you would probably like your users' names and email
addresses—while others are less important. Unless you run the web site of the
International Association of Web Developers with Two Left Feet, probably you won't
care about your users' shoe size. But the Nike retail web site may be very concerned
about shoe size. The attributes in your database, called fields or columns, will be
those that you choose to track. In your database, each entity is a table. So, the table
for a person might look like:

PersonID FirstName LastName EMail Phone
1 Ron Davis rdavis@aol.com 212-547-1818
2 Betty Randall-Smythe betty@yahoo.com 813-484-5200
3 Sidhartha Pandoori sidp@gmail.com 11-435-537-8900

Each of the three people listed is a specific entity that can be identified by one of the
attributes in the table. In this case, we used a unique identifier called PersonID, a
number that is unique to only that record. After all, as we add people to the table,
there is possibly another Ron Davis who could be entered, making both FirstName
and LastName, as well as a combination of the two fields, non-unique. In a database,
we always want a unique identifier, or Primary Key, which could be used to select
a single record.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[69]

SQL Unique Identifier and IDENTITY column
In SQL Server, there are two ways to ensure a unique identifier in a
database table. Perhaps the simplest is to create an IDENTITY column,
which gets assigned a unique number as soon as the record is created.
This ensures there will always be a unique identifier in the record that
can be used as a key value, and which can be found in only one record
in the table.
A problem with the IDENTITY column is that it is unique, but only
within this table and database. If you were to merge a database (for
example, merging your company's database with your competitor's when
the companies are merged), this identifier may no longer be unique.
A Unique Identifier data type, normally called a GUID, is globally
unique across everything. These can't be automatically created when the
record is inserted into the table, and they are generally large, a 16-byte
binary value. This makes indexing them take longer and be less efficient.
In our project, we'll be using the IDENTITY column approach—partly
for ease, and partly because our application is for learning purposes and
unlikely to be widely used for production. But if you are tasked with
creating a unique identifier for your SQL records, remember that there is
a difference between the two.

Entity relationships
Entities have relationships to each other as well, the principle behind an RDBMS. For
example, take a student attending courses at a university. The student is an entity,
and so is the course and the instructor. They relate to each other in different ways.
A course will have only one instructor, a one-to-one relationship in the database.
But each instructor may have many courses, a one-to-many relationship. And many
students will have many courses, a many-to-many relationship. It is through these
relationships that we can find the data that applies to a specific query. For example,
we may want to find all the courses taught by an instructor. We query the database
for all courses having a specific instructor. Simple enough, but the query needs to
handle data from multiple tables. We do this by associating the identities, or creating
relationships between them. Consider the following database tables:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[70]

We have three entities, or tables—Courses, Instructors, and Students. We have a
number of attributes that we track for each. Each table is all the attributes of a single
entity, so we don't list Courses under Students, or under Instructors. Instead, we use
keys to each entity, to define the relationship between tables, so that we can select
from across multiple tables. Each table has a unique identity column, or primary key,
which identifies a specific record in that table. No two records will have that unique
value. In these tables, we arbitrarily assigned an automatic ID for each Course_ID,
Instructor_ID, and Student_ID. This is called the Primary Key, or PK, as it is the
primary means of identifying a unique record in this table.

Database normalization
Normalization of a database is a technique that is used to design a
database to eliminate duplication of information and to help maintain
data integrity. In our example, we had Students as a separate table. We
could have had a single table for courses, and for each instance of a
course taken by a student, we could enter the course information and
the student information. This would be a database that isn't normalized
because you might have four courses which have a record for "John
Smith", along with his email and phone number. This amounts to four
opportunities for data to be entered incorrectly.
Suppose one of the entries listed "Johnny Smith", as that's what his
friends call him, and another had "John Michael Smith" because he gave
his full name while registering for the course. A search of the database for
all courses taken by "John Smith" would miss both these records, as that's
not what was entered as his name. Now, suppose he changed his email
address. Someone would have to search through every record in the
database to change his email address.
Normalized, the database has Students as a table and all details about the
student are kept in that table. There are still data entry errors possible,
but the chances are lessened and the corrections are easier. Simple data
entry checks and searches for similar names can allow an operator to
enter data correctly, and with a fairly high confidence that the data is
correct and cohesive across all databases.

You'll also notice that Instructor_ID appears in the Courses table too.
This is because each course can have only a single instructor, so we can include this
field as a key to the Instructors table, where we store the attributes of the
instructors. This field is called a Foreign Key, or FK, as it identifies a unique record
in another (or foreign) table. This foreign key also identifies the relationship between
the Courses and Instructors tables. We use this relationship to create our query,
looking for the courses taught by a given instructor for whom we know the email
address is jsmith@sample-university.edu. The SQL query would look something
like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[71]

SELECT Courses.CourseName, Courses.CourseNumber
FROM Courses INNER JOIN Instructors
ON Courses.Instructor_ID = Instructors.Instructor_ID
WHERE Instructors.Instructor_Email ='jsmith@sample-university.edu';

This query joins the two tables together using the Courses.Instructor_ID and
Instructors.Instructor_ID fields as the common link between the tables. The
results of this query will be the course name and number for the instructor with an
email address of jsmith@sample-university.edu. An INNER JOIN simply indicates
that only the records with the same value appearing in the Instructor_ID field of
both tables will be selected. An OUTER JOIN would select all the records where the
value appeared in neither record, or display every record that didn't match the given
email address. That would be a query for all courses not taught by this instructor.

So, how about courses and students? What if you wanted to query all the courses for
a student, or all the students for a course? There are no foreign key fields to link the
tables. How do we query then? Well, the answer is, we can't. At least not without
another table. We need a table that sits between the Courses table and the Students
table, and maps the students to the courses and vice versa. Consider this table
diagram, this time with the entity relationships shown:

You'll see a new table here, StudentsCourses, with only the primary keys of the
Students table and the Courses table listed. This is used in the SQL query with
a double JOIN statement to link the Courses and Students tables through the
StudentsCourses table, as shown next:

SELECT Courses.CourseName, Courses.Course_Number,
 Students.Student_FirstName, Students.Student_LastName
FROM Courses, Students
JOIN Courses, StudentsCourses
ON Courses.Course_ID, StudentsCourses.Course_ID
JOIN Students, StudentsCourses
ON Students.Student_ID, StudentsCourses.Student_ID
WHERE Courses.Course_ID = "3";

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[72]

This query will list course name, course ID, and student names for all students in
the course with a Course_ID of 3. Yes, SQL queries can get complicated, especially
when you're unfamiliar with the query syntax. We'll get into database structures
more in the next chapter where we work on the architecture of our application,
and you might consider additional resources if you want to understand entity
relationships better.

SQL injection
SQL injection is a hacking technique that attempts to gain access to the system by
sending escape characters in a SQL command and injecting a rogue command into
the SQL statement. It happens when a web site allows user inputs to pass directly
to the command string, and be executed by SQL without any filtering for unwanted
command characters. Needless to say, it's something we don't want happening in
our Content Management System.

An example of SQL injection is where an input into a form contains an unexpected
set of characters. Suppose you had an SQL statement that accepted a product
name as input and searched for it in the Products table of your database. The SQL
statement might look like this:

SQLstatement = "SELECT * FROM Products
WHERE ProductName ='" & ProductName & "';"

If a user entered Chair, the resulting statement would look like:

SELECT * FROM Products WHERE ProductName ='Chair';

This is perfectly fine. Your SELECT statement will find any product named Chair and
display it. But what if the user enters the following query in your form:

Chair' or'x' ='x';DROP TABLE Products;SELECT * FROM Products WHERE
ProductName ='Chair

 The resulting SQL command would look like:

SELECT * FROM Products WHERE ProductName ='Chair' or'x' ='x';DROP
TABLE Products;SELECT * FROM Products WHERE ProductName ='Chair';

This query would be evaluated to select any record with the product name of Chair,
or where x = x. As x always is equal to x, the WHERE clause will evaluate true. The
next statement following the semi colon would be followed, dropping the table
Products from your database. The third statement after the next semi colon is
simply there to make this a valid SQL query with the addition of the last single quote
from your code. The end result is that the injected SQL just deleted the Products
table, rendering your application useless.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[73]

Preventing SQL injection
There is no easy way to prevent all SQL injection attacks, so defense in depth
is appropriate. The first layer of defense is the input itself, which needs to have
malicious characters filtered out. In particular, not allowing the SQL query
terminator (;) or SQL comment characters (– and /* */) will prevent quite a few
automated injection attacks. Filtering out any inputs that begin with xp_ is also
a good idea, as these are the first three characters of SQL Server extended stored
procedures. You do not want the stored procedure xp_cmdshell to be run on your
system. Many production SQL servers will have this extended procedure removed
for this purpose, as well as any others that can be used malevolently. Using field
validation in input forms can help and, in your code, you can replace any of these
malicious input characters with harmless text, something like:

strFormInput = strFormInput.Replace(";","--")
SQLstatement = "SELECT * FROM Products WHERE ProductName ='" &
strFormInput & "';"

This takes the form input, and replaces the SQL query termination character (;) with
the comment characters (--), effectively commenting out malicious code entered
into the form input. But relying on field validation or replacing character strings
won't prevent all SQL injection. Someday, someone will try a string of characters you
didn't think to filter on.

Parameterized queries are another line of defense against SQL injection. A
parameterized query is one where the user input is added to the SQL query as a
parameter, not as part of the original query statement. For example, our original
SQL statement:

SQLstatement = "SELECT * FROM Products
WHERE ProductName ='" & ProductName & "';"

could be rewritten something like this:

SELECT * FROM Products WHERE ProductName = @ProductName",
SQLConnection);
SQLCommand.SelectCommand.Parameters["ProductName"].Value ='Chair';

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding a Database to a Content Management System

[74]

SQLConnection and SQLCommand would need to be defined somewhere of course,
but the idea is that SQL Server allows query values to be substituted with parameters
that are inserted into the SQL query by SQL Server. Parameterized queries are
even more effective when used by stored procedures, especially when type-safe
parameters are used. SQL Server allows the specification of the data type in the
creation of the parameter, requiring the correct data type for the field. For example, if
your field is an integer, a string entered as a parameter won't be accepted. Protecting
your code from SQL injection is only one of the security issues you'll face in your
development career, and it's unfortunately beyond the scope of this book. You will
likely see some of the code in future chapters exposing potential security problems.
Please remember that the code in this book is to teach a concept, not to be used
immediately in a production environment.

Microsoft has more SQL injection suggestions online at
http://msdn.microsoft.com/en-us/library/ms161953.aspx, and a section
on SQL injection in the Patterns and Practices Security Guidance documents at
http://msdn.microsoft.com/en-us/library/ms998271.aspx.

Changing the database user account
In this chapter, we used the sa account to connect to our database, even though
earlier we created the SimpleCMSUser account for this purpose. There's nothing
wrong with this for developing a site that will not be published on the Internet, but
the sa account is the master account for your database and it's not a smart idea to
use it on a production system. In addition, many hosts will not allow you to use it,
and will make you create an account or use one they create for you. Fortunately, it's
simple to change the account we use.

Assuming you created the account in SQL Server Management Studio, or by using
your host's control panel, you simply need to change the connection string in the
web.config file. In your web.config, you will find a line similar to:

<add name="SimpleCMS_DatabaseConnectionString"
 connectionString="Data Source=HP\SQLEXPRESS;
 Initial Catalog=SimpleCMS_Database;
 Persist Security Info=True;
 User ID=sa;Password=SimpleCMS"
providerName="System.Data.SqlClient" />

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 2

[75]

Simply change the User ID and Password to match the database user you or your
host created. To use the SimpleCMSUser account we created earlier, you would
change this line in the web.config as below, with the changes highlighted:

<add name="SimpleCMS_DatabaseConnectionString"
 connectionString="Data Source=HP\SQLEXPRESS;
 Initial Catalog=SimpleCMS_Database;
 Persist Security Info=True;
 User ID=SimpleCMSUser;Password=SimpleCMS"
providerName="System.Data.SqlClient" />

Summary
In this chapter, we replaced the file-based CMS from Chapter 1 with a database
version. You should now have a basic understanding of working with SQL Server
Express 2005 and ASP.NET, as well as a basic understanding of how SQL Server
works. You should be able to create a database, create a table in that database,
and add columns to that table within SQL Server Management Studio Express.

We also explored the SqlDataSource, and using SQL Server 2005 Express as a
source for data in our application. We created both a SelectCommand and an
UpdateCommand to be used in that SqlDataSource to select records and modify the
data in specific fields. You should also understand the role of the ConnectionString
in the web.config in providing a connection to the database. As you work with
ASP.NET and databases, you will find that moving applications to new systems
will require changes to the connection string to get the database connected to the
application. The web site at http://www.connectionstrings.com/ is a good source
for example connection strings to many different data sources and databases.

In the next chapter, we'll work with the basic architecture of our application,
including the database schema, along with the way tables, rows, and columns relate
to each other and to our application. We'll discuss some methods of designing the
application architecture, and we'll make some decisions that will provide the base
for the entire application we create. A good part of this next chapter relies on a solid
understanding of SQL Server basics. Therefore, if you feel a little shaky, feel free to
review Chapter 2 again.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Content Management System
Architecture

In the last chapter, we upgraded our Content Management System to use a database,
pretty much without any real thought to the overall application we want to end
up with. We created a table for our content, which originally had no provisions for
multiple pages. While we did add a column to the table when we figured out that we
wanted multiple pages worth of content, we had to go back and add data for the new
column for those records we had already created. It wasn't hard; we added the name
Home to our first record in the PageName column. However, what if we already had
100, or 500, or even a million records in the table? It would have been a lot smarter
to plan the columns in the table before we started filling them with data.

And that's what architecture is. Just like architecture for a building, program
architecture is a plan for the development of the program. It includes a foundation
for the program to rest on, supporting structures for the various parts of the program
and individual rooms, or functions, of the program. They are all spelled out in vast
detail, so that the builder, or programmer, can work from the architectural plan and
create the program. But they are also only lines on paper, which can be changed as
needed such as when the client wants a three-car garage instead of two, or an event
calendar on every page.

One of the basic standards of good development is to separate content from
presentation. This means we want the content, the actual words, pictures, and so on,
to be present in the system without being attached to any presentation specifics such
as fonts, background colors, layout, or anything else. The advantage to this is that
we don't need to edit the content to change the way our site looks. We will also stay
away from using HTML for formatting, and instead use cascading style sheets (CSS),
wherever possible. This allows us to change a few lines in a single CSS file to change
the look of all of our web pages.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Content Management System Architecture

[78]

In this chapter, we'll look at all of these, as well as plan our database structure and
lay out our data relationships. We'll look at ways to access the data, apply some
simple business logic to it, and then present that data on a web page. This separation
of the data, data access, business logic, and presentation is often referred to as n-tier
programming. Although we won't get heavily into programming separate tiers for
our Content Management System, we will walk through the process.

By the end of this chapter, you will have a better understanding of:

•	 Multi-tier architecture
•	 Interacting with the data store
•	 Creating sample articles to work with
•	 The fundamentals of a data access layer
•	 The fundamentals of a business logic layer
•	 Using typed datasets
•	 Creating your data access and business logic layer classes
•	 The beginnings of your presentation layer

Multi-tier architecture
In larger programming environments, where the entire application is not created
by a single developer, many of the programming tasks are broken into separate
tiers. Separation of these tiers makes maintenance and expansion of an application
easier, and allows for the development of each tier to fall to a programmer who is
expert in that programming arena. There is no way a modern application developer
can be an expert, or even relatively fluent, in all aspects of development, so teams
of developers are essential. There are often database programmers, network
programmers, and graphic designers involved in a project, each of whom may
have little or no idea about the other's job.

Another reason why n-tier architecture is so prevalent is that modern applications
have to adapt to changing conditions. A corporate merger may mean a change
of database, new business rules, or a new design for the end-user interface. It is
far easier to change these aspects if they are separated from each other than if a
developer has to sift through thousands of lines of code to find the needed changes.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 3

[79]

The solution for these issues is separation of the application into tiers, usually four
tiers that are often referred to as three. These tiers are:

•	 Data Layer: This tier represents the database itself and any programming
within it. There may be specific programming involved such as stored SQL
procedures to handle data retrieval or SQL triggers to update data when
other data is changed.

•	 Data Access Layer (DAL): This layer accesses the data and exposes the data
to the Business Logic Layer. This layer often includes some validation of
data, constraints on the type of data that can be entered, and possibly some
data formatting.

•	 Business Logic Layer (BLL): This layer is where business logic occurs.
Business logic includes whatever might be specific to the business such
as gross receipts always being reported before taxes, finances must be
expressed in Euros and US dollars, or employees are always listed as last
name, first name.

•	 Presentation Layer: This layer determines the actual presentation that is
viewed by the user, the styles, themes, layout of pages, and so on. It is at this
layer that all typographic settings occur, including font size, color, and so on.

These tiers are often referred to as three-tier architecture because the data layer
(the data store itself) is often combined with the data access layer. In fact, for small
applications, it makes little sense to abstract these layers when there is very little for
a layer to do. In the case of our Content Management System, we will not be using
SQL stored procedures, as this is a learning application and there aren't enough
pages in this book to teach SQL database programming. We'll also tend to blur the
lines in these layers because our application is small, but we'll make sure the concept
of the separate tiers is still adhered to. Just because our application is small doesn't
mean we should toss aside good programming techniques.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Content Management System Architecture

[80]

The data store
Our architecture starts at the foundation with the data store, in our case, with the
SQL Server 2005 Express database. We created the database and the Content table in
Chapter 2, but we need more than just a single table for a full Content Management
System. While we'll create other new tables as we move deeper into the application,
let's create a Pages table now to hold information about our web site pages. In
Chapter 2, we had a single table with the content assigned to a page name, but that
structure is entirely inflexible as we couldn't easily move content from one page to
another. In addition, we may need to store additional information about pages such
as page hierarchy. However, database normalization principles tell us that data
about a single entity such as a page should be kept in the same table, excluding data
about another entity such as content.

As we're also going to be adding additional tables as we add features to the
application, we want a consistent naming scheme that won't confuse us as to
what data we're asking for and receiving. Our Chapter 2 Content table had a
column, which also was named Content, making the use of the word Content
ambiguous—do we want the Content field or the entire Content table? SQL uses
a dotted notation for specifying the database, user, table, and field, so the specific
Content field would be specified as SimpleCMS.sa.Content.Content. However,
we really want a better scheme for identifying data quickly and uniquely.

Specifying an SQL Server database
In Chapter 2, we referred to the Content field in the Content table
as Content.Content, which is an acceptable notation. The full
identification is actually {Database}.{DatabaseUser}.
{TableName}.{FieldName}, which in this case would be
SimpleCMS.sa.Content.Content. The database user in our case
is also the database owner, so dbo can be substituted for sa. As we
are connected to only a single database with a single user account, we
can drop these specifications and still be specific because they cannot
be misconstrued. We will never use a second database or username
in our application. If we were working in a single table, we could
drop the table name as well, but good practice is to always use the
table name to avoid confusion for other developers. It also makes
maintenance easier, as we might upgrade the application in the
future to use two tables for the query, and as we could possibly have
two tables with the same field names such as employee.address
and customer.address, it's always safest to specify both.
To provide further uniqueness, we could name the fields employee.
employee_address and customer.customer_address if we
think there may ever be an issue. Remember, it's harder to change a
field or table name later than it is when planning the layout.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 3

[81]

We're going to modify our application into three parts that will make up a page
when combined. The first will be an article, which is the part that displays the
content. The second is a pane, which holds modules on a page. And the third is
the page itself, which holds panes containing articles. The reason for this is that
we want the overall look and feel to be governed at the page level, making every
additional page fit into the same theme as the first. We will also want to organize
multiple panes on a page to define the layout, and we want to have multiple articles
that can display in panes. Now, we'll have three entities—named Pages, Panes, and,
Articles—each being a table.

The Pages table
Each page will have a number of attributes that we want to manage. We'll want a
name, an ID, and we'll need to determine where a page is in relation to other pages.
To do this, we'll use the parent/child relationship and identify a parent page for
every page. This way, if a page has no parent, it will be in the root of our page menu.
On the other hand, if it has a parent, it will fall under the parent page on the menu.

To create the Pages table, open SQL Server Management Studio and expand Tables
under the SimpleCMS database. Leave the Content table alone for now, we won't
use it in this chapter. However, we don't have a reason to get rid of it yet, especially
if we already have data we want to store in it. Right-click in the Tables pane and
choose New Table. Create a Pages table with three columns, PageID, PageName,
and PageParentID, set to data types of int, nvarchar(50), and int respectively.
Do not allow nulls in any field. In the Properties pane, set the name to Pages and the
Identity Column to PageID. Your table should look something like this when you
save it:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Content Management System Architecture

[82]

The Panes table
We need to create the Panes table in the same manner. Right-click on Tables in the
Object Explorer pane and choose New Table. Create a Panes table, with columns
of PaneID, PaneName, and PanePageID, set to the data types of int, nvarchar(50),
and int respectively. Allow nulls for the PaneName and PanePageID fields. You
guessed it, PaneID will be the Identity Column. The table should look like this:

In this table, we left the PageName and PageID as null because we don't actually
need them when we create a pane. We will assign them individually. In the case of
Pages, we don't want a page without a name, or the identification of its parent page,
as we wouldn't be able to add it to a menu. In later chapters, we'll expand these
tables to accommodate other data, but we just need these fields for now.

The Articles table
Articles are what our content will be displayed with, along with the permission to
edit that content. This table is essentially the heart of the application, with other
tables controlling the display and positioning of the articles and the structure of the
web site. To begin this table, we need four columns—ArticleID, ArticleName,
Article, and ArticlePaneID. We need the ArticlePaneID column to define which
pane this particular article will appear in. We will eventually want to describe this
article with many other pieces of data such as an author, date, and expiration date,
but the available columns would suffice for now. Create the Articles table with the
following settings:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 3

[83]

Column name Data type Can be null
ArticleID int No
ArticleName nvarchar(50) Yes
Article nvarchar(max) Yes
ArticlePaneID int Yes

Name this table Articles and use the ArticleID as the Identity Column.
When you finish, it should look something like this:

Sample data for the Articles table
We're going to use the Articles table, as we did the Content table in the previous
chapter, and it helps to have some sample data in the table when we start working
with it. In the previous chapter, we added data manually, by directly editing the
table. However, that's not the most efficient way to add sample data to a table.
Instead, we can use a simple SQL query to add the data.

Open SQL Server Management Studio Express if it's not already open, highlight the
SimpleCMS database and click on the New Query button on the toolbar. This brings
up the query window. Enter the following query into the window:

INSERT Into Articles
 (ArticleName, Article, ArticlePaneID)
VALUES

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Content Management System Architecture

[84]

 ('Article 1','<p>Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Donec sodales luctus nisl. Duis fringilla felis
convallis magna. Nullam urna. Nulla ante. In eget tortor. Sed est
nibh, consectetuer ut, aliquet nec, euismod sit amet, odio. Nam nisl.
Morbi sapien dolor, consectetuer sit amet, condimentum non, lobortis
vitae, lorem. Sed consequat, erat vitae feugiat rutrum, ligula ipsum
pharetra dui, in dapibus nisi massa ut sem. Integer at nunc quis
lectus facilisis molestie. Vestibulum fermentum.</p>',1);
GO

SQL Note:
You will note that we haven't included the ArticleID parameter
in the INSERT statement, any guess as to why? If you remember, the
ArticleID column is an Identity column with an auto-numbering.
This means that the column will automatically generate a new ID,
so we don't have to insert is manually.

Click on the Parse button on the toolbar (the green check mark) or press Ctrl+F5 to
parse the query. If you have any errors, check the code and test with the Parse option
until the code passes. Then click on the Execute button or press F5 to execute the
query and populate one record. Do this several more times, each time changing the
article title, so you add multiple records to the Articles table. The code download
includes a simple SQL query you may run to populate the table without entering this
query if you wish.

Parsing SQL queries
When entering a query in the SQL Server Management Studio Express,
it's always wise to parse the query before executing it. Parsing simply
processes the query for SQL syntax errors without actually affecting
the database, and is a safe way to ensure the code will work before it is
executed. Remember that even code that is syntactically correct may be
wrong, so double check any query before you execute it, to make sure it
will do what you intend. Executed queries affect the data immediately,
and the effect is irreversible. If in doubt, make sure you have a good
backup before you start entering queries.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 3

[85]

The data access layer
The purpose of the Data Access Layer (DAL) is to abstract the data source—in our
case, to abstract the SimpleCMS database from the rest of the code. This allows us
to change the data source (to maybe an Oracle or MySQL database) with minimum
effort, which may be needed to move our application to a new client or company.
The data access layer also allows us to handle database access more securely, as the
actual page code doesn't touch the database and can't pass on security vulnerabilities.

We want to include anything related to accessing data in the DAL—the business
logic layer and presentation layer should never access the data source directly.
In addition, the DAL should use strongly typed datasets, which inherit from the
ADO.NET DataSet class and provide all the methods and properties we will need to
access the data source itself. In many cases, the DAL would also include SQL stored
procedures to handle data manipulation, but we will not be using stored procedures
for our application. There simply isn't enough space in the book to cover database
programming in addition to our basic CMS application.

Creating the typed dataset
We'll start by creating a typed dataset using the Visual Web Developer wizard,
which will also walk us through creating a table adapter to access the dataset.
Open Visual Web Developer and open the SimpleCMS web site. In Solution
Explorer, right-click the root of the site and choose Add New Item. Add a DataSet,
using the default settings and name. When you are prompted, choose to save the
dataset in the App_Code folder. After the dataset saves, you will be presented with
the DataSet Designer.

Right-click in the designer pane and choose to Add a new TableAdapter. The
TableAdapter wizard will open. Choose your existing SimpleCMS connection
string and click Next, then choose SQL Statements and again click Next. You'll be
presented with the SQL query window. We'll create this table adapter for use with
the Articles table, and we'll start with a query that selects all the tables. Enter this
in your query window:

SELECT ArticleID, ArticlePaneID, Article, ArticleName
FROM Articles

This selects all columns in our Articles table. We could simply use the code:

SELECT * FROM Articles

But this is a lazy programming method. In a query, we may not need every column
and, even if we do, specifying the columns individually will let someone reading the
code immediately know what we want.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Content Management System Architecture

[86]

Click the Advanced Options button, choose Generate Insert, Update and Delete
Statements, and click OK. At this point, you may select Next until the TableAdapter
is created, or simply choose Finish and the TableAdapter will be created, looking
something like this:

At this point, you have created the DataSet attached to the Articles table, along
with a corresponding ArticlesTableAdapter that includes a Fill method
and a GetData() method. These can be used in an ASP.NET form with simple
programming and no data coding. Let's create a simple test page for the data adapter
we have created.

Right-click the root of your site in Solution Explorer and choose Add New Item.
Add a new web form, and name it Test.aspx. We'll just delete it after we test, so we
don't need anything fancy. In the Test.aspx form, we'll use a GridView control to
display the data from our table. You can either drag one from the toolbox to the page
or add the following lines in the default <div> created with the new form:

<asp:GridView ID="GridView1" runat="server">
</asp:GridView>

This is all we'll do with the Test.aspx page itself. Open the code behind file,
Test.aspx.vb, and add the following Page_Load subroutine:

Protected Sub Page_Load(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Load
 Dim articlesAdapter As New DataSet1TableAdapters.
ArticlesTableAdapter
 GridView1.DataSource = articlesAdapter.GetData()
 GridView1.DataBind()
End Sub

As you add this code, you'll notice that Visual Web Developer's IntelliSense will pick
up DataSet1 and the methods we created for it. This is because of the strongly typed
dataset, which allows IntelliSense to work with it. The Test.aspx form will then
look like the following:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 3

[87]

Okay, it's ugly. But this isn't the presentation layer, so we don't care. All this page
does is show that a few simple lines in the Page_Load event allow us to work with
the data access layer we created.

Filtering data from the dataset
The table adapter we created for our dataset has a Fill method and a GetData()
method, both of which return the entire table. We will almost never want every
article in the Articles table returned. We would want only the specific article we
wanted to display. And we would normally want to retrieve our article by name,
or maybe using the unique identifier, ArticleID. To make these retrievals possible,
we simply set these methods up in our table adapter.

We know from the last chapter that we want a WHERE clause in our SQL query that
specifies the data we want returned. The only thing we won't know until the user
requests a specific article is the actual WHERE clause, so what we need to use is a
parameterized query. This is simply a WHERE clause that uses a parameter in place
of the specific WHERE details. Our current query that returns the entire table looks
something like this:

SELECT ArticleID, ArticlePaneID, Article, ArticleName
FROM Articles

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Content Management System Architecture

[88]

What we really want is something more like this:

SELECT ArticleID, ArticlePaneID, Article, ArticleName
FROM Articles
WHERE ArticleName = "Article 1"

But we don't know that we want Article 1 every time, so we have to substitute a
parameter for the article name and then provide that parameter, when we call for the
table adapter to do its work.

To configure the table adapter to handle the WHERE clause, open
DataSet1.xsd from the App_Code folder in Visual Web Developer. Right-click
on the ArticlesTableAdapter and choose Add Query. Choose Use SQL Statements
and click Next. Now, choose SELECT, which returns rows, and finally click Next,
bringing up the query window. The original query should be in the query window,
which you can modify using the Query Builder. Otherwise, simply type in your new
query. Modify the query by adding the WHERE clause at the end, so the query now
looks like:

SELECT ArticleID, ArticlePaneID, Article, ArticleName
FROM Articles
WHERE (ArticleName = @ArticleName)

Click Next and rename the Fill and GetData methods to FillByArticleName
and GetDataByArticleName. Finish the wizard and you'll see two new
methods added to the ArticlesTableAdapter—FillByArticleName and
GetDataByArticleName(@ArticleTitle).

Once these methods have been added to the ArticlesTableAdapter, you can test
them by modifying the code-behind file for Test.aspx—Test.aspx.vb. Change the
Gridview1.DataSource line to read:

GridView1.DataSource = articlesAdapter.GetDataByArticleName _
 ("Article 1")

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 3

[89]

Now, when you view Test.aspx in your browser, you should see only a single
record, something like shown in the following screenshot:

Add a second set of methods to the table adapter using the same process, this time to
select by ArticleID, using this WHERE clause:

WHERE ArticleID = @ArticleID

As long as we pass the parameter required by the method to the table adapter, we
no longer need to write SQL queries for this data. If you wish, you can modify the
Test.aspx.vb file to display by ArticleID. Just remember that ArticleID is an
integer, so the value doesn't need to be in quotes.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Content Management System Architecture

[90]

Insert method
Now we can retrieve a record based on the ArticleName or ArticleID field.
However, what if we want to add a new record—should we change an existing one or
delete one altogether? For those functions, we'll create custom methods for our table
adapter. In the designer screen, right-click on the TableAdapter and choose Add |
Query. Choose Use SQL Statements and click Next, then choose Insert Query and
Next. This will bring you to the query screen. Notice that the query is already created
for you in a very basic manner. However, we need to modify it because when we insert
a new article, we want to retrieve the automatically created ArticleID, so we can use
it in our code. To do this, we will use the SELECT SCOPE_IDENTITY() function that
returns the value of the last auto-generated Identity column in the scope of the query.
This is actually a second query to the database, so we end the first query with
a semicolon and then add this query to the code. Your query should look something
like this:

INSERT INTO [Articles]
 ([ArticlePaneID], [Article], [ArticleName])
VALUES
 (@ArticlePaneID, @Article, @ArticleName);
SELECT SCOPE_IDENTITY()

Name this function InsertArticle and save it. Insert methods normally return
the number of rows affected, but we want to return the new ArticleID instead. To
accomplish this, we have to change the ExecuteMode on our query. Click on the
InsertArticle method we just created in the ArticlesTableAdapter and change the
ExecuteMode to Scalar in the properties pane, as shown below:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 3

[91]

To test this function, open the Test.aspx file and edit the Page_Load subroutine
in the code behind to look like the following:

Protected Sub Page_Load(ByVal sender As Object, ByVal e _
 As System.EventArgs) Handles Me.Load

 Dim ArticlesAdapter As New _
 DataSet1TableAdapters.ArticlesTableAdapter()
 Dim NewArticleID As Integer = (ArticlesAdapter.InsertArticle(_
 1, "This is a new article.", "New Article"))

 GridView1.DataSource = ArticlesAdapter.GetData()
 GridView1.DataBind()

End Sub

This test page will insert a new article on page load and then display the grid with all
the articles. The newest article should be on the bottom, with an ArticleName of New
Article and text reading: "This is a new article".

Update and delete methods
We also will need update and delete methods in our ArticlesTableAdapter.
To create these, click on ArticlesTableAdapter to select it, and look at the
Properties Pane for the DeleteCommand and UpdateCommand properties.
Click the drop-down next to the UpdateCommand and select (New). This will
create a new UpdateCommand listed as (UpdateCommand). In the CommandText
property for the UpdateCommand, select the ellipses (…) to open the Query Builder.
Here, we need to enter the query that will be executed when we update an article.
Enter the following query:

UPDATE Articles
SET ArticleName = @ArticleName, Article = @Article,
 ArticlePaneID = @ArticlePaneID
WHERE (ArticleID = @Original_ArticleID)

This query simply updates the ArticleName, Article, and ArticlePaneID
fields with the parameters passed to the query, when the ArticleID is the same
as the ArticleID passed to the query. Save this query and then modify the
DeleteCommand in the same way, but with this query:

DELETE FROM Articles
WHERE (ArticleID = @Orginal_ArticleID)

This query simply deletes the article which has the ArticleID passed to the query.
Once you have finished these changes, right-click on your web site root in the
Solution Explorer pane and choose Build Web Site. The site must build with no
errors before we can create the business logic layer.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Content Management System Architecture

[92]

The business logic layer
The Business Logic Layer (BLL) is different from the data access layer in that it
enforces business rules, those rules which are determined by business decisions
and not by data restrictions or conditions. An example in our Content Management
System would be if we had a mechanism to archive older articles, allowing retrieval
but not editing. We might also want to restrict deletion of articles to a subset of users
and not allow just anyone to delete an article. These would be business rules,
as the only basis for the rule is how we wish to conduct our business.

For many rules, we could incorporate them into the table adapter code at the data
access layer. We also might include them at the presentation layer. For example,
we could disallow editing of archived articles in the data access layer code just as
easily as anywhere else. We could also not allow archived articles to even get to the
presentation layer for display by modifying code in the presentation layer. There
are even some business rules that you will want to enforce at other layers such as
corporate logos being displayed in the presentation layer, or the fact that dates
and times are stored in the database as Date/Time fields so that we can perform
calculations on them.

In our case, we won't have a lot of business logic, simply because this is a tutorial
application. But if you were to extend this application for use in a business, good
coding techniques mean we should plan for future code at this level now. So, let's
create a business logic layer. To begin, let's clean up our project structure to make it
easier to separate the DAL and BLL from each other, as we'll be creating BLL classes
within the App_Code folder where our DataSet1.xsd file already is.

In Solution Explorer, right-click the App_Code folder and choose New Folder.
Name this folder DAL. Create a second folder named BLL. You can now click and
drag DataSet1.xsd into the DAL folder. One feature of the App_Code folder is that
all files within that folder are compiled into the application at run-time (or during
a command-line compile operation) without having to add code directories to the
web.config file.

The ArticlesBLL class
Our business logic layer will use classes, each of which handles a specific table
adapter. In these classes, we'll handle basic business rules and validation, and pass
requests between the presentation layer and the data access layer. In some ways, the
BLL behaves as a proxy between the layers, especially for those functions where all
we will do is pass information without working with the information within our BLL.
For our BLL class, we will have methods for SELECT, INSERT, UPDATE, and DELETE
operations on our DAL. We'll also have two separate SELECT methods—one to select
by ArticleName and the other by ArticleID.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 3

[93]

In Visual Web Developer 2008, right-click on the new BLL folder you created under
the App_Data folder and choose New Item. Select the Class template and name it
ArticlesBLL.vb. We will give this class five methods:

•	 GetArticles(): Retrieves all articles in the database
•	 GetArticleByArticleID(ArticleID): Retrieves a specific article when

given the ArticleID
•	 AddArticle(ArticleID, ArticleName, Article, ArticlePaneID):

Adds a new article to the database
•	 UpdateArticle(ArticleID, ArticleName, Article, ArticlePaneID):

Updates an article already in the database
•	 DeleteArticle(ArticleID): Deletes a specific article when given

the ArticleID

The first three functions merely pass a query on to the data access layer, passing
either an ArticleID or ArticleName to retrieve a specific article, or nothing at all to
retrieve all articles. The code that does this in our class looks similar to this code for
the first function in our list, retrieving a list of all articles:

<System.ComponentModel.DataObjectMethodAttribute(_
 System.ComponentModel.DataObjectMethodType.Select, True)> _
 Public Function GetArticles() As DataSet1.ArticlesDataTable
 Return Adapter.GetData()
 End Function

We are simply passing the request to return all records to the GetData() method in
our ArticlesTableAdapter and returning the data as a typed dataset. We can add
validation logic or other business rules into this function, but for now we'll leave it as
is. For example, in future, we might want to retrieve only those articles that haven't
been archived, in which case we could modify the business rule to handle this.

The AddArticle and UpdateArticle functions are somewhat different from the
GetArticle functions, as both AddArticle and UpdateArticle need to pass new
data to the database access layer. We do this by creating a DataTable with the data
to be added or updated, and passing it as a new DataRow to the data access layer.
For example, the AddArticle function code looks like this:

<System.ComponentModel.DataObjectMethodAttribute _
 (System.ComponentModel.DataObjectMethodType.Insert, True)> _
 Public Function AddArticle(ByVal ArticleName As String, ByVal _
 Article As String, ByVal ArticlePaneID As Nullable(Of Integer)) _
 As Boolean
 Dim Articles As New DataSet1.ArticlesDataTable()
 Dim ArticleRow As DataSet1.ArticlesRow = Articles.NewArticlesRow()

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Content Management System Architecture

[94]

 If ArticleName Is Nothing Then ArticleRow.SetArticleNameNull() _
 Else ArticleRow.ArticleName = ArticleName
 If Article Is Nothing Then ArticleRow.SetArticleNull() _
 Else ArticleRow.Article = Article
 If Not ArticlePaneID.HasValue Then _
 ArticleRow.SetArticlePaneIDNull() Else _
 ArticleRow.ArticlePaneID = ArticlePaneID.Value

 Articles.AddArticlesRow(ArticleRow)
 Dim rowsAffected As Integer = Adapter.Update(Articles)

 Return rowsAffected = 1
End Function

We first create the ArticlesDataTable, and then the NewArticlesRow to add the
new row to the database. We populate this row with the ArticleName, Article,
and ArticlePaneID by setting each to the data we pass into the function from the
presentation layer. In this process, as these columns in our database are null, we
must also check to see if the data passed in is null and, if it is, we should set that data
as null in our data row too.

Finally, we add the new row to the database and test the addition to ensure that only
a single row was affected by the function. If no rows are affected, or more than one
row is affected, we return False from our function, which we can process to present
an error message to the user.

The last type of function we use is the DeleteArticle function which, as its name
suggests, simply deletes the article matching the ArticleID we pass in. The code for
this is simple.

<System.ComponentModel.DataObjectMethodAttribute _
 (System.ComponentModel.DataObjectMethodType.Delete, True)> _
 Public Function DeleteArticle(ByVal ArticleID As Integer) _
 As Boolean

 Dim rowsAffected As Integer = Adapter.Delete(ArticleID)
 Return rowsAffected = 1
End Function

We simply delete the article matching the ArticleID and return a True/False,
depending again on whether a single row was affected.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 3

[95]

Testing the business logic layer
A quick test of the business logic layer can be made by modifying our Test.aspx
application. Change the Page_Load subroutine in the code-behind file to
the following:

Dim ArticlesLogic As New ArticlesBLL()
GridView1.DataSource = ArticlesLogic.GetArticles()
GridView1.DataBind()

This code uses the ArticlesBLL class that we created in our business logic layer
to return all the articles in our database, through the GetArticles function in
our business logic layer. It will actually look like the page we created to test the
GetData() method from our ArticlesAdapter, and it should. While we are
accessing that method through the intervening business logic layer, we aren't
changing it in any way with our BLL. You'll see a more dramatic change, when
we create the presentation layer.

The presentation layer
The ASP.NET framework gives us some very useful tools for developing a
presentation layer for our application. The major tool we'll use here is Master
Pages, a template system for ASP.NET pages that provides for dynamic data to be
inserted into the content panes. Using Master Pages cleanly separates the overall
site design from the content, essentially creating a site-wide look and feel that is
independent of the dynamically generated content displayed.

Building the Master Page
We'll start our presentation layer for the application by building a Master Page,
which will hold our content and provide some basic site-wide formatting. To begin,
add a new file to the SimpleCMS application, choose the Master Page template and
name the file SimpleCMS.master. You will notice that the default code added to the
SimpleCMS.master file includes a new control—the ContentPlaceHolder control.
This is a special control that takes all code and text from a related Content control
in a content page and displays it as is in the Master Page. By default, the new Master
Page has two ContentPlaceHolder controls—one named Head and the other named
ContentPlaceHolder1. There cannot be two ContentPlaceHolder controls on a Master
Page with the same name, as this is what is used to determine which content page
is loaded.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Content Management System Architecture

[96]

Designing the Master Page
We are going to add some layout and some default design to our Master Page, which
affects all pages that are built using this particular Master Page. To start, we'll do the
layout for the Master Page with tables, an old HTML standby that still works. Tables
have passed from favor, and CSS is the way you really want to handle this. However,
for our first run-through, we'll stick with tables.

For our Master Page, we'll add a design table that has one column and three rows.
The top row will be our site's logo, the middle row will be our ContentPlaceHolder,
and the bottom row will be our copyright statement, so nobody tries to steal our
brilliant design work. Open the SimpleCMS.master file and replace everything
between the <form> tags with this code:

<table border="0" cellpadding="2" cellspacing="0">
 <tr>
 <td>

 </td>
 </tr>
 <tr>
 <td>
 <asp:ContentPlaceHolder id="ContentPlaceHolder1"
 runat="server">
 </asp:ContentPlaceHolder>
 </td>
 </tr>
 <tr>
 <td>
 <p>Website design Copyright 2009
 by SimpleCMS</p>
 </td>
 </tr>
</table>

You'll find the SimpleCMSLogo.jpg file in the file downloads for this chapter.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 3

[97]

Creating the Default.aspx home page
Our Master Page isn't much use to us without a standard web page that implements
this new Master Page. Master Pages are never requested on their own. They are
combined with an ASP.NET page at compile time and served as part of the request
for the ASP.NET page. This ASP.NET page is called the content page, as it contains
the content displayed in the ContentPlaceHolders on the Master Page. This is easily
demonstrated by creating a quick content page.

Add a new file to the SimpleCMS application, this time choosing the Web Form
template. Name it Default.aspx and make sure the Select Master Page option is
checked. Click on Add and select the SimpleCMS.master—the Master Page we just
created. This will create the Default.aspx content page. If you look at the default
code created, you'll see something like this:

<%@ Page Language="VB" MasterPageFile="~/SimpleCMS.master"
 AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" title="Untitled Page" %>
<asp:Content ID="Head" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server">
</asp:Content>

You'll see first off that the @Page directive sets the MasterPageFile to the
Master Page we selected. You'll also see that a title method has been added to
the directive as well. Beyond that, the page is really just content controls with
ContentPlaceHolderIDs that match those found in the SimpleCMS.master Master
Page. Before we test it, let's add some static content to the Content1 Content control.
Change this section of code to read:

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server">
<h2>----] Content for ContentPlaceHolder1 goes here [----</h2>
</asp:Content>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Content Management System Architecture

[98]

This addition of a single line of content will provide some content for our Master
Page to display in the matching ContentPlaceHolder control. If you view the
Default.aspx page in a browser, it should look something like this:

Notice that the logo and the copyright statement that show for the Default.aspx
page are not part of the Default.aspx page code; they exist only in the SimpleCMS.
master Master Page.

Adding dynamic content
A Content Management System is pretty useless if you need to create a new page for
every piece of content you might want to serve. Plus, we didn't go through the first
two thirds of this chapter building application layers just to abandon them now.
We need to add the dynamic content functions that we created to our content page,
in order to retrieve the content from the database. To do this, we'll use some of the
code we already created earlier in the chapter.

Edit the Content1 content control in Default.aspx to the following code:

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server">
 <asp:GridView ID="GridView1" runat="server">
 </asp:GridView>
</asp:Content>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 3

[99]

The GridView control is the same one we have been using while testing the rest of
our code in this chapter. Add this Page_Load subroutine in the Default.aspx.vb
code behind file:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As
 System.EventArgs) Handles Me.Load

 Dim ArticlesLogic As New ArticlesBLL()

 GridView1.DataSource = ArticlesLogic.GetDataByArticleID(1)
 GridView1.DataBind()

End Sub

This calls our GetDataByArticleID function in our business logic layer and passes
it the ArticleID of 1. The GridView is then bound to the results of this function, and
displays the record matching the ArticleID parameter we passed. The end result
is similar to past test pages, except that it now uses our Master Page because this is
the Default.aspx page we created. If you choose to view Default.aspx in your
browser, it should look something like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Content Management System Architecture

[100]

Okay, it's not pretty. We really don't want the entire row displayed, and we don't
want it in a grid format either. The secret is to pull a trick from Chapter 2 and use
a FormView control with an ItemTemplate that displays only what we want. To do
this, first edit the Default.aspx.vb code behind, in order to change the GridView to
a FormView using the following code:

FormView1.DataSource = ArticlesLogic.GetDataByArticleID(1)
FormView1.DataBind()

That's right, we're really changing only the GridView1 to FormView1—the rest is
already handled by our BLL and DAL. Now, change the Default.aspx code to
remove the GridView control and replace it with the FormView control, using
this code:

<asp:FormView ID="FormView1" runat="server">
 <ItemTemplate>
 <h2><asp:Label ID="Label1" runat="server"
 Text='<%# Bind("ArticleName") %>'></asp:Label></h2>
 <asp:Label ID="Label2" runat="server"
 Text='<%# Bind("Article") %>'></asp:Label>
 <hr />
 </ItemTemplate>
</asp:FormView>

This code uses a FormView control with an ItemTemplate to display two Label
controls. The first is the ArticleName field retrieved through our DAL by the BLL,
and bound to the FormView in the code-behind file. The second is the Article field.
We also format the first label, the ArticleName, with a <h2> HTML tag, and we add
a horizontal line with the <hr /> tag before we close the FormView control. When
you view the Default.aspx file in a browser, it now looks more like a web page,
with the logo, an article title, an article, and a copyright line at the bottom of the
page. Something like shown in the next screenshot:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 3

[101]

Finally, something that isn't truly lame. We have a lot more to add to our application,
but by now you should be starting to understand the background concepts of our
SimpleCMS application.

Summary
In this chapter, we built the database, a data access layer, a business logic layer,
and a presentation layer for our Content Management System. We've only built
a small part of the eventual application, and we'll need to add to all four of these
architectural tiers as we continue the book. However, you should have a working
knowledge of the basic architecture we are working with.

We first defined a table structure for our database, which we will expand upon in
future chapters. A major reason for using a relational database management system
such as Microsoft's SQL Server is the ability to grow the database as your application
grows. We also created a data access layer to abstract access to the database. This
allows us to write code to use other types of database engines without changing the
rest of the application to match. It also allows us to access the database with minimal
additional code from other layers in our architecture.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Content Management System Architecture

[102]

The business logic layer we created is extremely simple at this point. In fact, we have
no business logic running in it at all. But it acts to further abstract the data storage
from the presentation to the end user, and gives us a location to add future business
rules. One reason to use a BLL for business logic is that these business rules are
secure from being inadvertently changed by a designer working on the presentation
layer. They can also be secured from prying eyes who might find ways to modify the
request from the client to circumvent business logic in the presentation layer.

Finally, we built a rudimentary presentation layer based on Master Pages. The use
of Master Pages, along with Themes, allows us to quickly change the look and feel of
a site without affecting the underlying code; that is, it makes abstracting the layers
from each other quite easier. We'll cover advanced use of Themes and Master Pages
in Chapter 6.

The process we have used to build this architecture here is along the same lines as
the tutorials at Microsoft's ASP.NET web site—http://www.asp.net. We have
simplified much of the process in this chapter, but you are encouraged to continue
learning through the tutorials and videos available online. This is also the first
chapter, where full code has not been included in the book due to space. The code
files are available from the project web site.

In the next chapter, we're going to add a security layer to our application, restricting
functions to only certain accounts. After all, we don't want the general public
changing the content of our web site at random, do we?

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and
Membership to a Content

Management System
Security is a concern in any web application, but the security this chapter deals
with is that of user accounts, membership and roles. We'll be using the ASP.NET
membership and roles functions to allow certain users such as administrators to
perform specific tasks. These tasks may include managing the application, while
other users such as content editors, may be restricted to the specific tasks we want
them to manage such as adding or changing content. User account management can
be handled either by the application (in our case, our Content Management System)
or by Windows itself, using standard Windows authentication functions, as well as
file and folder permissions.

The advantage of an application-based user authentication system is primarily in
cost. To use Windows authentication, we need to purchase Client Access Licenses
(CALs) for each user that will access our application. This is practical in an intranet,
where users would have these licenses to perform other functions in the network.
However, for an Internet application, with potentially thousands of users, licensing
could be extremely expensive.

The drawback to an application-based system is that there is a lot more work to do
in designing and using it. The Windows authentication process has been around
for years, continually improved by Microsoft with each Windows release. It scales
extremely well, and with Active Directory, can be extended to manage just about
anything you can think of.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and Membership to a Content Management System

[104]

In this chapter, we will discuss:

•	 Membership—what it is and how it works
•	 Authentication—what it is and how to incorporate it into your application
•	 Setting up a basic application
•	 Creating the membership/authentication database pieces
•	 Adding a membership provider to the application
•	 Creating a login page and the controls associated with it
•	 Using the ASP.NET configuration tool and creating a login
•	 Forms authentication
•	 Membership roles

ASP.NET membership
Fortunately, Microsoft has provided relief for application-based authentication
drawbacks in the 2.0 version of the ASP.NET framework, with the ASP.NET
membership functions, and in our case, the SqlMembershipProvider. The
membership API makes it simple for us to use forms authentication in our
application, retrieving authentication and membership information from a
membership provider. Similar to the classes we created in the last chapter for our
data access layer and business logic layer, the membership provider abstracts the
membership details from the membership storage source. Microsoft provides two
providers—the ActiveDirectoryMembershipProvider that uses Active Directory
and the SqlMembershipProvider that uses an SQL server database for the user
data store.

By default, ASP.NET authentication uses cookies—small text files stored on the user's
system—to maintain authentication status throughout the application. These cookies
normally have an expiration time and date, which requires users to log in again
after the cookie has expired. It is possible to use cookies to allow the client system to
authenticate the application without a user login, commonly seen as a "Remember
Me" checkbox in many web site login pages. There is naturally a downside to
cookies in that a client system may not accept cookies. ASP.NET can encode the
authentication information into the URL to bypass this restriction on cookies.
Although in the case of our application, we will stick with the cookie method.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 4

[105]

Forms authentication secures only ASP.NET pages. Unless you are using IIS7, and
the integrated pipeline, where ASP.NET processes all file requests, the ASP.NET DLL
won't be called for non-ASP.NET pages. This means that you cannot
easily secure HTML pages, PDF files, or anything other than ASP.NET through
forms authentication.

Configuring and using forms
authentication
Let's start learning ASP.NET forms authentication by walking through a brand new
application. We'll then add it to our Content Management System application. Forms
authentication is actually quite simple, both in concept and execution, and a simple
application can explain it better than adopting our current CMS application. Of
course, we eventually need to integrate authentication into our CMS application, but
this is also easier once you understand the principles and techniques we'll be using.

Creating a new application
Start by opening Visual Web Developer 2008 Express and creating a new web site
by clicking on File | New Web Site. Use the ASP.NET Website template, choose
File System, and name the folder FormsDemo.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and Membership to a Content Management System

[106]

When the site is created, you are presented with a Default.aspx page created with
generic code. We will use this as our home page for the new site, although we need
to modify it for our needs.

Creating the home page
Visual Web Developer 2008 Express creates a generic Default.aspx file whenever
you create a new site. Unfortunately, the generic file is not what we want and will
need modification. The first thing we want to do is make sure our site uses a Master
Page, just as our Content Management System application will. To do this, we could
delete the page, create our Master Page, and then add a new Default.aspx page
that uses our Master Page. In the case of a brand new site, it's pretty easy, but what if
you have developed an extensive site that you want to convert to Master Pages? You
would want to add a Master Page to an existing site, so let's go ahead and do that.

Create the Master Page
We will create a Master Page just as we did in the previous chapter. Leave the
Default.aspx file open and press Ctrl+Shift+A to add a new item to the solution.
Choose the Master Page template and leave the name as MasterPage.Master. Place
the code in a separate file and click Add to create the Master Page. You will notice
that this creates the same generic code as in the previous chapter. Unfortunately, our
Default.aspx file is not a content page and won't use the MasterPage.Master we
just created, unless we tell it to.

To tell our Default.aspx page to use the MasterPage.Master, we need to add the
MasterPageFile declaration, in the @ Page declaration, at the top of the file. Add the
following code between the Language and AutoEventWireup declarations:

MasterPageFile="~/MasterPage.master"

This adds the Master Page to our Default.aspx page. However, content pages
include only those Content controls that match the Master Page, not the full page
code as our Default.aspx page currently does. To fix this, replace the remaining
code outside the @ Page declaration with the following two Content controls:

<asp:Content ID="Content1" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server">
 <h1>This is where the content goes.</h1>
</asp:Content>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 4

[107]

We've left the Content1 control empty for the moment, and we've added a simple
text statement to the Content2 control so that it can be tested. If you view the
Default.aspx page in a browser, you should see the relatively uninteresting web
page below:

Enabling forms authentication
Okay, we have a boring home page for our new site. Let's leave it for a moment and
enable forms authentication for the site, so we can restrict who can access our home
page. The process of enabling forms authentication is simply adding a few lines to
our web.config file. Or in the case of the generic web.config file, which we created
while creating our new site, we simply need to alter a single line.

Open the web.config file in the new site and look for the line that says:

<authentication mode="Windows" />

Edit it to read:

<authentication mode="Forms" />

Save the web.config file and you have now enabled forms authentication for
this site.

The default authentication mode for ASP.NET applications is Windows, which
is fine if you're working in an intranet environment where every user probably
has a Windows login for use in the corporate network anyway. Using Windows
authentication, Windows itself handles all the security and authentication, and you
can use the myriad of Windows utilities and functions such as Active Directory,
to manage your users.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and Membership to a Content Management System

[108]

On the other hand, with forms authentication, ASP.NET is expected to handle
all the details of authentication and security. While ASP.NET 2.0 and later have
sophisticated membership and profile capabilities (which we'll take advantage of
later), there is no ASP.NET mechanism for protecting files and folders from direct
access, outside of the application. You will still need to secure the physical server
and operating system from outside of your application.

Creating the membership database
To use forms authentication and the SqlMembershipProvider, we need to create a
database to authenticate against. This database will hold our user information, as
well as membership information, so we can both authenticate the user and provide
access based on membership in specific roles. For our demonstration, we will create
a new database for this function, but later on we will incorporate the membership
schema into our Content Management System database.

As we did in Chapter 2, we'll create a database with SQL Server Management
Express, so open it and right-click Databases in the Object Explorer pane.
Choose New Database and name it FormsDemo. Change the location of the database
path to the App_Data folder of your FormsDemo web application—the default is
C:\Inetpub\FormsDemo\App_Data as shown below. Click OK and the new
database will be created.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 4

[109]

If you look at this database, you will see that it is empty. We haven't added any
tables to it, and we haven't set up any fields in those non-existent tables. The
database is pretty much useless at this stage. We need to create the database layout,
or schema, to hold all the authentication and membership details. Fortunately,
Microsoft provides a simple utility to accomplish this task for the 2.0 version of the
ASP.NET framework – aspnet_regsql.exe. We'll use this too, in order to create the
schema for us, and make our database ready for authentication and membership in
our application.

To use aspnet_regsql.exe, we need to provide the SQL Server name and login
information. This is the same information we set up SQL Server 2005 Express with in
Chapter 2, and the same as shown in the login dialog when we open the database in
SQL Server Management Studio Express, as shown below:

Note the server name, it will usually be {SystemName}/SQLEXPRESS, but it may be
different depending on how you set it up. We used SQL Server Authentication with
the sa account and a password of SimpleCMS when we set up SQL Server Express
2005, and that's what we'll use when we run the aspnet_regsql.exe tool.

To run aspnet_regsql.exe, you may browse to it in Windows Explorer, or enter the
path into the Run dialog when you click on Start and then Run. The default path is
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\aspnet_regsql.exe. The
utility may be run with command-line arguments, useful when scripting the tool or
using it in a batch file, but simply running it with no parameters brings it up in a GUI
mode. When the ASP.NET SQL Server Setup Wizard launches, click Next. Make
sure that the Configure SQL Server for application services is selected and click
on Next.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and Membership to a Content Management System

[110]

The ASP.NET SQL Server Setup Wizard will ask for the server, authentication,
and database. You should enter these according to the information from above.

Click Next to confirm the settings. Click Next again to configure the database
with the ASP.NET users and membership schema. Continue and exit the wizard,
and the database is ready for us to use for authentication. If you were to open the
FormsDemo database in SQL Server Management Studio Express, you would find
that new tables, views, and stored procedures have been added to the database
during this configuration process.

Configuring the SqlMembershipProvider
Our database is ready to use, but our application is not—at least not yet. We need to
add a connection string in our web.config file so that we can connect to the database.
We also need to add the SqlMembershipProvider information so that our application
can access the database and use the new functions provided in our schema.

Open the web.config file in Visual Web Developer 2008 and find the default section
that looks like:

<connectionStrings />

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 4

[111]

Replace it with:

<connectionStrings>
 <add name="FormsDemoConnectionString"
 connectionString="Data Source=.\SQLEXPRESS;
 AttachDbFilename=C:\Inetpub\FormsDemo\App_Data\FormsDemo.mdf;
 Initial Catalog=FormsDemo.mdf;
 User ID=sa;
 Password=SimpleCMS"
 />
</connectionStrings>

This will configure the database connection string so that we can use the database,
as we did in Chapter 2.

To configure the SqlMembershipProvider, we need to add the
AspNetSqlMembershipProvider to the Providers section of the Membership section,
none of which we have in the default web.config. Immediately below the line
that reads:

<authentication mode="Forms" />

add the following code:

<membership defaultProvider="FormsDemoSqlMembershipProvider">
 <providers>
 <add name="FormsDemoSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider,
 System.Web, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="FormsDemoConnectionString"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="true"
 applicationName="/"
 requiresUniqueEmail="false"
 passwordFormat="Hashed"
 maxInvalidPasswordAttempts="5"
 minRequiredPasswordLength="7"
 minRequiredNonalphanumericCharacters="1"
 passwordAttemptWindow="10"
 passwordStrengthRegularExpression=""
 />
 </providers>
</membership>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and Membership to a Content Management System

[112]

This provides the basic settings we need for our application. There are a few settings
to take note of though:

•	 defaultProvider: We have designated a default provider for
our application, as the machine.config file on our server uses
AspNetSqlMembershipProvider as the default and expects a database
named aspnet.mdb in the App_Data folder. Had we not created our
own database and added the schema to it, aspnet.mdb would be the
auto-created database. We do not want this for two reasons. The first is
that every automatically configured application on the server would have
the same database name. Also, it's easy to mix up database backups and
maintenance schemes. More important though is that we have complete
control and flexibility by creating our own database. The ASP.NET
membership framework allows multiple providers so that we could split
providers between databases for example. By specifically naming and
creating our own database, and using it as the default for this application,
we maintain explicit control.

•	 applicationName: We have set the applicationName to the root of the web
application, which is what we want in this case. But this may not be where
our application is located in a more complex application, and specifying the
applicationName here would again provide us more explicit functionality.
If we had not configured this, it would be set to the application root anyway.
However, here we maintain control over it, as in the future, we may move
the application.

•	 enablePasswordRetrieval, enablePasswordReset,
requiresQuestionAndAnswer: These three are related, and set to the
defaults. They determine whether a user can retrieve their password,
reset their password, and whether or not answering a security question is
required to perform either of those two functions. The default setting for
these providers doesn't allow a user to retrieve his/her password because
those would be sent to the user and could already be stolen by a hacker,
but it allows a user to reset his/her password to a temporary one that can
immediately be changed to the one known only by the user.

You also need to understand that these are defaults only in
the SqlMembershipProvider we used, not the auto-created
AspNetSqlMembershipProvider.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 4

[113]

Password complexity in ASP.NET applications
ASP.NET password complexity often confuses both users and
programmers. It is in the SqlMembershipProvider that the
complexity is controlled. The default is a password with a minimum
of seven characters, one of which must be non-alphanumeric, or not a
number or letter. This means the password Passw0rd—which has
eight characters, has both upper and lower case, and contains a
zero—doesn't meet the default requirements because it doesn't contain
a non-alphanumeric character. The password password! does meet
the requirements, even though it has only lower case letters and no
numbers. This is because the password has seven
or more characters, and one of them, the exclamation point, is non-
alphanumeric. You must decide on how complex you will require
user passwords to be. More complex is more secure, but harder for
users to deal with. At some point, security requirements become
annoyances to the user and they will stop using your site. You
may also use the passwordStrengthRegularExpression
parameter to further refine your password strength, although the
default is not to use it, leaving the expression blank. For example,
the following code would require a password of at least seven
characters, including one number and one non-alphanumeric character:
passwordStrengthRegularExpression="@\"(?=.{6,})(?=(.*\
d){1,})(?=(.*\W){1,})"

You can find more about these, along with other
SqlmembershipProvider properties, at http://msdn.
microsoft.com/en-us/library/system.web.security.
sqlmembershipprovider_properties.aspx.

Creating the login page
The first step to providing an authentication for users is creating a page for them to
use to log into our application. The default name of this page for ASP.NET forms
authentication is Login.aspx and we will stick to the defaults for this demonstration.
So, start by adding a new item to our application in Visual Web Developer 2008
Express and choosing the Web Form template, naming it Login.aspx and selecting
the MasterPage.master as your Master Page.

To add the login control to the page, enter the following code inside the Content2
ContentPlaceHolder control:

<asp:Login ID="Login1" runat="server">
</asp:Login>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and Membership to a Content Management System

[114]

If you save the Login.aspx file and run it in a web browser, you should see a page
similar to this:

Changing the default login page
ASP.NET uses a default login page Login.aspx, and this is the URL
that an unauthenticated user is redirected to when they try to access a
page that requires authentication. To change this page name, we simply
need to alter the authentication section of the web.config. The default
web.config, and the one we used here, has a line similar to this:
<authentication mode="Forms" />
If we change this to:
<authentication mode="Forms">
 <forms loginUrl="UserLogin.aspx" />
</authentication>
Our application will then expect a page file named UserLogin.aspx
and will use that as the login page for this application. We could also
change the URL that logged in users are sent to if none is specified by
using the defaultUrl parameter, similar to:
<authentication mode="Forms">
 <forms loginUrl="UserLogin.aspx"
 DefaultUrl="MembersPage.aspx" />
</authentication>
Although we have ignored these settings for this demo, good
programming practices would include specifying these in the
web.config for an application so that application doesn't accidentally
inherit incorrect settings after deployment to a server with other
applications on it.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 4

[115]

Of course, if you try to log in using the Login.aspx page we just created, nothing
will happen. We don't have a user account to log in with, so, let's create a quick one
to test our logins.

Creating a user account with the ASP.NET
configuration tool
Visual Web Developer 2008 Express has a built-in tool to help configure several
different aspects of your application and IIS installation. We're going to use it
to manage security by creating a new user account for accessing our web site.
In Visual Web Developer, click on Website, and then ASP.NET Configuration.
When the utility opens, click on the Security tab and you'll see a screen like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and Membership to a Content Management System

[116]

We have already created the database to store our user accounts in and we just need
to create a user, so click on Create user and fill in the form on the following page, as
shown below. Enter a User Name of User1, with a Password of Password!. Enter a
valid email address, a Security Question of First Pet, and a pet's name such as
Goldie. Click Create User, and after a couple of moments, you should get
a confirmation that the user was created.

Windows authentication
In our application, we are using forms authentication to provide the
security we need. We could use Windows authentication in a similar
manner, for example in an intranet where users would normally
already have Windows accounts. In Windows authentication,
Windows users and groups take the place of user accounts and roles in
forms authentication. You would create users and groups in Windows
to be used to grant access to the application. Assigning user accounts
to the groups would allow those users the access provided by group
membership. Note that the Web Site Administration Tool cannot
be used to manage users and groups in a Windows authentication
application. You need to use the tools provided by Windows such
as Active Directory. The advantage of Windows authentication is
obvious—we have a single directory of users and access groups for all
functions within your network. The disadvantage is the licensing costs
of all those user accounts, if the only function they are needed for is to
provide access to a single application.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 4

[117]

Creating a login
Okay, we've created a user and we have a login page to log that user in. But why
would a user log into our application? That's right, to reach pages or content that
are restricted to logged in users. In our application, we will be restricting access to
content based on whether a user has logged in or not. To do this, we make use of
a LoginStatus control. This control will let us know the current status of the page
viewer and also provide a way for that viewer to log into our application for
further access.

Open the home page Default.aspx in Visual Web Developer, and locate the
Content2 ContentPlaceHolder control. Immediately before the <h1> tag, enter the
following code:

<asp:LoginStatus ID="LoginStatus1" runat="server" />

That's it, just one line of code. Doesn't ASP.NET make this simple? When you save
the file and run it in a browser, you should see a page like this:

Click on that little Login link and you'll see the Login.aspx page displayed, as that
is the default login page for the ASP.NET login control. It will look similar to this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and Membership to a Content Management System

[118]

Enter a user name of User1 and a password of Password!, as we used when creating
our user account. You will then be authenticated and returned to the home page,
where the login link has now become a Logout link, as shown below:

So, with a few lines of ASP.NET code, we have created an authentication system for
our application. Of course, it's not really our application, just a demonstration, so
let's move on and add these functions to our SimpleCMS application. We'll also need
to extend this a bit more.

Adding forms authentication to our CMS
Now that you understand the process behind forms authentication, we need to add
it to our application. The process will be slightly different because we already have
a database to use, but without the ASP.NET membership schema. We'll add that to
the database and then create some user accounts and membership roles to handle the
security for our application. We'll also secure some of our content and add a menu to
our Master Page to navigate between the pages of our Content Management System.

Preparing an existing SQL database
As we have an existing database, we can't create a new database for our membership
and authentication system. Well, actually we could, but using a second database is
problematic when we upload the application to a host because many web hosting
companies allow only a single database under the hosting plan. Besides, we can
easily add the membership schema the same way we did earlier in the chapter with
our empty database, using aspnet_regsql.exe. Previously we used the wizard;
this time we'll use the command line. If you take a look at the database in SQL
Server Management Studio Express now, before we execute the command to add the
schemas, you should see the few tables we created in earlier chapters, as shown in the
following figure:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 4

[119]

The aspnet_regsql.exe tool
Using the command line, the executable is simple, as long as you know
the command-line arguments. The syntax and command arguments for
aspnet_regsql.exe are available online at http://msdn.microsoft.com/en-us/
library/x28wfk74.aspx. The following table shows the arguments we will use:

Argument Description What we use
-S The server name \SQLEXPRESS

-U The database username sa

-P The database password SimpleCMS

-d The database name SimpleCMS_Database

-A The schema functions to install All functions

Our command line will look like this (all one line):

aspnet_regsql.exe –S .\SQLEXPRESS –U sa –P SimpleCMS –d SimpleCMS_
Database –A all

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and Membership to a Content Management System

[120]

To run the command line, go to Start | Run and enter cmd in the Run dialog
box. Press Enter and you will be at a command prompt. Type cd\ C:\WINDOWS\
Microsoft.NET\Framework\v2.0.50727\ and press Enter again, and you will be in
the correct folder to find aspnet_regsql.exe. Note that you may need to change the
path if your ASP.NET framework files are in a different location. Type the command
line above and press Enter, and you should see that the command completed
successfully, with a dialog similar to that below:

Now that we have executed the aspnet_regsql.exe command line, if you look at
the database tables in SQL Server Management Studio Express, you should see the
added table for the users, membership, and roles we will use in our application.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 4

[121]

User accounts
Earlier in the chapter, we created a single user account for accessing protected
content. In a real-world environment, we would normally have many user accounts,
way too many to add each account to each page we wanted to protect. Fortunately,
the ASP.NET framework provides us with membership roles that we can place user
accounts in, allowing us to define our access by role, not by user account. But first,
we need some user accounts.

Let's start by creating three accounts in our application—User1, User2, and
Administrator. Open the SimpleCMS web site in Visual Web Developer 2008
Express. Use the downloadable code provided for Chapter 4 of this book, it has the
web.config file modified similar to what we did when we walked through the forms
authentication demo earlier in the chapter. Open the Web Site Administration Tool
by clicking on Website and then ASP.NET Configuration.

If you click on the Security tab, you will see that we have no users configured for
this application. As you did earlier in the chapter, click on Create User and create the
three users with user names of User1, User2, and Administrator. Use Passw0rd!
as the password for each, and provide a valid email address for each (they can have
the same email for testing). Also, provide a question and answer such as Favorite
Color? and Blue. You can use the same question and answer for all three accounts if
you wish. Each user entry should look something like the following:

If you return to the Security tab, you will notice that we have three user accounts,
but no roles for those accounts. Let's add them next.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and Membership to a Content Management System

[122]

Membership roles
ASP.NET membership roles provide the ability to group many individual accounts
into a single role to provide access to a resource such as a page or application.
Changing access for an individual user then becomes a simple task of assigning them
to or removing them from the appropriate role. A single user account can belong to
multiple roles to provide extremely granular access to the application resources if
your security demands are extensive.

To add roles to our application, we first need to enable roles. On the Security tab
of the Web Site Administration Tool, under Roles, you should see a link to enable
roles. Enabling roles consists of simply adding the following line to the web.config
file in the system.web section:

<roleManager enabled="true" />

Similar to the membership provider we created earlier, roles require a role
provider. We need to add this provider to the role manager, so edit the web.config
roleManager section to read:

<roleManager enabled="true">
 <providers>
 <clear/>
 <add name="AspNetSqlRoleProvider"
 connectionStringName="SimpleCMS_DatabaseConnectionString"
 applicationName="/"
 type="System.Web.Security.SqlRoleProvider, System.Web,
 Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 </providers>
</roleManager>

This adds an AspNetSqlRoleProvider that uses our connection string to the
SimpleCMS database. At this point we have no roles defined, so let's create a few.
Open the Web Site Administration Tool. If it's already open, you may need to close
and reopen it because we modified the web.config file to add the role provider.
Now, open the Security tab. In the Roles section, click on Create or manage roles.

Let's create an administration role first. We'll need it to secure areas to just
administrative access. Simply enter Administrator, click on Add Role, and you'll
see the new role in the list. Add roles for Author, Editor, and Registered User in the
same manner. The roles list should look something like the following figure when
you finish:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 4

[123]

Adding users to roles
Once we have users and roles created, we need to assign users to roles. To do this,
use the Security tab of the Web Site Administration Tool, under the Users section,
to manage users. You'll see a list of user accounts, in our case all three of them, along
with the ability to edit the user, delete the user, and edit the user's roles. Click on Edit
roles next to the Administrator user and you'll see a checkbox list of user roles this
account can be added to. Any roles currently assigned to the user will be checked. As
there are currently none, check the Administrator role, and the Administrator user
will be immediately added to the Administrator role, as shown below:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and Membership to a Content Management System

[124]

If you were to look at the database tables that hold the user accounts and roles, you
would see something like this for the users:

Similarly, the roles would look like this:

You'll note that both the users and the roles contain an ApplicationID that defines
what application these users and roles belong to, and that each user or role is
identified by a UserID or RoleID. These are automatically created by the ASP.NET
membership framework and are globally unique identifiers (GUIDs), which ensure
that the specific user or role is unique across all possible applications and uses of this
specific database store.

You would also find in the database a table that identifies users in roles, looking
something like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 4

[125]

You'll notice that this is a joining table, used in a database when there is a many-to-
many relationship. Many users can belong to a role and a user can belong to many
roles, thus the use of this table. You'll also notice that the database table uses the
UserID and RoleID, making it very hard to simply look at this table directly to find
what users are assigned to what roles. Fortunately, with the ASP.NET framework,
you're isolated from having to work directly with the database, as well as relieved
from having to create it and the code needed to access it.

Login page
We'll create the login page the same way we did with our demo application.
Open the site in Visual Web Developer 2008 Express and add a new item to the
application. Choose Web Form as the template and name it Login.aspx. Select the
SimpleCMS.master as your Master Page and add the login code to the Content2
ContentPlaceHolder control as done before. Your login page should look very
similar to our demo application.

New user registration
Previously, we added user accounts to the database through the Web Site
Administration Tool. This becomes impractical in our application for two reasons.
The first reason is that the Web Site Administration Tool is not designed to work
outside of the same system the site is hosted on. This makes using our application on
a web host problematic. The second is that we really don't want to manually enter
every user into the system, that's too much work. The ASP.NET framework makes
life easy for us through the CreateUserWizard control, allowing users to add their
own information to the user database and thus sign up for accounts on our system.

To add the CreateUserWizard to our login page, add the following code inside
the Content2 ContentPlaceHolder control, immediately below the login control
we added:

<asp:CreateUserWizard ID="CreateUserWizard1" runat="server">
 <WizardSteps>
 <asp:CreateUserWizardStep ID="CreateUserWizardStep1"
runat="server">
 </asp:CreateUserWizardStep>
 <asp:CompleteWizardStep ID="CompleteWizardStep1" runat="server">
 </asp:CompleteWizardStep>
 </WizardSteps>
</asp:CreateUserWizard>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and Membership to a Content Management System

[126]

If you run the page in your browser, you should see something like:

You'll notice the same login control we used in our demonstration application, plus
a new control that allows a user to sign up for an account. The CreateUserWizard
control reads the Membership settings from our web.config file and populates
the control accordingly. In our case, it asks for the user name, password, email,
and both the security question and answer. This control also provides client
side validation of the entries, requiring that each text box have an entry before
submitting the form, and validating that the password entered meets the password
requirements for our application.

Go ahead and sign up a new user, entering all the required fields and clicking on
Create User. You should get a page similar to the one shown next, indicating that the
user account has been successfully created.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 4

[127]

Naturally, we want to create a more appropriate design for this page and these
controls. It would help them look better and be more intuitive for users who
want to register a new account, versus those who already have an account and
wish to login. One of the simplest ways to do this is to open the Design View of the
login.aspx page in Visual Web Developer 2008 Express, right-click on the Login
control, and then choose Autoformat. Pick a format such as Classic, and your control
will automatically take on that format. Doing the same with the CreateNewUser
control should look similar to:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and Membership to a Content Management System

[128]

If you open the code for the login.aspx page, you'll see the formatting for the
controls has been added automatically. In a later chapter, we will work on formatting
and layout options, along with the layout techniques. However, for now, let's get
back to securing the content on our important pages.

Securing content
Okay, our application now has user accounts and roles for those users, but just
how do we use them to secure the content in our Content Management System? In
our demonstration, we secured entire pages and restricted access to those pages to
specific accounts. But in our Content Management System, we want to secure the
content itself, not the page. And if content is secure, we want to let our users know
that they need to create an account and log in to see the content.

Let's begin by requiring users to have an active account to view an article from our
database. Open the Default.aspx file in Visual Web Developer 2008 Express, and
look at the FormView control that displays our article using the ArticlesBLL class,
which in turn uses the DataSet1TableAdapters class. We don't want to change the
functionality of that code, we just want that code to be available only to those users
who have logged into our application. To do this, we'll use a LoginView control.

Change the FormView control section to the following code:

<asp:FormView ID="FormView1" runat="server">
 <ItemTemplate>
 <asp:LoginView ID="LoginView1" runat="server">
 <AnonymousTemplate>
 <p>We're sorry, this article requires you to have an
 account and be logged in to view the article.
 </p>
 <p>Register or Login
</p>
 </AnonymousTemplate>
 <LoggedInTemplate>
 <h2>
 <asp:Label ID="Label1" runat="server"
 Text='<%# Bind("ArticleName") %>'>
 </asp:Label>
 </h2>
 <asp:Label ID="Label2" runat="server"
 Text='<%# Bind("Article") %>'>
 </asp:Label>
 <hr />
 </LoggedInTemplate>
 </asp:LoginView>
 </ItemTemplate>
</asp:FormView>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 4

[129]

The LoginView control shown here has two templates—an AnonymousTemplate
and a LoggedInTemplate.These do just what they indicate, provide the user with
the information that is laid out in the appropriate template, either Anonymous or
LoggedIn Template, based on their current login status. If you run the page in your
browser, you should see the following:

If you then click on the Register or Login link, and log in as a registered user, you
should see the Default.aspx page, complete with the article from the database.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and Membership to a Content Management System

[130]

Login status
There is an even more elegant way to handle login requirements in the
ASP.NET 2.0 framework via the LoginStatus control, similar to what we did in our
demo application. We can use it to add a login link to every page, so we don't have
to build a login link into all the LoginView controls we might add to our application.
This control displays a login or logout link, according to the logged in status of a
user. This means if a user is not logged in, we will automatically show them a link to
do so. That link will take them to the login page we created earlier.

Open the SimpleCMS.master Master Page file in Visual Web Developer 2008
Express. At the bottom of the page, you will find the copyright statement we added
earlier. Immediately below that line, add this code of the LoginStatus control:

<asp:LoginStatus ID="LoginStatus1" runat="server" />

That's it, everything we need to add a login link on every page in our application. We
can go back and delete the line from our Default.aspx LoginView that reads:

<p>Register or Login
</p>

If you then view the Default.aspx page in a browser, it should look like the
following figure when you are not logged in:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 4

[131]

The Login link is automatically displayed on any page where the user is not logged
in because it is part of our Master Page. If a user is already logged in, the link simply
changes to a Logout link.

Password recovery
A major headache with almost any web site on the Internet that requires
registration is that you often do not want to, or even cannot, use the same password
as you do on other sites. This results in most users having multiple passwords, and
most users forgetting at least some of those passwords. The ASP.NET 2.0 framework
has a PasswordRecovery control for just this purpose. Let's go ahead and add it to
our application.

In Visual Web Developer 2008 Express, add a new web form with the name
ForgotPassword.aspx and then select the SimpleCMS.master page Master Page file.
In the Content2 ContentPlaceholder control, add the following code:

<asp:PasswordRecovery ID="PasswordRecovery1" Runat="server">
</asp:PasswordRecovery>

Open the Design View for this page, and AutoFormat the control to the same
Classic format we used in the other login controls.

To link to this page, we'll use a LinkButton control on the login.aspx page. Open
the page and add this code after the Login control:

<asp:LinkButton ID="LinkButton1" runat="server"
 PostBackUrl="~/ForgotPassword.aspx">
 Forgot Password?
</asp:LinkButton>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Adding Security and Membership to a Content Management System

[132]

Save these files and when you run the login.aspx page in the browser, you should
see the Forgot Password? link below the login control. Clicking on that link will
show our ForgotPassword.aspx page, which looks like this:

A user entering their login name will then be presented with their challenge question
and must answer it to receive their password. A correct answer results in the user
receiving an email, containing his/her password, to his/her account. At this point,
you will receive an error if you try to recover your password because we have not set
up any email capability in our application. We'll take care of that in a later chapter.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 4

[133]

Summary
In this chapter, you learned how to configure ASP.NET forms authentication,
along with how to provide controls for users to log in, as well as ways to secure
the content displayed on the pages. We used the aspnet_regsql.exe utility to
create the database for membership and authentication. We also used the
ASP.NET Configuration utility to configure some authentication parameters for
our web application, add users and roles, and assign users to roles. We also created
pages that were secured from access by unauthorized users.

When we added these features to our application, we expanded our login page
to allow users to register a new account and even to recover a password if they
forgot it. We used the Login and CreateNewUser controls, which are built into
the ASP.NET 2.0 framework, and we used the AutoFormat option to format these
controls as the user will see them. We also used the LoginView control to restrict
access to an article on our page, as well as the LoginStatus control to add a login link
to all of our pages through our Master Page.

If you are interested in more depth on the ASP.NET membership controls,
you should check out the MSDN Patterns and Practices information at
http://msdn.microsoft.com/en-us/library/ms998347.aspx. You will also find
more information in the online tutorials at http://www.asp.net/learn/security/.

As we move through future chapters, we'll add a few more features to our
application related to users and user management. In Chapter 9, we'll build a control
panel that allows us to manage user accounts and role memberships without using
the ASP.NET Configuration utility. We'll also do some advanced formatting of our
pages and controls in Chapter 8 and work more with Master Pages in Chapter 6.

In the next chapter, we'll build our first complete module for our application, an
Articles module that will allow us to create and manage the articles in our database.
This module is the basis for our dynamic content in the Content Management
system, although we'll deal with static content such as existing documents, pictures,
and other files in a later chapter.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Creating the Articles Module
Over the past chapters, we have worked through some basic instructions for parts
of our Content Management System. In this chapter, we will build the first major
module of our application—the Articles module. This module will allow us to edit
content in our application without having to use any developer tools or have any
programming knowledge. General users will be able to use the module for most
of their functions of adding content to the system.

This module will make use of the techniques you have learned until now. We will
provide data access methods through the multi-tier structure we developed, and we
will use the user accounts and access groups we covered in the last chapter to control
access to specific functions of our application. Let's get started by creating a set of
specifications for this module.

In this chapter, you will learn about:

•	 The way Articles will be published in our application
•	 How to implement and use user controls
•	 Building an Articles module
•	 Building your DAL and BLL classes for the Articles
•	 Beginning to see how roles will be used in the application

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Creating the Articles Module

[136]

Application specifications
The basic idea of this module is for a user with no programming knowledge to be
able to add, edit, and delete content from our Content Management System. We also
want to work through a publication process, allowing for users with different levels of
access to control the stages of content production. If you are used to working alone in
publishing a web site, or even with a few others, the process we'll use may be foreign
to you. But you'll see that the process we develop here can be expanded to many users,
or simplified to a single content publisher, without rewriting the application.

The Article publication process
For the publication process, think about a newspaper or magazine. After all, these
printed materials are simply Content Management Systems that are extremely
inflexible once the content has been published, though before publication, content
management is a key to their business success. Publishing the wrong or inaccurate
content can cause them to lose subscribers and force them out of business. Ensuring
content is correct before publishing is vital to these publications, and it's just as vital
in our Content Management System.

In the magazine or newspaper world, you generally have a writer or author, along
with an editor and a publisher, for each Article or story that is printed. The author
creates the content, the editor reviews the content and changes or corrects it as
needed, and the publisher controls what is finally published. We'll replicate this
process in our application, allowing for author, editor, and publisher roles in our
Content Management System.

In our Articles module, think of the Author, Editor, and Publisher roles as increasing
levels of authority. An Author can only create a new Article or change their Articles.
They cannot change anyone else's Article, nor can they change or delete an Article
after publication. They also cannot publish an Article, or make it live and visible on
the web site. An Editor can perform all of the functions of an Author, plus they can
perform these functions on other Author's work. This way, an Editor could change
any Author's or Editor's Article, but cannot publish it to the web site.

A publisher has all the functions of an Author and an Editor, plus one additional set
of functions that only the Publisher role has available. This role can publish Articles,
so they are live on the web site. This role also has permission to delete Articles
that have been published. A publisher can also change the publication status, or
"unpublish" an Article, allowing it to be changed by the original Author or an Editor.
This role has full control over what is or is not published on the web site.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 5

[137]

User controls
ASP.NET 2.0 provides the ability to store code in a user control, and then simply
load this control in a page, to make use of the functions of that control. Think of a
user control as reusable code snippets, similar to the controls you find in the toolbox
of your Visual Studio 2008 Express Edition. For our module, we will build a number
of user controls to simplify the use of our module, as well as deployment. Although
we won't cover compiling an application or user control in detail, one advantage
to user controls is that you can compile them and make them extremely simple for
other developers to use in their applications, as well as protect any code in your
deployed application.

Building a user control
The easiest way to understand user controls is if we build a quick one, so you can see
how easy it is. A user control is really just another ASP.NET page, but one that can
only be used within an existing page. In fact, the code is the same, only a few things
are different from building a regular web form.

Consider the following web form and code behind:

•	 ImageRotator.aspx:
<%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="ImageRotator.aspx.vb" Inherits="ImageRotator" %>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Image Rotator</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Image ID="RandomImage" runat="server" />
 </div>
 </form>
</body>
</html>

•	 ImageRotator.aspx.vb:
Imports System.IO

Partial Class ImageRotator
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Creating the Articles Module

[138]

 If Not Page.IsPostBack Then
 RandomImage.ImageUrl = ImageFromDirectory("~/
RotatorImages")
 End If
 End Sub

 Private Function ImageFromDirectory(ByVal directoryPath _
 As String) As String

 Dim dirInfo As New DirectoryInfo(Server.
MapPath(directoryPath))
 Dim fileList() As FileInfo = dirInfo.GetFiles()
 Dim numberOfFiles As Integer = fileList.Length

 Dim rnd As New Random
 Dim randomFileIndex As Integer = rnd.Next(numberOfFiles)

 Dim imageFileName As String = fileList(randomFileIndex).
Name
 Dim fullImageFileName As String = _
 Path.Combine(directoryPath, imageFileName)

 Return fullImageFileName
 End Function

 End Class

This page simply reads a list of image files in a folder named RotatorImages
and randomly displays one of them whenever the page is loaded. The If Not
Page.IsPostBack line ensures that any postbacks to the page leave the image as
it was, so the random image displays only when a page is first loaded or refreshed
without a postback occurring. This is a very simple web form, but one that easily
lends itself to creating a user control. If you wanted to display a random image on a
page, you would need to add this code to every page you wanted a random image
on. You could put it into the Master Page of course, but that would limit the use of
the Master Page to only those pages you wanted a random image on. But if we turn
this into a user control, you can just add the user control on any page where you
want a random image.

To create a user control, open Visual Studio 2008 Express Edition and open our CMS
web site. Right-click the root of the web site, choose New Folder, and then create a
folder named Controls. Repeat this and create a folder named RotatorImages. You
may copy your own images into this folder or use the images in the downloadable
code files. While you're setting this up, create the ImageRotator.aspx and
ImageRotator.aspx.vb files above, or add them from the downloadable code files.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 5

[139]

Why the controls folder
You don't need to use a separate folder for your user controls; it just
makes managing them easier. Using a single folder for controls is
an indicator that the files in that folder are user controls for your
application, and it allows you to easily copy the folder of controls to a
new application. Segregating controls in this manner, or even further
using subfolders, is simply a good programming practice to get used to.

Open the ImageRotator.aspx and ImageRotator.aspx.vb files. Save them as
ImageRotatorControl.ascx and ImageRotatorControl.ascx.vb in the Controls
folder we created earlier. You'll notice the aspx extension for web forms has been
changed to the ascx extension for user controls. Modify the two new files as follows:

•	 ImageRotatorControl.ascx:
<%@ Control Language="VB" AutoEventWireup="false"
 CodeFile="ImageRotatorControl.ascx.vb"
Inherits="ImageRotatorControl" %>
<asp:Image ID="RandomImage" runat="server" />

•	 ImageRotatorControl.ascx.vb:
Imports System.IO
Partial Class ImageRotatorControl
 Inherits System.Web.UI.UserControl

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 If Not Page.IsPostBack Then
 RandomImage.ImageUrl = ImageFromDirectory("~/
RotatorImages")
 End If
 End Sub

 Private Function ImageFromDirectory(ByVal directoryPath _
 As String) As String

 Dim dirInfo As New DirectoryInfo(Server.
MapPath(directoryPath))
 Dim fileList() As FileInfo = dirInfo.GetFiles()
 Dim numberOfFiles As Integer = fileList.Length

 Dim rnd As New Random
 Dim randomFileIndex As Integer = rnd.Next(numberOfFiles)

 Dim imageFileName As String = fileList(randomFileIndex).
Name
 Dim fullImageFileName As String = _

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Creating the Articles Module

[140]

 Path.Combine(directoryPath, imageFileName)

 Return fullImageFileName
 End Function
End Class

Besides the fact that we changed the class name to more appropriately indicate
what the class does, the only change to the code-behind file is that we inherit
System.Web.UI.UserControl instead of System.Web.UI.Page. This is because
we are no longer modifying the Page class, but only the UserControl class in the
ASP.NET 2.0 framework.

On the other hand, the control itself has changed quite a bit. We've stripped out all
of the page markup, that is, the HTML, as that will be in the page we add this
control to. We have also changed the @ Page directive on the first line to @ Control,
to indicate that this is a control, not an entire page. Beyond the names changing
to reflect the new filenames, the only real code we have in the control file is the
ASP.NET Image control from our original page.

However, we can't use this control directly because it has to be in a page to be
functional. Let's create a simple web page to use this control. Create a new web form
ImageRotatorControlTest.aspx, using the following code:

<%@ Page Language="VB" %>
<%@ Register Src="~/Controls/ImageRotatorControl.ascx"
 TagName="ImageRotator" TagPrefix="cms" %>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Image Rotator Control Test</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <cms:ImageRotator ID="ImageRotator1" runat="server" />
 </div>
 </form>
</body>
</html>

You'll notice that there are only two differences between this page and our original
image rotator page, and those differences are highlighted in the code. The first
line you haven't seen before is used to register our user control so that we can use
it elsewhere on the page. It provides the source of the control, the tag name, and
the tag prefix. You can use tag prefixes to identify controls as being from a specific
group, application, or developer, or simply use a generic tag name such as uc1 that
is automatically assigned by the Visual Studio.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 5

[141]

The second highlighted line is our new control being invoked on our page. It uses
the tag name and prefix we assigned, as opposed to the built-in controls we have
used with the asp prefix. It must also have a unique ID on the page, as with any
other control. If you now run this page in a browser, it should display a random
image each time the page is refreshed, just like the original aspx page did. Except
that we can now use this user control anywhere we like, just by registering it on
the page and invoking it as any other control.

Registering controls in the web.config file
User controls may also be registered in the web.config file, eliminating
the need to register them on each page where they will be used. You
need to have a <pages> section in your web.config's <system.web>
section, and add a <controls> section inside the <pages> section with
your control definition. A sample web.config for our ImageRotator
control might look like:

<configuration>
 <system.web>
 <pages>
 <controls>
 <add tagPrefix="cms" src="~/Controls/
ImageRotatorControl.ascx"
 tagName="ImageRotator"/>
 </controls>
 </pages>
 </system.web>
</configuration>

Once the control is registered in the web.config file, you can use it
on any page by just invoking the control, without registering it. The
disadvantage to this method is that the control will always be loaded,
reducing resources on your system.

We will need to create a number of user controls for our module, including controls
to create a new Article or edit an existing one, display an Article, and display lists
of Articles.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Creating the Articles Module

[142]

Additional specifications
We want our module to meet some other goals as well. The Articles must be stored
in the database, so we can dynamically retrieve Articles and display them as selected
by the user. We should be able to display a list of Articles, and have that list sorted
in various ways such as Article name, publish date, and so on. We want to be able to
display the Article title with only a few lines of the Article and include a "read more"
link, and we don't want to display Articles that have passed their expiration date.
We want to work within our three-tier architecture, and integrate security into both
the Article creation process, as well as the viewing process. This all is fairly simple to
explain, but some of the coding can get complicated, so let's get started.

Building the Articles module
You've been walked through most of the code creation in previous chapters.
However, in some of this chapter, we'll load existing code and use it without a
complete explanation. Some of this will happen because you have already learned
how to create the code, and we don't want to double the size of the book by
repeating it. Some of it is outside the scope of this book, so we'll load it with a brief
explanation and you can dig deeper into it when you're ready. But most of the time,
the code is just too tedious to type, so we'll load it from already existing code and
will walk through its explanation.

Database layout
In order to build the Articles module, we need to know what data we are going to
store and where we are going to store it. We also need to configure the appropriate
business logic layers for the various methods we will use to manipulate the data. In
a full-fledged Content Management System, we might use stored procedures within
the database to manage some of the functions, but that is beyond the scope of this
book. We'll start by building the database for our Article module and then add the
functionality as we need it.

For each of our Articles, we need to track the title, the full body, the summary,
the author, the date the Article was authored, and whether or not the Article is
published. We also need to know an expiration date for the Article. And as we did in
Chapter 3, we'll use an ID as a primary key to our database table. Once created, the
Articles table looks something like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 5

[143]

In this new table, you will want to set the ArticleID
column as an Identity column. By doing this, the server will
automatically insert this ID and track what the next number
will be, saving us the additional work.

You'll notice this is very similar to our database in Chapter 3, although some of the
columns have been renamed and more added. You'll also notice that each column
name begins with the word "Article", indicating the function of the column, as well
as the table it is in. This isn't necessary because we can refer to a column by the
{TableName}.{ColumnName} syntax, but using the table name helps keep names
straight between tables with similar column names. We might also have a foreign
key in a table, creating a relationship with another table, and having that key use
the original table's name will help identify the relationship. Establishing naming
practices such as this is a good programming technique.

Data access layer
As we did in Chapter 3, we will create a data access layer for our Articles module.
We have created an ArticlesTableAdapter in an ArticlesDataSet with a number
of methods, as shown in the following figure:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Creating the Articles Module

[144]

You'll notice that we have INSERT, UPDATE, and DELETE queries to handle inserting
a new Article, as well as updating or deleting an existing one. We also have a number
of selection methods for these Articles—selecting all Articles, all Articles that are
current or have not passed their expiration date, and all current Articles that have
been published. These queries will return a number of Articles that meet the query
parameters. We also have queries to return a specific Article by the ArticleID, all
Articles with the same title, and all Articles created by the same user. These will come
into play in our module, to provide alternate ways of finding and displaying Articles.

We also have a second data adapter, the ArticleSummariesTableAdapter, in the
same dataset. This adapter has similar methods to our ArticlesTableAdapter,
except that the methods return only summary information on Articles, including the
ArticleID, ArticleTitle, and ArticleSummary. After all, why should we return
the contents of an Article's body if we'll be displaying only the summary?

If you look at the individual queries within the two table adapters, you will find the
difference between the queries. For example, the query for ArticlesTableAdapter.
FillByArticleID looks like this:

SELECT
 ArticleID, ArticleTitle, ArticleBody, ArticleSummary,
 ArticleCreatedBy, ArticleCreatedDate, ArticlePublished,
 ArticleExpirationDate
FROM
 Articles
WHERE
 ArticleID = @ArticleID

On the other hand, the ArticleSummariesTableAdapter.
GetCurrentPublishedArticleSummaries query looks like the following:

SELECT
 ArticleID, ArticleTitle, ArticleSummary,
 ArticleCreatedBy, ArticleCreatedDate
FROM
 Articles
WHERE
 (ArticlePublished = 1) AND (ArticleExpirationDate > { fn NOW() })

You'll notice the latter query returns only the ArticleID, ArticleTitle,
ArticleSummary, ArticleCreatedBy, and ArticleCreatedDate, not even
returning the body of the Article. This is because we will use this query to list all
current published Articles, along with their title and a summary of the Article. We
will provide a link from this to the complete Article, to be displayed only if the user
wants to read the complete Article and selects the link.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 5

[145]

Business logic layer
You'll find the business logic layer code to be very close to the code we created in
Chapter 3. Some naming changes have been made, but the biggest difference is the
inclusion of two adapter properties—the original Adapter we used in Chapter 3 and
a second SummariesAdapter that handles the second table adapter in our dataset.
We also have similar functions for the two different table adapters, although we have
no INSERT, UPDATE, or DELETE functions for the SummariesAdapter. All of our
insertions, updates, and deletions will affect all data in a table row, not just those
fields exposed in the SummariesAdapter, so we needn't duplicate these in the second
table adapter.

User controls
We will build a few user controls to list, read, create, and edit Articles, as well as
managing them. We'll use the controls in our page to provide functionality, without
having to mix a large amount of code into our individual pages, and we'll have
the individual controls available for separate parts of this and other applications.
Let's start with the ListArticles control.

Listing Articles
In our application, we need to provide a listing of Articles in various states—Articles
visible to all users, Articles restricted to specific roles, Articles that haven't been
published, and Articles that have expired. We don't need separate controls for each
of these. We can use a single control and manage the display by working with the
roles in our application. We'll begin with a simple list of the Articles, using a repeater
control to list the Articles.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Creating the Articles Module

[146]

First, using Visual Web Developer 2008 Express, add a new item to the web site and
choose Web User Control for the template. Name it ListArticles.ascx and choose
to put the code in a separate file, as shown below:

Drag the new control into the Controls folder we created for our
ImageRotatorControl earlier in the chapter. You should open the ListArticles.
ascx and ListArticles.ascx.vb in Visual Web Developer if they aren't
open already.

As we did in Chapter 2, we'll create a page with a repeater control, only this time it
will be our ListArticles control. Add the following code to the ListArticles.ascx
file after the auto-created line:

<asp:Repeater ID="ListArticlesRepeater" runat="server">
 <ItemTemplate>
 <h2>
 <asp:Label ID="ArticleTitle" runat="server" _
 Text='<%# Eval("ArticleTitle") %>' />
 </h2>
 <asp:Label ID="ArticleSummary" runat="server" _
 Text='<%# Eval("ArticleSummary") %>' />
 <hr />
 </ItemTemplate>
</asp:Repeater>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 5

[147]

This is essentially the code from Chapter 2, except this time we are evaluating both the
ArticleTitle field and the ArticleSummary field from our database. We have also
added some HTML formatting to our ItemTemplate, in order to separate our records.

In the ListArticles.ascx.vb file, add the following code in the ListArticles partial
class that was created automatically when we created the file:

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim ArticlesLogic As New ArticlesBLL()
 ListArticlesRepeater.DataSource = _
 ArticlesLogic.GetCurrentPublishedArticleSummaries()
 ListArticlesRepeater.DataBind()
End Sub

You'll notice our code is using the ArticlesBLL we created earlier, but that
otherwise, it's very similar to the repeater from Chapter 2. We are getting the
summaries of Articles that have been published and that are not expired here,
using the query we created for the DAL.

SELECT
 ArticleID, ArticleTitle, ArticleSummary,
 ArticleCreatedBy, ArticleCreatedDate
FROM
 Articles
WHERE (ArticleExpirationDate > { fn NOW() })

You'll notice we displayed only the ArticleTitle and ArticleSummary from this
query. Just because we returned the data doesn't mean we have to display it, but it is
available if we later decide to change the ListArticles control to display it. If we never
intended to display this information, it would be more efficient not to return it in the
query. However, at this point in the design, we really don't know what we may use.
In a later phase of the project, we could optimize the code when we have a better
idea of what we are using.

Create a new Web Form named Articles.aspx and use the SimpleCMS.Master
Master Page. Add the following code immediately below the @ Page declaration,
so we can register the ListArticles control as we did earlier in the chapter:

<%@ Register Src="~/Controls/ListArticles.ascx"
 TagName="ListArticles" TagPrefix="cms" %>

In the Content2 placeholder control, add the following line of code:

<cms:ListArticles ID="ListArticles1" runat="server" />

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Creating the Articles Module

[148]

This is all we need on the Articles.aspx page to display our ListArticles control as
we designed it. If you run this page in a browser, you should see something like this:

The page displays two Articles with titles and summaries from the database—in this
case, the two Articles that were published and had not expired.

Now that we have a way to display the Articles to the users of the site, we need to
make a way for us to create them. This process is something that's more complex
than a simple listing of the Articles and is also a piece that is unlikely to ever need
to be reused within the site, so for this we'll opt for creating it as a Page instead of a
UserControl. Let's begin by adding a new page to the site and call it AddArticle.aspx.
Be sure that when you create the new Web Form that you choose the option to use
a Master Page and that you select the SimpleCMS.master for your Master Page.
We'll need to add some input controls on the page to allow us to enter the data.
Go ahead and add the controls so that yours looks similar to this:

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server">
<table>
 <tr>
 <td valign="top" align="right">Title:</td>
 <td><asp:TextBox ID="txtTitle" runat="server"></asp:TextBox></td>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 5

[149]

 </tr>
 <tr>
 <td valign="top" align="right">Body:</td>
 <td></td>
 </tr>
 <tr>
 <td valign="top" align="right">Summary:</td>
 <td></td>
 </tr>
 <tr>
 <td valign="top" align="right">Expiration:</td>
 <td><asp:TextBox ID="txtExpDate" runat="server"></asp:TextBox></td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:Button id="btnSave" runat="server" text="Save" />
 </td>
 </tr>
</table>
</asp:Content>

There are a couple of things to notice at this point. The first thing is that a few of
the fields didn't contain any input. These are the ArticleID, ArticleCreatedBy,
ArticleCreatedDate, and ArticlePublished, all of which we will take care of with
code. Also notice that when we made out inputs, we didn't add controls to create the
ArticleBody or ArticleSummary yet. For this, we're going to use FCKEditor, which
was discussed in Chapter 1. Add that control so that it looks similar to this:

<tr>
 <td valign="top" align="right">Body:</td>
 <td><FCKeditorV2:FCKeditor ID="fckEditorBody" runat="server"></
FCKeditorV2:FCKeditor></td>
</tr>
<tr>
 <td valign="top" align="right">Summary:</td>
 <td><FCKeditorV2:FCKeditor ID="fckEditorSummary" runat="server"></
FCKeditorV2:FCKeditor></td>
</tr>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Creating the Articles Module

[150]

Once you've added the controls to your page, the end result should look something
like this:

The next thing we need to do is to put in the code for saving the new Article when
we enter the information, as well as creating some validations to ensure what
we need is filled in. First thing is the validations. There are a number of ways, or
combinations of ways, to accomplish this. However, for this site, we'll opt for a
simple "code" approach. By that I mean we'll handle the validations within our code
to save the data, but we could easily handle it with ASP.NET validator controls.
We'll build our validations into a simple method in our code for the page. Let's start
with the actual function. Let's call it ArticleValid. The method would look similar
to this:

Private Function ArticleIsValid() As Boolean
 Dim _isValid As Boolean = True
 ' validation code goes here
 Return _isValid
End Function

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 5

[151]

As you can see, it's pretty simplistic at this point. But it's a simple "stub" for us to
use within our page to ensure that when we are ready to save the Article, we have
everything in place. As a note, remember that we don't want to validate any business
rules here—that will be handled in our ArticlesBLL class. We're validating only
the physical inputs from the UI and then passing the business validations call to the
ArticlesBLL. Here is a sample of the simple input control validations:

If DateTime.TryParse(txtExpirationDate.Text, Nothing) = False Then
_isValid = False
If txtTitle.Text.Trim.Length = 0 Then _isValid = False
If fckEditorBody.Value.Trim.Length = 0 Then _isValid = False
If fckEditorSummary.Value.Trim.Length = 0 Then _isValid = False

Now, we need to check the business rules, and come up with them for our Articles.
For the purpose of this section, we'll keep the rules simple and say that the expiration
date must be at least one day out from today. For this, we will need to first create
a Validate function in our ArticlesBLL. The code for that, put within the
ArticlesBLL.vb file, would look similar to this:

Public Shared Function Validate(ByVal _expDate as Date) As Boolean
 Dim _isValid As Boolean = True
 If Not _expDate > Today.AddDays(1) Then _isValid = False
 Return _isValid
End Function

You could easily add more validations to this as you see necessary. However,
the basic premise is that you pass in the Article we've created and the method
determines if it matches all the criteria. Our next step is to call this new method from
within the ArticleIsValid() method we wrote in the code for the page. To do this,
we need to add the following to the method:

If ArticlesBLL.Validate(CDate(txtExpirationDate.Text)) = False Then
_isValid = False

Now that we've got a way to verify that all the Article information passes our tests,
we need to actually create the Article object and see about calling our new method
and, if it passes, calling the Save to commit it to our database. We have a Save button
on our page, "btnSave", so now we need to create the event that happens when you
click it. The code for that would look similar to this:

Protected Sub btnSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click
End Sub

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Creating the Articles Module

[152]

Once the event has been created, we just need to go and put our call to the
ArticleIsValid() method and determine the result. To do this, we place the
following code into our btnSave_Click() event:

If ArticleIsValid() Then
 ' Everything is OK
Else
 ' Article Failed Validation
End If

If everything was OK, we will want to call our ArticlesBLL, passing in all the
necessary data, and commit the Article to the database. To accomplish this, we put
the following code into the above If/Then check so that it looks similar to this:

Dim _ArticlesBLL As New ArticlesBLL()
If _ArticlesBLL.CreateArticle(_
 txtTitle.Text, _
 fckEditorBody.Value, _
 fckEditorSummary.Value, _
 Page.User.Identity.Name, _
 Today, _
 0, _
 CDate(txtExpDate.Text)) Then
 ' Article Was Saved.
Else
 ' Article Was Not Saved.
End If

As you can see in the call to the CreateArticle(), we've hardcoded a few
values and pulled a few from outside of the user inputs on the page. The
ArticleCreatedBy we are pulling from part of the login information that is required
on the site. We set the ArticleCreatedDate as "Today", meaning that the system
will automatically use the current date retrieved from the Server. The last item is
the ArticlePublished, which can be a 1 or a 0, with 0 being unpublished. For this,
we always set it to 0 when the Article is created so that (as you will see later in this
chapter, as well as being covered in Chapter 9) we can put the Article through an
approval process.

I'm sure that in your usage of the code presented here, you will want to do a number
of things beyond the simple approach such as adding friendly error messages,
handling what to do when the Article saves (messages, redirect to another page,
and so on). However, for the purposes here, we'll keep it simple.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 5

[153]

Author, Editor, and Publisher roles
Now that we have a way to actually create the Articles for our CMS system, we
should revisit the security and roles we want to be able to use. We said earlier
that we would have four distinct Roles in our CMS—Author, Editor, Publisher
(Administrator), and Registered User. As far as creating Articles within our site,
we will want to limit this ability to just the Author, Editor, and Administrator
roles, making sure to disallow the users who are only registered, along with any
Unregistered Users. ASP.NET has a very simple way for us to handle these scenarios.
First, let's take a look at any Unregistered (or Anonymous) Users and force them to
log in before they can access the page to create Articles. Within the Page_Load()
method of the AddArticles.aspx.vb, we will want to add the following code:

If Not Page.User.Identity.IsAuthenticated Then
 Response.Redirect("login.aspx")
End If

This code will check if the user is logged in and redirect them to the Login.aspx
page if they are not properly authenticated. Next, we will want to extend our check
so that only those roles mentioned above have access. To do this, we will take the IF
check we just wrote and add a second part to it, as shown next:

If Not Page.User.Identity.IsAuthenticated Then
 Response.Redirect("login.aspx")
Else
 If Not Page.User.IsInRole("Author") _
 AndAlso Not Page.User.IsInRole("Editor") _
 AndAlso Not Page.User.IsInRole("Administrator") Then
 ' User Does Not have Access
 Response.Redirect("default.aspx")
 End If
End If

The page should now be limited to only those users whom we wish to have access to
create new Articles within our site. We will be delving into these roles a little more in
Chapter 9. This will involve going into the specifics of how they can interact beyond
creating the Articles, but this should suffice for now.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Creating the Articles Module

[154]

Additional features
From the basic setup we've laid out in this chapter, you could extend it in any
number of ways depending on the requirements you may have for your CMS.
We've added an expiration date, but you could also add a start date if you wanted.
This would allow you to determine when the Article would start appearing, giving
you the ability to create your content ahead of time. You could also add additional
tracking information such as views to count the number of times your Article has
been pulled up. Perhaps you would like detailed publishing information. For this,
you may want to look at adding the PublishedBy and PublishedDate columns to
your database, DAL, and BLL. All of these items are things that you could add, most
with very little work, which could improve the way you use your CMS. With some
additional work, you could extend the Articles to include versioning, saving all
the edits to the Article. Perhaps you would like to extend the Articles to include
a "blog-like" feel. To achieve this, you could add some additional tables to your
database to store the comments.

The base concept of a CMS Article is really just that—a base. It's meant to be a starting
point for your site—a way for you to provide content quickly and easily to your users.
Beyond this simple approach, there is really no limit to what you could provide.

Summary
In this chapter, we've gone over the basics of how to display your Articles, how to
create them, and touched briefly on how you may want to extend them. With all these
pieces in mind, it's easy to get carried away and try to do too much, too quickly.
With that in mind, I suggest you start simple and always keep the user in mind.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Pages and Zones
In this chapter, we will discuss a number of the visual aspects of a site design. Many
of these topics are not specific to a CMS, but are great concepts to remember for any
site you may be designing.

In this chapter, you will learn about implementing and using:

•	 Master Pages
•	 Themes
•	 Menus and navigation
•	 Page hierarchy
•	 Regions and Zones

Master Pages
Earlier you were introduced to a feature called Master Pages, but what exactly
are they? The idea behind them is the one that's been around since the early days
of development. The idea that you can inherit the layout of one page for use in
another is the one that has kept many developers scrambling with Includes and
User Controls. This is where Master Pages come into play. They allow you to lay out
a page once and use it over and over. By doing this, you can save yourself countless
hours of time, as well as being able to maintain the look and feel of your site from
a single place. By implementing a Master Page and using ContentPlaceHolders,
your page is able to keep its continuity throughout.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Pages and Zones

[156]

In Chapter 4, you saw a simple implementation of a Master Page that contained two
ContentPlaceHolder controls (ContentPlaceholder1 and Head, identified by their
IDs). The Default.aspx page was set up to use the Master Page that was created.
We'll expand upon all of this in a bit more detail. Although let's first review the pieces
that were already put in place. You'll see on the Master Page (SimpleCMS.master)
that it looks similar to a standard .aspx page from ASP.NET, but with some slight
differences. The <@...> declaration has had the page identifier changed for a Master
declaration. Here is a standard web page declaration:

<%@ Page Language="VB" MasterPageFile="~/SimpleCMS.master"
 AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" Title="Untitled Page" %>

Here is the declaration for a Master Page

<%@ Master Language="VB" CodeFile="SimpleCMS.master.vb"
 Inherits="SimpleCMS" %>

This tells the underlying ASP.NET framework how to handle this special page.
If you look at the code for the page, you will also see that it inherits from
System.Web.UI.MasterPage instead of the standard System.Web.UI.Page.
They function similarly but, as we will cover in more detail later, they have a few
distinct differences.

Now, back to the Master Page. Let's take a closer look at the two existing
ContentPlaceHolders. The first one you see on the page is the one with the ID of
"Head". This is a default item that is added automatically to a new Master Page and
its location is also standard. The system is setting up your page so that any "child"
page later on will be able to put things such as Javascript and style tags into this
location. It's within the HTML <head> tag, and is handled by the client's browser
specially. The control's tag contains a minimal amount of properties—in reality only
four, along with a basic set of events you can tie to. The reason for this is actually
pretty straightforward—it doesn't need anything more. The ContentPlaceHolder
controls aren't really meant to do much, from a programming standpoint. They are
meant to be placeholders where other code is injected, from the child pages, and this
injected code is where all the "real work" is meant to take place. With that in mind,
the system acts more as a pass-through to allow the ContentPlaceHolders to have as
little impact on the rest of the site as possible.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 6

[157]

Now, back to the existing page, you will see the second preloaded
ContentPlaceHolder (ContentPlaceHolder1). Again, this one will be automatically
added to the new Master Page when it's initially added. Its position is really more
of just being "thrown on the page" when you start out. The idea is that you will
position this one, as well as any others you add to the page, in such a way as to
complement the design of your site. You will typically have one for every zone or
region (see Chapter 8) of your layout, to allow you to update the contents within.
For simplicity sake, we'll keep with the one zone approach to the site, and will only
use the two existing preloaded ContentPlaceHolders for now at least.

The positioning of ContentPlaceHolder1 in the current layout is one where it
encapsulates the main "body" for the site. All the child pages will render their
content up into this section. With that, you will notice the fact that the areas outside
this control are really important to the way the site will not only look but also
act. Setting up your site headers (images, menus, and so on) will be of the utmost
importance. Also, things such as footers, borders, and all the other pieces you will
interact with on each page are typically laid out on your Master Page. In the existing
example, you will also see the LoginStatus1 control placed directly on the Master
Page. This is a great way to share that control and any code/events you may have
tied to it, on every page, without having to duplicate your code.

There are a few things to keep in mind when putting things together on your
Master Page. The biggest of which is that your child/content page will inherit
aspects of your Master Page. Styles, attributes, and layout are just a few of the
pieces you need to keep in mind. Think of the end resulting page as more of a
merger of the Master Page and child/content page. With that in mind, you can begin
to understand that when you add something such as a width to the Master Page,
which would be consumed by the children, the Child Page will be bound by that.

 For example, when many people set up their Master Page, they will often use a
<table> as their defining container. This is a great way to do this and, in fact, is
exactly what's done in the example we are working with. Look at the HTML for
the Master Page. You will see that the whole page, in essence, is wrapped in a
<table> tag and the ContentPlaceHolder is within a <td>. If you were to happen
to apply a style attribute to that table and set its width, the children that fill the
ContentPlaceHolder are going to be restricted to working within the confines of that
predetermined size. This is not necessarily a bad thing. It will make it easier to work
with the child pages in that you don't have to worry about defining their sizes—it's
already done for you, and at the same time, it lets you handle all the children from
this one location. It can also restrict you for those exact same reasons. You may want
a more dynamic approach, and hard setting these attributes on the Master Page may
not be what you are after. These are factors you need to think about before you get
too far into the designing of your site.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Pages and Zones

[158]

Now that you've got a basic understanding of what Master Pages are and how they
can function on a simple scale, let's take a look at the way they are used from the
child/content page. Look at the Default.aspx (HTML view). You will notice that
this page looks distinctly different from a standard (with no Master Page) page.
Here you have what a page looks like when you first add it, with no Master Page:

<%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="Default2.aspx.vb" Inherits="Default2" %>

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 </div>
 </form>
</body>
</html>

Compare this to a new Web Form when you select a Master Page.

<%@ Page Language="VB" MasterPageFile="~/SimpleCMS.master"
 AutoEventWireup="false" CodeFile="Default2.aspx.vb"
 Inherits="Default2" title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head"
 Runat="Server">
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">
</asp:Content>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 6

[159]

You will see right away that all the common HTML tags are missing from the page
with a Master Page selected. That's because all of these common pieces are being
handled in the Master Page and will be rendered from the Master Page. You will
also notice that the page with a Master Page also has an additional default attribute
added to its page declaration. The title attribute is added so that, when merged
and rendered with the Master Page, the page will get the proper title displayed.
In addition to the declaration tag differences and the lack of the common HTML
tags being absent, the two ContentPlaceHolder tags we defined on the Master Page
are automatically referenced through the use of a Content control. These Content
controls tie directly to the ContentPlaceHolder tags on the Master Page through the
ContentPlaceHolderID attribute. This tells the system where to put the pieces when
rendering. The basic idea is that anything between the opening and closing tags of
the Content control will be rendered out to the page when being called from
a browser.

Themes
Themes are an extension of another idea, like Master Pages, that has kept developers
working long hours. How do you quickly change the look and feel of your site for
different users or usages? This is where Themes come in. Themes can be thought of
as a container where you store your style sheets, images, and anything else that you
may want to interchange in the visual pieces of your site. Themes are folders where
you put all of these pieces to group them together. While one user may be visiting
your site and seeing it one way, another user can be viewing the exact same site,
but get a completely different experience.

Let's start off by enabling our site to include the use of Themes. To do this,
right-click on the project in the Solutions Explorer, select Add ASP.NET Folder,
and then choose Theme from the submenu:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Pages and Zones

[160]

 The folder will default to Theme1 as its name. I'd suggest that you name this
something friendlier though. For now, we will call the Theme as "SimpleCMSTheme".
However, later on you may want to add another Theme and give your folders
descriptive names, which will really help you keep your work organized.

You will see that a Theme is really nothing more than a folder for organizing all
the pieces. Let's take a look at what options are available to us. Right-click on the
SimpleCMSTheme folder we just created, select Add New Item, and you should see
a list similar to this one:

Your items may vary depending on your installation, but the key items here are Skin
File and Style Sheet. You may already be familiar with stylesheets if you've done
any web design work, but let's do a little refresher just in case. Stylesheets, among
other uses, are a way to organize all the attributes for your HTML tags. This is really
the key feature of stylesheets. You will often see them referenced and called CSS,
which stands for Cascading Style Sheets that I'll explain in more detail shortly, but
it's also the file extension used when adding a stylesheet to your application. Let's go
ahead and add Style Sheet to our site just like the example above. For our example,
we'll use the default name StyleSheet.css that the system selects. The system will
preload your new stylesheet with one element—the body{} element. Let's go ahead
and add a simple attribute to this element. Put your cursor between the open "{" and
close "}" brackets and press Ctrl+space and you should get the IntelliSense menu. This
is a list of the attributes that the system acknowledges for addition to your element
tag. For our testing, let's select the background-color attribute and give it a value of
Blue. It should look like this when you are completed:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 6

[161]

body {
background-color: Blue;
}

Go ahead, save your stylesheet, run the site, and see what happens. If you didn't
notice any difference, that's because even though we've now created a Theme for the
site and added an attribute to the body element, we've never actually told the site
to use this new Theme. Open your web.config and find the <pages…> element. It
should be located in the <configuration><system.web> section, as shown next:

Go ahead, select the <pages> element, and put your cursor right after the "s".
Press the spacebar and the IntelliSense menu should show up like this:

You will see a long list of available items, but the item we are interested in for now is
the theme. Select this and you will be prompted to enter a value. Put in the name of
the Theme we created earlier.

<pages theme="SimpleCMSTheme">

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Pages and Zones

[162]

We've now assigned this Theme to our site with one simple line of text. Save your
changes and let's run the site again and see what happens. The body element we
added to our stylesheet is now read by the system and applied appropriately. View
the source on your page and look at how this code was applied. The following line is
now part of your rendered code:

<link href="App_Themes/SimpleCMSTheme/StyleSheet.css"
 type="text/css" rel="stylesheet" />

Now that we've seen how to apply a Theme and how to use a stylesheet within it,
let's look at one of the other key features of the Theme, the Skin file. A Skin file
can be thought of as pre-setting a set of parameters for your controls in your site.
This will let you configure multiple attributes, in order to give a certain look and
feel to a control so that you can quickly reuse it at any time. Let's jump right in and
take a look at how it works, to give you a better understanding. Right-click on the
SimpleCMSTheme folder we created and select the Skin File option. Go ahead
and use the defaulted name of SkinFile.skin for this example. You should get an
example like this:

<%--
Default skin template. The following skins are provided as examples
only.

1. Named control skin. The SkinId should be uniquely defined because
 duplicate SkinId's per control type are not allowed in the same
theme.

<asp:GridView runat="server" SkinId="gridviewSkin" BackColor="White" >
 <AlternatingRowStyle BackColor="Blue" />
</asp:GridView>

2. Default skin. The SkinId is not defined. Only one default
 control skin per control type is allowed in the same theme.

<asp:Image runat="server" ImageUrl="~/images/image1.jpg" />
--%>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 6

[163]

We now have the default Skin file for our site. Microsoft even provided a great
sample here for us. What you see in the example could be translated to say that
any GridView added to the site, with either no SkinID specified or with a SkinID
of gridviewSkin, will use this skin. In doing so, these GridViews will all use a
BackColor of White and AlternatingRowsStyle BackColor of Blue. By putting
this in a Skin file as part of our Theme, we could apply these attributes, along
with many others, to all like controls at one time. This can really save you a lot of
development time. As we go through designing the rest of the CMS site, we will
continue to revisit these Theme principles and expand the contents of them, so it is
good to keep their functionality in mind as we go along.

Menus
Navigation is the heart of any web site. It's your direct interface to your customers
and allows you to guide them to all of the content that you've spent hours on putting
together. A poorly laid out navigation menu can destroy the usability of your site,
and can also transform your site into one that your customers/users will enjoy
using. There are two common ways that menus are done within most ASP.NET web
sites. The first is what I would consider the "old" way of doing it. That would be the
manual method of making menus. By using simple HTML <a href..> tags, you
could easily place a series of links on your page and, in reality, you have a menu.
This will work great in certain circumstances. If your site has a very limited number
of items you wish to display on the menu, if your menu is something that is likely to
seldom change, and if you don't really have the need to dynamically enable or hide
your menu items, then you may find that this simple menu system is one that will fit
your needs nicely. It's still a commonly used option and is very fast and easy to set
up. It could be as simple as the following code:

<td>
 Click Me
 Click Me
 Click Me
 Click Me
 Click Me
 </td>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Pages and Zones

[164]

With the above approach, you really could do a lot more than just this simple list of
links, but it would involve doing a great deal of CSS and Javascript, not to mention
really involving a time commitment to develop and lots of potential cross-browser
issues. This is where the ASP.NET tools can really come into play and save you
a great deal of time. Microsoft has taken most of the things you may want to do
with your series of links, and done the work for you. Visual effects, drop-down
sub-menus, and permissions are just a few of these pre-designed features. For this
example, let's go ahead and put a Menu control on our Master Page. Open up the
SimpleCMS.master page in the designer and drag a Menu control from the toolbox
on to our page right below our logo.

As you can see, it has a set of default values; but for our needs, let's go ahead and
replace these right away, and make this a horizontal menu instead of a vertical
(the default) one. Doing this is as simple as going to the Menu Properties, looking
in the Layout section, and changing its Orientation.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 6

[165]

Another quick and easy thing we can do is change the look and feel of the menu.
We could tweak all the little settings on the menu or we could take advantage of
a number of pre-built themes that Microsoft has provided for us. Click the Menu
Tasks button to extend them.

Then select the AutoFormat option.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Pages and Zones

[166]

Here you will see a list of four pre-built options, as well as a handy option, to remove
all the formatting. These formats are made to be used not only as they are, but also
as a great starting point for your own design. Let's choose the Simple option for
our site. If you were to run the site right now, you would notice that our menu
doesn't show up. This is not because we've done anything incorrectly; it's because
even though we've added a menu to the site, we haven't yet added any items to the
menu. For this, you again have two common ways of doing it. The first, again, is the
more straightforward and simplistic approach. We can simply click the Menu Tasks
button and choose Edit Menu Items. You will see an empty editor screen.

From here, simply choose Add Root Item.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 6

[167]

Then go ahead and give it some Text and a Value. Click Save and run your site once.
You will see that the following screen will show up:

We really don't want a menu with just one item on it, so let's stop the site and go
back in to the menu editor. Go ahead and add three more Root menu Items to your
menu. When you are done with that, select your third Root menu item and choose
the Add Child Menu Item from the editor.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Pages and Zones

[168]

Add a couple of child items to your third Root menu Item. Be sure that you always
highlight the Root menu item when you choose the Add Child, or you may find
yourself adding child items in places you didn't intend them to be. When you are
done, you should have a menu that looks something like this:

Go ahead and click the OK button and then run your site. You will see that it will
display your new menu, as shown in the following figure:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 6

[169]

Now as you can see, this would work perfectly well and you could easily create your
menu items like this, but there is another way. If you still have the site running, go
ahead and stop it. In your Solutions Explorer, select the root of your site. Then, from
the menu, choose File | New File. Choose the Site Map option from the list.

As always, you could leave the name of the file to the defaulted name, but in this
case, we will use the defaulted name of web.sitemap. By keeping the default name,
it will save us some configuration work later. It will create a set of default entries and
take us immediately into the editor when we click OK.

<?xml version="1.0" encoding="utf-8" ?>
<siteMap
xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="" title="">
 <siteMapNode url="" title="" description="" />
 <siteMapNode url="" title="" description="" />
 </siteMapNode>
</sitemap>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Pages and Zones

[170]

As you can see, the site map is really nothing more than an XML file with some
special tag names. Let's go ahead and create some simple entries in our file so that
the end result looks something like this:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap
xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="" title="">
 <siteMapNode url="~/Default.aspx" title="Link 1"
description="Link 1" />
 <siteMapNode url="~/Default.aspx" title="Link 2"
description="Link 2" />
 <siteMapNode url="~/Default.aspx" title="Link 3"
description="Link 3" />
 <siteMapNode url="~/Default.aspx" title="Link 4"
description="Link 4" />
 </siteMapNode>
</sitemap>

Now, let's go back to the Menu control we added to our Master Page. From that
menu, choose the Tasks button, and then select Choose Data Source.

Select New Data Source from the menu and you will get a screen like this.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 6

[171]

Click OK and you will now see that our page has a new control placed on it.
This new SiteMapDataSource1 control has been automatically created for us.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Pages and Zones

[172]

If you were to run the site right now, you would see that the menu we added is now
populated, but odds are that it's not quite laid out as you would have expected.
Stop the running of the site and let's go to the properties on the SiteMapDataSource.

Our current sitemap file contains a "root" tag. This is simply the container that
must exist to group all the other menu items together. However, in this case, we
don't want that to actually show on the page, so we will set the ShowStartingNode
property to False. This will tell the menu control to skip that first item and display
the next level of items as the root of the menu. Run the site again and you should see
a much different look for the menu on the site.

From here out, anytime you want to add a menu item, it's simply a matter of editing
the web.sitemap file and instantly that menu change will be displayed throughout
the site.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 6

[173]

Page hierarchy
Page hierarchy can be thought of in two ways. There is the programmatic version of
the hierarchy and then there is the logical hierarchy. First, let's discuss this from the
consumer's side, that is, the logical side. When a person visits your site and goes to a
page, let's say About page, and this page contains bios of your staff. If these bios link
off to details on these individual people, your visitors will consider these pages to be
child pages of the "About" page. While they could physically be in the same location
(or possibly on the programmatically same page), the visitors will feel like they are
on a child page, as they would expect these bio pages to be listed on Site Maps and
Menus as children of the About page. They would also expect navigation to allow
them to return to the "About" page. These are conventions that have been taught to the
Internet users since the early days and are conventions that we can take advantage of.
This logical flow allows us to help guide the users to pieces of content within the site.
Whether it's simply going from a list to more details, or navigating a product catalog
or narrowing search results, this logical progression through the site is something you
need to maintain awareness of when deciding how you lay out your site.

The second Page hierarchy concept that needs mentioning is that of programmatic
aspect. With ASP.NET, you are allowed to use what's called inheritance. This
literally means that Page B can absorb and use Page A as part of itself. This allows
us to share pieces across pages without having to rewrite them, as well as helping us
maintain consistency. Master Pages, which we've already delved into earlier in this
chapter, are a perfect example. Your child pages can be thought of as the merging of
the Master Page and the content from within itself. This is a very powerful concept
and one that can really save you a lot of time. This is not the same thing as the
Inherits that you see in the page declaration, but rather it is one of usage.

<%@ Page Language="VB" MasterPageFile="~/SimpleCMS.master"
 AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" Title="Untitled Page" %>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Pages and Zones

[174]

The Inherits declaration above is an even more powerful version of this same
concept though. The Inherits declaration is the merging of two pieces again, but
this time it's done at a much lower level, from within the .NET Framework. The
Inherits declaration here is used to tell the site what class the page will use when
it's compiled. In our current site sample, you will see that the Default.aspx page
has an Inherits=_default. This means that when the application is compiled by
the .NET Framework, it will find a class named _default, and will tie that to this
page so that all its controls, methods, and events will be driven from that class. If we
look at the Default.aspx.vb file, we will see the _default class declared there. It's
the tying of these two pieces together that gives us the ability to program against it.
Now, take a closer look at the _default class. Notice that it is also inheriting a class:

Partial Class _Default
 Inherits System.Web.UI.Page

By inheriting from the System.Web.UI.Page class, we are telling the .NET
framework that the code we write should be merged with the code from that class.
This means that anything that's exposed in that class is available to us. Take a
moment now to delve into the System.Web.UI.Page class (either online or in the
Help Files) and you will see that Microsoft has taken a great deal of time to give us
a lot of functionality within this class and has already provided us with quite a bit.
As we add functionality to the site, we will be utilizing these pieces frequently, so it
pays to take the time to see what's available to us now.

Regions and Zones
The concept of a "Zone" or "Region" within a site is one that's been around since web
sites were first created. Logically separating your site into pieces helps you keep a
consistent feel to your site, as well as making sure your visitors know what to expect.
If you've ever created a site, you have probably already implemented this concept,
possibly without even realizing it. Let us take a look at a common layout used in
many sites, and the same layout we currently have in our sample site. Here is how
the site breaks down:

header

body

footer

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 6

[175]

With this layout, we've already declared three Zones for our site—header, body,
and footer. Each Zone serves a specific purpose and, when done well, the visitor will
know easily what to expect from each. By understanding the functionality of each
of your Zones, you will be able to spend less time on things such as your site layout
and more time on getting the pieces your have within your site just the way you
want them. In addition to the layout we are already using on our sample site—often
referred to as "one column"—you will often see one of the two layouts:

The "two column" layout:

side

header

body

footer

and the "three column layout":

side side

header

body

footer

Take a look at the sites you visit and you will see that most will fall into one of these
three layout styles. There has been a great number of research studies and usability
discussions over the years, trying to determine what works "best", and that's the
reason that you will find these three layouts most often because they work. Web site
consumers have come to understand these layouts and are typically comfortable
with them.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Pages and Zones

[176]

From a web site owner perspective, the "header" Zone is probably the most
important Zone on the site. This Zone is where you will typically define who
you are and what you are all about. Your logo and company name are often in this
Zone. You will also find the site navigation, quick links, and search functionality
here. These items are spanned across multiple pages—often your entire site—and
are probably the most highly used (clicked on) pieces. Ensuring this Zone is well
laid out can be the deciding factor on how your visitor's user experience will be.
A poorly done header can drive your visitors away quickly, and may result in the
users not returning again to your site and also passing the experience on to others.
On the other hand though, a well done header will make your site easier to use, and
let your visitors quickly get where they need to go, find what they are looking for,
and always know where they are and who you are.

The "footer" Zone is often an overlooked, or at least barely considered area, and yet
it can be a really vital piece. Simple things such as copyright information are usually
held here, but it can also be a great place for other items. Page counters, company
links, and product/site versions are often placed here so that they can be maintained
and kept handy for all the pages in your site without detracting from your user's site
experience. The footer is one of those great pieces that your user can always find,
but at the same time, it's down out of their typical eye-line, so it won't draw their
attention from rest of the site.

Before I talk about the main or "body" Zone, I do want to give a little explanation
of the other common Zone(s)—the "side" Zone. Whether you are using the two or
three column layout, you will have some side areas where you will want content
displayed. These side Zones can be an extremely handy area for interacting with
your visitor. The items that are contained in these Zones are typically consistent
across your pages, but that isn't to say they are the same. The use will be the same,
but the individual content within it will be dynamic and often directly tied to what's
being used in the main body section of your site. As an example, if your site was
designed around a blog, you may be displaying the latest entries in your body Zone,
and at the same time, your side Zone may be displaying a list of top read entries,
newest entries, or even a calendar of entries. These two zones are closely tied in this
use, and may change as you browse through the content of the entries to be lists of
other entries in a matching category or comments made on the current entry.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 6

[177]

However, as you see by these examples, the side panels are very important to the
body Zone. Without the side Zone, you aren't getting the complete picture, but
only an isolated piece of it. The side Zone isn't just limited to the above-mentioned
use either and can serve a number of additional functions. Advertisements, if you
were to use them in your site, are often located in these side Zones, as they can
be presented to the visitors without detracting from the main content in an overt
fashion. Submenus, additional quick links, and search boxes can also often be found
in these side Zones because you may want them always available to your user, again
without detracting too much from the main content. The last common use of the side
Zone would be what I call the "everything else" items. Sometimes you may have
some small pieces of information you want to provide to your users, which is either
not large enough to require its own page or is simply a convenience item, and the
side Zone is a great place to stash these items.

The main body of the site is typically the largest and most dominant Zone on the
site. This is where you will provide the majority of the information you want your
visitors to see, and yet it is often the most simplistic piece of the site. The reason for
this simplicity is really one of convenience. You want your visitors to quickly find
what they need, and you don't want them to be inundated with too much extra that
may distract them.

With all this information on the different Zones and what purposes they may
serve, let's look at setting up our site Zones and how to use them within the code
of our site. As we discussed earlier in this chapter, the use of a Master Page and
ContentPlaceHolders is the starting point. This design uses an HTML table to define
the areas we will use and the visible aspects of them (heights, colors, fonts, and so
on) through the use of the stylesheets and Themes we've already started. From here,
it's just a matter of making the individual pages, deriving them from the Master Page
we created, and filling in the ContentPlaceHolders with the appropriate content.
We've already begun to do this with the pages we've added to our site, although the
pieces may make a bit more sense now.

Summary
In this chapter, we covered the concepts of why you lay out your site in a particular
way, as well as beginning to help you understand all the pieces involved in this
process. All of these pieces—Master Pages, Themes, CSS, Skins, Sitemaps, and
Menus—combine together to make your site work. A solid understanding of these
pieces will help you as you put together all the individual components. However,
more importantly, it will aid you as you continue to expand your site, giving you the
ability to quickly update it with as little work as possible.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS
This chapter will discuss ways to use and save files, documents, and images to the
CMS. We will cover not only the implementation of these features, but will also give
you a firm background to help you understand how these features work, as well as
other suggestions on implementing them.

This chapter will cover the following topics:

•	 Images and files on the Web
•	 Using the FileUpload control
•	 Creating a database table for the images and files
•	 Creating an image gallery and all classes associated with it
•	 Creating a document repository and all classes associated with it
•	 RSS feeds

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[180]

How images and files work on the Web
Images are a key aspect for nearly any web site. They are the pieces that can let you
be expressive and give your web site users a great experience, but that's not all they
are good for. Images, and documents for that matter, can be provided to your users
as usable content. In order to take advantage of all these pieces, you really need
to understand how they work and why they act the way they do. If you've
worked with HTML before, you have almost certainly used the tag.
That tag is universally understood and processed by browsers. This control uses
an src= attribute to tell the browser where the file is located. However, there is
more to it than just a pointer—it can also be used more intricately. For starters, the
src attribute can not only be a "relative path" (/folder/image.jpg) and a "fully
qualified URL" (http://www.foo.com/folder/image.jpg), but it can actually be
a dynamically generated image (I'll cover that in more detail later). The key to take
away from this is that the tag is the root of imaging when it comes to the
Web. Every web programming language has some sort of custom image control,
but if you look at what is rendered out to the user's browser, it is almost always an
 tag, simply because this is what the browser "knows" how to use. In reality,
if you know the path directly to the image, you can put the image path into your
browser most of the times, and point right to the image and display it. There are
some limitations with the tag, which you need to keep in mind when using
the control. The biggest, or at least the most common hindrance, is the type(s) of
images that are usable. Different browsers will accept and interpret some different
image types, but in general, you will see that nearly every browser will accept *.jpg,
*.gif and *.png image types, along with many also accepting *.bmp and *.tif.
Now, there is also one other special case—the *.ico. However, that will be covered at
another point.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[181]

File upload control and beyond
When building a CMS, one of the most important features you can have on your site
is the ability to allow users to upload and view documents, images, files, and so on.
For getting these files on to the web server—where they need to be for everyone to
access them—you really have two basic choices. The first is a manual way where
the file is delivered to someone (through email or disc) and then that person directly
copies the files on to the server. The second way is to allow the users to upload these
files directly to the server from their own computer. For reasons that are pretty
obvious, you will usually opt for the second choice. For doing these direct uploads,
one of the most common ways is to use the <asp:FileUpload />. The heart/core
of this control is really nothing new, and has been around for quite a while. If you
look at the control and what the rendered HTML is for this control, you will see that
it's an <input type="file" /> tag. This has been around for many versions of the
HTML standards and is accepted by nearly every browser out there today. With that
in mind, Microsoft took this fairly basic control, and extended it to allow you to do
more with it, or at least more with the resulting file.

Before we get into too much detail of what you can do with the <asp:FileUpload />
control, let's talk about what, and how, it does what it does. To put it simply,
it allows you to browse to a file on your computer, select it, and then transfer it to
the server. It breaks the files down into their binary components and starts sending
them to the server where they are being waited for. All of the contents of the file are
sent to the server and stored in memory (RAM) on the server until all the pieces are
there, then recombined and saved on the server. This entire process is subject to a
number of influencing factors, which you need to take into account while using this
powerful control.

The first is you need a steady connection to the server throughout the uploading
process. While you may think this sounds like no big deal, it wasn't always, and
still isn't the case in many areas. The Internet can be thought of as a large ocean
of data with waves rolling in and out. Your connection speed and even the actual
connectivity can go up and down, sometimes drastically. When you are looking at
web pages, it's not typically as noticeable because you aren't maintaining a constant
connection to the site, but rather you are connecting, getting your data, and then
disconnecting. If the connection fluctuates, you don't often notice because you aren't
actually requesting any data at that moment, but when it comes to uploading a
file, you need a steady connection. The speed can vary. But if the actual connection
between you and the server is momentarily lost, for whatever reason, you will
probably have to re-do the upload, as the pieces are no longer going anywhere and
you've probably lost a few along the way.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[182]

The second factor you need to keep in mind, and this partially ties to the first, is the
file size. The larger the file, the longer it will take to get all the pieces to the server.
That leaves more opportunity and time for a connection to falter. This also means,
if you remember that the entire file needs to be loaded into the server's memory
before it's saved, that this can be resource intensive on the server. Trying to upload
a large file can take a lot of memory away from the other things that the server may
need to do. It's for this reason that ASP.NET has the ability to limit the file size when
transferring a file. Within the web.config file, there is sometimes a setting called the
HttpRuntime that explicitly sets the value, but there is also an inherited default value
of approximately 4MB. This tells the site to not allow transfers larger than 4MB.
This value is actually a default value that's inherited. Besides being just a site
setting, which is defined in the web.config, it can also be set at a server level
and enforced on all sites on that server. These values are typically stored in the
machine.config. They work the exact same way, just on a larger scale. I'd suggest
reading up on the different config files available to you, but for now, we will be
working with just the web.config. However, you do need to keep in mind that your
settings may be overridden by settings in another config file elsewhere. For now,
we will use this 4MB file limit.

The third and last thing I want to mention in regards to how the
<asp:FileUpload /> control and it's use can be impacted is the security aspect
of it. As this control is one of the few things that can have access to the user's
computer, the security around it is vital. There is very little that you can do to
adjust the way it interacts with the client's computer. The control has limited
interactive capabilities from the developer's perspective just to help ensure the
users' security—where the user selects the file from, what file type, and even the file
sizes cannot be easily limited within the context of the control. This is all purposely
excluded from the abilities of the control to ensure someone isn't extracting a file
from the user's computer without their express consent.

Now that we've covered some of the background on the control, let's dig into how to
use it. For our CMS, we know we are going to need the ability to upload documents
and images, and make them available to a site user. So, let's look at our options on
how we can do this. Firstly we need to make a decision on how we want to store
these items within our site. For this, we have two common options.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[183]

The first is simply to stick them into a folder on the server when the user uploads
them. This is a great approach and can work very smoothly, but there are a couple
of distinct limitations. The first is that every item would need to have a unique
name, otherwise files would be overwritten when a new one with the same name is
added. This approach can also cause limitations within the security of these items.
If you want to allow access to certain users to access only certain items, you could
find yourself with some real difficulties. The last potential limitation that I wanted
to mention was that of "versioning". By that I mean you have no way of maintaining
multiple copies of the same file, at least not easily, as each new version would simply
overwrite the previous. Although this approach of directly saving the files on the
server does have some advantages. The most important advantage is that the items
can be directly accessed through your links within the site. This can really increase
performance of the site in that there is no processing that needs to be done when you
want to access the files.

The other common option we have when it comes to saving the files on the server
is that of using a database to store the binary data for the file, and then recombine
it and provide it back to the user when they request it. This method was considered
a far less preferred method, as it affected the performance of database servers.
However, with current computing capabilities of database servers, I've found there
to be little, if any, performance impact with this method. First, let's look at the
potential negative aspects of this approach, the biggest of which is that we must
do additional work to get the file back out of the database when you want to use it.
The positive aspects of this method are much more numerous though, and due to
these, it has become a very well accepted method for storing your files. The "pros"
of this method are really all the same as the negatives from the previous method
of directly storing your files—ability to reuse the same filename, ability to easily
secure individual files, and a way to easily store multiple versions of the same file for
future reference if needed. With all these factors taken into account, let's go with the
database-stored files method for our CMS.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[184]

We'll need to start off by modifying our database to allow us to store the documents.
We will need a new table, and since we can use this to contain both our images and
documents, or really just about any file, let's call our table SiteFiles. Now we need
to decide what columns our new table will need. We'll have to have an ID column
for referencing the items, we'll need a column to store the actual binary data for the
file, and technically that's all we'd need, but for ease of use we'll add a few more
columns. We'll start with a column to hold the file's name, so we can present it to the
user more easily. We will also want to add a column to hold a simple description
of the file that the user can enter when they upload the file, again to make it clearer
when presenting the file back to users. We should also add columns to track which
user uploaded the file and when it was uploaded, as well as a column for us to tell
what type of file it is that we are storing. If we want, we could extend the table and
add columns to track things such as version numbers and an approval indicator, but
for our CMS, we'll stick with a less complicated approach. Taking into account the
columns mentioned, our new table should look like this in our SL manager:

FileID in our new table is an Identity column with the autonumbering
turned on. This means it will automatically generate a new identifier
every time a record is inserted into the table, saving us all the hassle
and time of doing it ourselves.

Now that we've created the database table, we will need to write the code to access
the documents. We'll need to start by creating a new dataset, like we did earlier.
Open your project, expand your app_code folder, and then right-click on your
DAL folder. Select Add New Item from the menu. You should get a selection
screen like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[185]

From this, select DataSet and give it a name of SiteFilesDS.xsd so that we can
quickly find it again when we need it. You now have an empty dataset. Let's open
the project's Solution Explorer and navigate to our database. Expand the Tables
folder and you should get a listing similar to this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[186]

Drag the SiteFiles table from the list onto our new dataset and you should see this:

As you can see, the system will automatically create the GetData() method for
us, and if all we ever wanted to do was retrieve a list of all the files, this would be
sufficient. But for obvious reasons, we'll need a few more methods to get us going.
First off we will need a way to get the data into the table, so let's right-click on the
SiteFilesTableAdapter and you should get a pop up menu. Choose Add Query
from the list and you will get a screen like this:

We will be using an SQL Statement, so choose that option. You will then go to
another selection screen that looks like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[187]

As we will be wanting to insert a record into our table with the method, go ahead
and choose the INSERT option, and click Next. The query it automatically builds
is typically sufficient for the process and, in this case, it's exactly what we need.
Yours should look like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[188]

Click the Next button and let's name our method InsertSiteFile. Once again by
giving it a friendly, easy to remember name, we will be able to quickly find it when
we need it. From here you can click either Next or Finish, and you should see that
our dataset now looks like this:

The other methods that we will need right away will be one where we can retrieve an
item from the table by an ID, one where we can retrieve a list of all the images, and
one where we can retrieve a list of all the documents. We'll worry about those last
two in a little bit. The existing GetData() method gets us the entire list, but we will
also be able to retrieve a single record. Let's right-click on the SiteFilesTableAdapter
and select Add Query just like before. Again we will choose the Use SQL option.
But on the next screen, rather than selecting the INSERT option, we will choose the
SELECT (the one which returns a row). We will be presented with an SQL statement
that looks like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[189]

We will want to modify this statement to include the ID as parameter, like this:

Click Next and let's give some friendlier names to our methods, something like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[190]

We should be ready to start working with our database table now. We'll come back
and add some more functionality to this dataset at a later time in this chapter, but for
now we should be able to insert records, retrieve lists, and retrieve a single item. Our
next step will be to create our Business Logic Layer (BLL) that corresponds with the
DAL we just created. Our BLL, just like the one we created earlier for the Articles,
will need a number of methods to call out to our DAL layer. Here is an example of
these methods as they could be written:

Imports SiteFilesDSTableAdapters
<System.ComponentModel.DataObject()> _
Public Class SiteFilesBLL
 Private _SiteFilesTableAdapter As SiteFilesTableAdapter = Nothing
 Protected ReadOnly Property Adapter() As SiteFilesTableAdapter
 Get
 If _SiteFilesTableAdapter Is Nothing Then
 _SiteFilesTableAdapter = New SiteFilesTableAdapter()
 End If
 Return _SiteFilesTableAdapter
 End Get
 End Property

 ' Get All Site Files Function
 <System.ComponentModel.DataObjectMethodAttribute(System.
ComponentModel.DataObjectMethodType.Select, True)> _
 Public Function GetFiles() As SiteFilesDS.SiteFilesDataTable
 Return Adapter.GetData()
 End Function
 ' Update File Function
 <System.ComponentModel.DataObjectMethodAttribute(System.
ComponentModel.DataObjectMethodType.Update, True)> _
 Public Function UpdateSiteFile(ByVal FileID As Integer, ByVal
FileData As Byte(), ByVal FileName As String, ByVal FileDescription
As String, ByVal FileType As Integer, ByVal FileCreated As DateTime,
ByVal FileCreatedBy As String) As Boolean
 Dim SiteFiles As SiteFilesDS.SiteFilesDataTable = Adapter.
GetSiteFileByID(FileID)
 If SiteFiles.Count = 0 Then
 ' If no matching record is found, return false
 Return False
 End If
 Dim SiteFilesRow As SiteFilesDS.SiteFilesRow = SiteFiles(0)
 SiteFilesRow.FileCreated = FileCreated
 SiteFilesRow.FileCreatedBy = FileCreatedBy
 SiteFilesRow.FileData = FileData
 SiteFilesRow.FileDescription = FileDescription
 SiteFilesRow.FileName = FileName

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[191]

 SiteFilesRow.FileType = FileType
 ' Update the Article record
 Dim rowsAffected As Integer = Adapter.Update(SiteFilesRow)
 ' Return true if precisely one row was updated, otherwise
false
 Return rowsAffected = 1
 End Function
 ' Delete File Function
 <System.ComponentModel.DataObjectMethodAttribute(System.
ComponentModel.DataObjectMethodType.Delete, True)> _
 Public Function DeleteSiteFile(ByVal FileID As Integer) As Boolean
 Dim rowsAffected As Integer = Adapter.Delete(FileID)
 ' Return true if precisely one row was deleted, otherwise
false
 Return rowsAffected = 1
 End Function
End Class

Now that we have our DAL and BLL, we need the frontend pieces for the user to put
the files in and retrieve them. In our CMS, we can break these down into two basic
areas—Image galleries and document repositories.

Image gallery
An Image gallery can be thought of as a digital version of your home photo album.
It's simply a listing of images that the user can browse through. In most galleries,
you are displayed a listing of the images, often with a smaller version or thumbnail
image as a representation, and then you have the ability to click on it and are
presented with a larger image for easier viewing. This basic concept has been around
since the early days of the Internet when people realized that they could easily allow
a vast number of people to view their photos, images, or whatever. Galleries have
come a long way since then, but the basic premise is still the same. For our CMS,
we'll keep our gallery fairly simple, but we'll also point out the areas where you
could further enhance it, should the need arise.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[192]

First thing we'll need to do is create a page to display our gallery. From the Solution
Explorer, right-click on the Website and select Add New Item. You should get a
selection screen like this:

Choose Web Form from the list of options and name it Gallery.aspx. Be sure to check
both options—Place code in separate file and Select master page. Then click Add.
You should now get another selection screen asking you to choose the Master Page
you want to use.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[193]

Browse to the SimpleCMS.master file that we created earlier and click OK. We now
have a page to use for our gallery, but now we need to add some controls to our
page, in order to allow us to actually display the list of images. We could do this any
number of ways—from tables, grids, repeaters, or even just simple lists, all of which
would work for our needs. However, if we want to make things easy on ourselves
(and who doesn't want to), I'd suggest we stick with one of the great grids that are
provided to us. From the Toolbox, select Gridview and drag it onto your page into
the ContentPlaceHolder1 section that should be highlighted. You should end up
with a page that looks like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[194]

We now need to set up a few properties on our new Gridview so that it
will work for us. First off, let's change the ID of the Gridview to something
friendlier—"GalleryView". While we are in the Properties view, let's go ahead
and set a few other items:

Now we need to set up the connection to our data. Earlier we created our SiteFilesDS
with only a couple of simple methods. We'll need to add one to retrieve a list
of images from the database. So, let's open up the SiteFilesDS and, like earlier,
right-click on the SiteFilesTableAdapter and select Add Query. Again we will use
the SELECT option and SELECT which returns rows. We will then be given the SQL
statement that it prefilled for us, but we will add a little to it. Change the SQL so that
it looks like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[195]

We will want to name the methods something friendlier again, so let's name them
FillImages and GetImages.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[196]

Click Next and then Finish. We should now have a dataset that looks like this:

We'll now need to add this new method to our BLL:

' Get Images Function
 <System.ComponentModel.DataObjectMethodAttribute(_
 System.ComponentModel.DataObjectMethodType.Select, True)> _
 Public Function GetImages() As SiteFilesDS.SiteFilesDataTable
 Return Adapter.GetImages()
 End Function

Okay, now that we have our methods in place, let's go back to our Gallery page.
Open the Tasks menu for the Gridview we added earlier, and select Choose Data
Source and then New Data Source from the menu options. You will get a selection
screen like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[197]

Select the Object option available and click OK. You will get another selection screen
that looks like this:

Choose the SiteFilesBLL option from the menu and click Next. As we will be
retrieving a list from the database, we'll stay on the SELECT tab and then select the
GetImages() method from the selection list. Click Finish and you should see some
updates to your grid:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[198]

Ideally we could run the site now, but we're still missing one key component—a way
to add images to the site. For this we'll want to create another new page. Just like
before, let's right-click on the Website in the Solution Explorer and select Add Item.
Choose Web Form from the options and name it AddImage.aspx, again selecting
the Place code in separate file and Select master page options, as shown in the
following screenshot:

We'll choose the SimpleCMS.master once again and click OK. We've now got our
new page. Let's go ahead and add a label and text box for us to enter the description
for the file we want to add. We'll also want to add a FileUpload control like we
discussed earlier in this chapter. When you are done, your page should look similar
to this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[199]

And your HTML view should look similar to this:

<%@ Page Language="VB" MasterPageFile="~/SimpleCMS.master"
AutoEventWireup="false"
CodeFile="AddImage.aspx.vb" Inherits="AddImage" title="Untitled Page"
%>
<asp:Content ID="Content1" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server">
 File Description <asp:TextBox ID="txtFileDescription"
runat="server"></asp:TextBox>

 File <asp:FileUpload ID="fuSiteFile" runat="server" />

 <asp:Button ID="btnSubmit" runat="server" Text="Submit" />
</asp:Content>

You can always come back at a later point and arrange the controls into a style that
fits your own design decisions, but for now, we'll just keep it simple. Notice that we
also added a button for the user to click to submit their data. Now that we have the
controls on the page, we need to make them do some actual work. Go into the code
view for the page we just created. When you first enter it, you should see something
similar to this:

Partial Class AddImage
 Inherits System.Web.UI.Page
End Class

Let's go ahead and choose the btnSubmit from the class selection drop-down and
then choose the Click event from the method drop-down. When you do that you
should see the Click event for the button generated, looking similar to this:

 Partial Class AddImage
 Inherits System.Web.UI.Page
Protected Sub btnSubmit_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSubmit.Click
End Sub
End Class

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[200]

Now, we will want to create an instance of our BLL that we created earlier, and pass
in all the values for the file to let the method do its thing and save our file to the
database. The code for that could look similar to this:

Protected Sub btnSubmit_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSubmit.Click
 Dim bll As New SiteFilesBLL
 If bll.AddSiteFile(fuSiteFile.FileBytes, _
 fuSiteFile.FileName, _
 txtFileDescription.Text, _
 1, _
 Now, _
 Page.User.Identity.Name) Then
 ' All worked as expected
 Response.Redirect("~/Gallery.aspx")
 Else
 ' The upload failed.
 End If
 End Sub

You can see that I've added an IF/THEN check around the AddSiteFile() call
to allow us to trap errors. I've also filled in all the values for the method. You
may notice a couple of items in that list that may cause you to ask "why", so I'll
discuss the purpose of each of the values briefly. The first value is the actual
digital representation of the file, or the "bytes". The FileUpload control makes
these available directly to us. The second parameter is the FileName, again coming
directly from a property of the FileUpload control. The third parameter is the
FileDescription, as entered in the text box by the user. The fifth value is a static
integer of 1. In this case, we will use the 1 to represent images in our database.
Remember that the database table will contain both images and documents. The sixth
parameter is the "Created" date/time stamp. For this, you can use the Now() method
that's prebuilt with .NET. The last parameter is the "Created By", or username, for
the user who uploaded the file. That should complete our construction of this page,
but wait. How would you get to the page? In order to access the page, we have to
go back to the menu we created in Chapter 6 and add it. Open up the web.sitemap,
and alter the items to include not only the AddImage.aspx, but we will also add the
Gallery.aspx as well. When you are done, it should look similar to this:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0"
>
 <siteMapNode url="" title="">
 <siteMapNode url="~/Default.aspx" title="Home" description="Home"
/>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[201]

<siteMapNode url="~/AddImage.aspx" title="Add Image" description="Add
Image" />
 <siteMapNode url="~/Gallery.aspx" title="Gallery"
description="Gallery" />
</siteMapNode>
</siteMap>

Let's go ahead and run our site now. Be sure to log in first (we'll come back to that
shortly). From the menu, choose the Gallery page. As we haven't entered anything
to this point, you should see a blank page like this:

From the menu, choose the Add Image item. You should see a page like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[202]

Go ahead and use the control to browse out and select an image from your computer.
I'd suggest you select a JPEG file, just for ease of use. Fill in a description and click
Submit. If all goes as expected, the file will be uploaded to the database. Of course,
as we didn't tell the page to do anything after a successful save, it's difficult to know.
Let's go back into the code for the Submit button Click, and change the result of the
IF/THEN statement to have the page redirect to the Gallery page after an upload.
It should look like this:

Partial Class AddImage
 Inherits System.Web.UI.Page
Protected Sub btnSubmit_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSubmit.Click
 Dim bll As New SiteFilesBLL
 If bll.AddSiteFile(fuSiteFile.FileBytes, _
 fuSiteFile.FileName, _
 txtFileDescription.Text, _
 1, _
 Now, _
 Page.User.Identity.Name) Then
 ' All worked as expected
 Response.Redirect("~/Gallery.aspx")
 Else
 ' The upload failed.
 End If
 End Sub
End Class

From the page menu, select the Gallery link and you should see a page similar to this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[203]

As you can see, all the details on the file we uploaded are visible here, but the actual
image itself isn't. That's because the image is stored in its raw form in the database,
and hence the system will not automatically generate a column for this. We will need
to manually do this. This is where things can get a little tricky. We will need to write
a way to extract the raw data from the database and "recombine" it into a usable
image. To accomplish this, we can create what's called a Stream to take the data out
and allow us to work with it. Let's start by adding another Web Form to our page,
same as we've done a number of times. However, this time let's make sure not to
check the box that says Select Master Page. Call this new page StreamFile.aspx.
You should get a new blank page that looks similar to this:

<%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="StreamFile.aspx.vb" Inherits="StreamFile" %>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 </div>
 </form>
</body>
</html>

Change the HTML view of the page to look like this:

<%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="StreamFile.aspx.vb" Inherits="StreamFile" %>
<%@ OutputCache Duration="60" VaryByParam="id" %>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
<title></title>
</head>
<body></body>
</html>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[204]

We are simply eliminating all the unnecessary pieces of the page. We now need to go
into the code view of the page. When we start, it will look like this:

Partial Class StreamFile
 Inherits System.Web.UI.Page
End Class

We'll need to add a Page_Load event to the code, and then we'll need to do some
coding to retrieve the raw data from the database and stream it back out to the client.
Here is a sample of one simple way of retrieving this stream, but there are other
ways too:

Imports SiteFilesBLL

Partial Class StreamFile
 Inherits System.Web.UI.Page
Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Not Request.QueryString("id") Is Nothing AndAlso _
 Not Request.QueryString("type") Is Nothing Then
 Dim ID As Integer = CInt(Request.QueryString("id"))
 Dim FileType As Integer = CInt(Request.
QueryString("type"))
 If FileType = 1 Then ' These are our Images
 Dim _SiteFile As New SiteFilesDS.SiteFilesDataTable
 Dim _SiteFilesBLL As New SiteFilesBLL
 _SiteFile = _SiteFilesBLL.GetDataByFileID(ID)
 Dim b() As Byte = _SiteFile(0).FileData
 Response.BinaryWrite(b)
 End If
 End If
 End Sub
End Class XE "image gallery:Page_Load event, adding to code"

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[205]

Now that we have the page to return our image from the database, let's go back to
the grid we put on our Gallery page. The code for it should look similar to this:

<%@ Page Language="VB" MasterPageFile="~/SimpleCMS.master"
AutoEventWireup="false"
CodeFile="Gallery.aspx.vb" Inherits="Gallery" title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server">
 <asp:GridView ID="GridView1" runat="server" AllowPaging="True"
 AutoGenerateColumns="False" DataKeyNames="FileID"
 DataSourceID="ObjectDataSource1">
 <Columns>
 <asp:BoundField DataField="FileID" HeaderText="FileID"
InsertVisible="False"
 ReadOnly="True" SortExpression="FileID" />
 <asp:BoundField DataField="FileName" HeaderText="FileName"
 SortExpression="FileName" />
 <asp:BoundField DataField="FileDescription"
HeaderText="FileDescription"
 SortExpression="FileDescription" />
 <asp:BoundField DataField="FileType" HeaderText="FileType"
 SortExpression="FileType" />
 <asp:BoundField DataField="FileCreated"
HeaderText="FileCreated"
 SortExpression="FileCreated" />
 <asp:BoundField DataField="FileCreatedBy"
HeaderText="FileCreatedBy"
 SortExpression="FileCreatedBy" />
 </Columns>
</asp:GridView>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[206]

Let's go ahead and add another column to the beginning of the grid to display
our image. We'll add an Image column. Let's now set its properties using the
following code:

<asp:GridView ID="GridView1" runat="server" AllowPaging="True"
 AutoGenerateColumns="False" DataKeyNames="FileID"
 DataSourceID="ObjectDataSource1">
 <Columns>
 <asp:ImageField DataImageUrlField="FileID"
 DataImageUrlFormatString="~/StreamFile.aspx?type=1&id={0}"
 ReadOnly="true" InsertVisible="false" ControlStyle-
Width="50" />
 <asp:BoundField DataField="FileID" HeaderText="FileID"
InsertVisible="False"
 ReadOnly="True" SortExpression="FileID" />
 <asp:BoundField DataField="FileName" HeaderText="FileName"
 SortExpression="FileName" />
 <asp:BoundField DataField="FileDescription"
HeaderText="FileDescription"
 SortExpression="FileDescription" />
 <asp:BoundField DataField="FileType" HeaderText="FileType"
 SortExpression="FileType" />
 <asp:BoundField DataField="FileCreated"
HeaderText="FileCreated"
 SortExpression="FileCreated" />
 <asp:BoundField DataField="FileCreatedBy"
HeaderText="FileCreatedBy"
 SortExpression="FileCreatedBy" />
 </Columns>
</asp:GridView>

Go ahead, run the site again, and go to the Gallery page. You should see the grid
again, but this time with a small "thumbnail" of the image you selected. As many
of the images we could be entering into our system may be large, and we wouldn't
want the grid to become too cumbersome, we have set our grid to always keep the
images to 50px in width. Now, we will want to allow the users the ability to see the
full size image, so let's go back to the grid and add one more column. This time we'll
add a Hyperlink column to the grid. Go ahead and add one so that it looks similar
to this:

asp:GridView ID="GridView1" runat="server" AllowPaging="True"
 AutoGenerateColumns="False" DataKeyNames="FileID"
 DataSourceID="ObjectDataSource1">
 <Columns>
 <asp:HyperLinkField DataNavigateUrlFields="FileID"

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[207]

 DataNavigateUrlFormatString="~/StreamFile.
aspx?type=1&id={0}"
 InsertVisible="false" Text="View" Target="_blank" />
 <asp:ImageField DataImageUrlField="FileID"
 DataImageUrlFormatString="~/StreamFile.aspx?type=1&id={0}"
 ReadOnly="true" InsertVisible="false" ControlStyle-
Width="50" />
 <asp:BoundField DataField="FileID" HeaderText="FileID"
InsertVisible="False"
 ReadOnly="True" SortExpression="FileID" />
 <asp:BoundField DataField="FileName" HeaderText="FileName"
 SortExpression="FileName" />
 <asp:BoundField DataField="FileDescription"
HeaderText="FileDescription"
 SortExpression="FileDescription" />
 <asp:BoundField DataField="FileType" HeaderText="FileType"
 SortExpression="FileType" />
 <asp:BoundField DataField="FileCreated"
HeaderText="FileCreated"
 SortExpression="FileCreated" />
 <asp:BoundField DataField="FileCreatedBy"
HeaderText="FileCreatedBy"
 SortExpression="FileCreatedBy" />
 </Columns>
</asp:GridView>

Run the site again, and navigate to the Gallery page. This time you will see the View
column. Click on it, and you should get another window that opens with just your
image displayed.

We've now got a gallery added to our CMS site, as well as a way to add new images
to it. Go ahead, add a few more, and you should see that when you add more than
ten images, you will automatically have page numbers on the bottom of your grid for
easier use. The Gallery and the Add Image pages are not the best looking ones out
there, but they are fully functional. We will leave most of the "prettying up" to you so
that you can incorporate the look and feel of your choice with your site.

The one last thing I want to mention in regards to Image and Photo Galleries is that
there are a great deal of plug-ins out there on the Internet, many of which are free. I
suggest that before you spend too much time enhancing your gallery, you spend a
little time with your favorite search engine. You may find some great ones already
built for you that you could easily plug into this site and use.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[208]

Document repositories
Document repositories work basically the same way as the image galleries. With this
in mind, we will be able to utilize the work we've already done and simply enhance
it to fill another need. Just like with the gallery work we did earlier, let's start down
at the DAL level. Let's create another method on the SiteFilesTableAdapter in the
SiteFilesDS. Right-click on the SiteFilesTableAdapter and select Add Query. Select
the Use SQL statements option and then SELECT which returns rows. We'll want to
modify the query that is generated to limit it to only our documents. Remember that
images and documents are stored in the same location, so we need to filter out all the
unwanted items. Modify the query so that it looks like this:

On the next page, let's name our methods FillDocuments and GetDocuments,
as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[209]

 Click Next and then Finish, and we should have our new method to retrieve
our documents for displaying later. Now we need to go to the BLL and give us
a way to call the new method we wrote. We'll want to add a new method to the
SiteFilesBLL class we created earlier to retrieve the documents from the DAL.
Yours should look similar to this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[210]

Now we're ready to create a page to add a document to the list, and then we'll want
to add a page to view a list of all the documents. For adding a document, our page
will be nearly identical to the Add Image page we created already. Add a new
Web Form to the site, calling it AddDocument.aspx, and making sure to select the
SimpleCMS.master as your Master Page. Open the new page you created in the
HTML view and add the same series of controls you added for the Add Image page.
It should look like this:

<%@ Page Language="VB" MasterPageFile="~/SimpleCMS.master"
AutoEventWireup="false"
CodeFile="AddDocument.aspx.vb" Inherits="AddDocument" title="Untitled
Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server">
 File Description <asp:TextBox ID="txtFileDescription"
runat="server"></asp:TextBox>

 File <asp:FileUpload ID="fuSiteFile" runat="server" />

 <asp:Button ID="btnSubmit" runat="server" Text="Submit" />
</asp:Content>

Switch to the Code view for the page and add a Page_Load event. From there, we
will need to instantiate the BLL class and add a call to the AddSiteFile() method
just like before. However, this time notice that we change the FileType parameter
from 1 to 2, in order to indicate that it's a document and not an image. Yours should
look similar to this:

Partial Class AddDocument
 Inherits System.Web.UI.Page
 Protected Sub btnSubmit_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSubmit.Click
 Dim bll As New SiteFilesBLL
 If bll.AddSiteFile(fuSiteFile.FileBytes, _
 fuSiteFile.FileName, _
 txtFileDescription.Text, _
 2, _
 Now, _
 Page.User.Identity.Name) Then
 ' All worked as expected
 Response.Redirect("~/Documents.aspx")
 Else
 ' The upload failed.
 End If
 End Sub
End Class

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[211]

Notice that we also changed the successful code path to redirect to a different page,
Documents.aspx. This will be the next page we create. Let's go ahead and add
another Web Form just like before, calling it Documents.aspx and using the same
SimpleCMS.master that we've been using. Rather than just use another grid to show
how you could display the list of documents, we'll look at another control you could
use. For this listing, we'll use the Repeater control. Go ahead and drag a Repeater
control from the Toolbox onto your form inside the Content2 control. It should look
like this:

Open the Tasks menu from the control and select Datasource | New Datasource.
Choose the Object option and click the OK button. You'll then get a selection
screen just like we got with the gallery. Choose the SiteFilesBLL and click Next.
On the next screen, we need to define the Data Method we want to use. Select the
GetDocuments() method from the drop-down list and click Finish. We've now told
our Repeater to go to the database and get all the documents in it, but we haven't yet
told it how to present the results to us. With the grid, it did a bunch of guesswork for
us and laid out all the columns from the database in a nice grid fashion. However,
the Repeater starts out empty, and we need to do the layout work ourselves. Open
the HTML view for the Documents.aspx page and it should look similar to this:

<asp:Content ID="Content1" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1"
Runat="Server">

 <asp:Repeater ID="Repeater1" runat="server" DataSourceID="ObjectD
ataSource1">
</asp:Repeater>
 <asp:ObjectDataSource ID="ObjectDataSource1" runat="server"

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[212]

 DeleteMethod="DeleteSiteFile" InsertMethod="AddSiteFile"
 OldValuesParameterFormatString="original_{0}"
SelectMethod="GetDocuments"
 TypeName="SiteFilesBLL" UpdateMethod="UpdateSiteFile">
 <DeleteParameters>
 <asp:Parameter Name="FileID" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="FileID" Type="Int32" />
 <asp:Parameter Name="FileData" Type="Object" />
 <asp:Parameter Name="FileName" Type="String" />
 <asp:Parameter Name="FileDescription" Type="String" />
 <asp:Parameter Name="FileType" Type="Int32" />
 <asp:Parameter Name="FileCreated" Type="DateTime" />
 <asp:Parameter Name="FileCreatedBy" Type="Str ing" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="FileData" Type="Object" />
 <asp:Parameter Name="FileName" Type="String" />
 <asp:Parameter Name="FileDescription" Type="String" />
 <asp:Parameter Name="FileType" Type="Int32" />
 <asp:Parameter Name="FileCreated" Type="DateTime" />
 <asp:Parameter Name="FileCreatedBy" Type="String" />
 </InsertParameters>
 </asp:ObjectDataSource>
</asp:Content>

Let's go ahead and add some HTML formatting for us to display our documents in.
For this, we'll use a simple table tag. Let's add a header row to the table, with all the
columns we would want to display from the documents list. When you are done, it
should look similar to this:

<asp:Repeater ID="Repeater1" runat="server" DataSourceID="ObjectDataS
ource1">
 <HeaderTemplate>
 <table border="1" style="width:600px">
 <tr>
 <th>Document</th>
 <th>Created</th>
 <th>User</th>
 </tr>
 </HeaderTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
</asp:Repeater>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[213]

Notice that we put all this in the HeaderTemplate and FooterTemplate controls
within the Repeater. The HeaderTemplate is only displayed once, which is what we
want. Now we need to add an ItemTemplate to display the individual items from
the list that we receive from the database. The ItemTemplate is repeated for every
single item in the list that comes back. Go ahead and add your ItemTemplate,
and fill in its contents so that it looks similar to this:

<asp:Repeater ID="Repeater1" runat="server" DataSourceID="ObjectDataS
ource1">
 <HeaderTemplate>
 <table border="1" style="width:600px">
 <tr>
 <th>Document</th>
 <th>Created</th>
 <th>User</th>
 </tr>
 </HeaderTemplate>
 <ItemTemplate>
 <tr>
 <td><%#Container.DataItem("FileName")%></td>
 <td><%#Container.DataItem("FileCreated")%></td>
 <td><%#Container.DataItem("FileCreatedBy")%></td>
 </tr>
 </ItemTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
 </asp:Repeater>

We've now created the two pages we needed, but we still need to add them to our
menu that we created earlier. Add them to your web.sitemap. Yours should look
similar to this:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0"
>
 <siteMapNode url="" title="">
 <siteMapNode url="~/Default.aspx" title="Home" description="Home"
/>
 <siteMapNode url="~/AddImage.aspx" title="Add Image"
description="Add Image" />
 <siteMapNode url="~/Gallery.aspx" title="Gallery"
description="Gallery" />
 <siteMapNode url="~/AddDocument.aspx" title="Add Document"
description="Add Document" />
 <siteMapNode url="~/Documents.aspx" title="Documents"
description="Documents" />
 </siteMapNode>
</siteMap>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[214]

Go ahead and run the site now. Don't forget that until you actually go and add
some documents to the site through the AddDocuments.aspx page, you won't get
any results in your Documents.aspx list. Make sure to add a couple and then your
resulting Documents.aspx should look similar to this:

We can now see all the documents listed out, but we don't have the ability to actually
open one of them. To accomplish this, let's go back to the HTML view for the
repeater we put on our Documents.aspx page. Let's adjust the first column so that
the name of the document is a link to actually open the document. For this we'll need
to wrap it in an <A HREF> tag and call our StreamFiles.aspx page. Yes, that's right;
we can reuse that same page for streaming out documents, as well as our images.
Change the code for the first column so that it looks similar to this:

<asp:Repeater ID="Repeater1" runat="server" DataSourceID="ObjectDataS
ource1">
 <HeaderTemplate>
 <table border="1" style="width:600px">
 <tr>
 <th>Document</th>
 <th>Created</th>
 <th>User</th>
 </tr>
 </HeaderTemplate>
 <ItemTemplate>
 <tr>
 <td><a href="StreamFile.aspx?id=<%#Container.
DataItem("FileID") %>&type=2"
 target="_blank"><%#Container.DataItem("FileName")%></
a></td>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[215]

 <td><%#Container.DataItem("FileCreated")%></td>
 <td><%#Container.DataItem("FileCreatedBy")%></td>
 </tr>
 </ItemTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
 </asp:Repeater>

We'll also need to go to the StreamFile.aspx code and add the functionality to
retrieve the document from the database and present it to the user. For that we'll
want to add another IF check to the existing method. Add the following code so that
yours looks similar to this:

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Not Request.QueryString("id") Is Nothing AndAlso _
 Not Request.QueryString("type") Is Nothing Then
 Dim ID As Integer = CInt(Request.QueryString("id"))
 Dim FileType As Integer = CInt(Request.
QueryString("type"))
 If FileType = 1 Then ' These are our Images
 Dim _SiteFile As New SiteFilesDS.SiteFilesDataTable
 Dim _SiteFilesBLL As New SiteFilesBLL
 _SiteFile = _SiteFilesBLL.GetDataByFileID(ID)
 Dim b() As Byte = _SiteFile(0).FileData
 Response.BinaryWrite(b)
 ElseIf FileType = 2 Then ' These are our Documents
 Dim _SiteFile As New SiteFilesDS.SiteFilesDataTable
 Dim _SiteFilesBLL As New SiteFilesBLL
 _SiteFile = _SiteFilesBLL.GetDataByFileID(ID)
 Dim b() As Byte = _SiteFile(0).FileData
 Response.Clear()
 Response.AddHeader("Content-Disposition", _
 "attachment; filename=" & _SiteFile(0).FileName)
 Response.AddHeader("Content-Length", b.Length.
ToString())
 Response.ContentType = "application/octet-stream"
 Response.BinaryWrite(b)
 Response.Flush()
 Response.End()

 End If
 End If
 End Sub

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[216]

You will notice the code handles this in a slightly different fashion from the original,
but it just shows you one more alternative when storing your files within the
database and streaming them out for use.

RSS feeds
These days, users want to be able to know what's going on with sites they visit,
especially when it may routinely have new content such as articles, news, blog
posts, and so on. For this continuous updating, many users have turned to the world
of RSS. Before we go into too much depth on adding the functionality to our site,
let's talk a little more about what RSS is and how it works. RSS typically stands
for Really Simple Syndication and its purpose is just what its name indicates. It's
a way for you to syndicate (distribute) your site in a standardized, simple format.
An RSS feed is really nothing more than a properly formatted XML file, following
a set of guidelines. We won't go into detail on the specifications for a proper RSS,
but a quick search online with your favorite search engine should produce a
plethora of information on the subject. For our purposes, we will stick with simply
implementing the process and generating the XML output.

Now for the XML output for the Articles within our site, we have two basic options.
We could create a physical XML file on the server and append a new entry to it each
time a new article is added to the system. However, I've found that this method
can be quite cumbersome and can create a great deal of headaches. Most of the
problems around this can be related to the way the server has to open and close the
file, the permissions on the file to do the work, possible caching issues with the file,
and lastly the possibility of corruption of the file. For these reasons, I often opt for a
second option, that is, generating the file "on the fly" in a very similar way to how we
are retrieving images and documents within our CMS.

First thing we will need to do if we want to generate our file dynamically is to create a
page to generate the output. Go ahead and add a new Web Form to your site and call
it RSS.aspx. However, this time make sure to uncheck Select master page, just like we
did for the other streaming page. Your newly-generated file should look like this:

<%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="RSS.aspx.vb" Inherits="RSS" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<title>Untitled Page</title>
</head>
<body>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[217]

 <form id="form1" runat="server">
 <div>
 </div>
 </form>
</body>
</html>

We'll now want to trim out all the unnecessary HTML. Your page should now look
like this:

<%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="RSS.aspx.vb" Inherits="RSS" %>
<%@ OutputCache Duration="300" VaryByParam="none" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server"><title></title></head>
<body></body>
</html>

Now, we'll need to open the code view of our newly-created page. Go ahead and add
a Page_Load() event. Your code should now look similar to this:

Partial Class Rss
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e as System.EventArgs) Handles Me.Load

 End Sub
End Class

From here the code can look intimidating, but all we are really doing is building our
XML file one tag at a time. I'll try to break it down as we go. In order for us to be able
to use XML and its built-in methods provided by the .NET Framework, we will have
to first add an Imports statement to the top, as follows:

Imports System.Xml

Partial Class RSS
 Inherits System.Web.UI.Page

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[218]

Next, we'll start off our code within the Page_Load method with some house
cleaning. We'll want to add the Response.Clear line to clear any pre-existing
output that the system may have already generated. Next, we'll add a new Response
declaration to tell the user's browser what the file type is. Your code should look
similar to this:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.
EventArgs) Handles Me.Load

 Response.Clear()
 Response.ContentType = "text/xml"

Now, we'll need to instantiate the new XML output that we want to generate.
To do this, we'll create our XmlTextWriter object, and will also create the starting
tags, like this:

Dim objX As New XmlTextWriter(Response.OutputStream, Encoding.UTF8)
 objX.WriteStartDocument()

The next three lines of code we need are simply XML tags (better known as
Elements) and some corresponding attributes necessary for RSS readers to properly
parse the data. Your next three lines should look like this:

objX.WriteStartElement("rss")
objX.WriteAttributeString("version", "2.0")
objX.WriteStartElement("channel")

The next five lines in the XML output are "top level" items. This means they are in
the file once and help to define what your RSS feed is all about. This is information
like your site name, site/feed URL, site description, and copyright information.
The code for this will look like this:

objX.WriteElementString("title", "Simple CMS")
 objX.WriteElementString("link", "http://www.YourSiteName.com/
rss.aspx")
 objX.WriteElementString("description", "Articles from
SimpleCMS.")
 objX.WriteElementString("copyright", "(c) 2009, yoursite.com.
All rights reserved.")
 objX.WriteElementString("ttl", "5")

That takes care of all the setup for the parent elements of the XML file. Now what we
need to do is actually get all the latest Articles from our system into the feed. For this
we will first need to instantiate the BLL layer for our Articles and call the method to
retrieve the latest Articles. That would be a call like the following:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[219]

Dim _articlesBLL As New ArticlesBLL
For Each _article As ArticlesDataSet.ArticlesRow In _articlesBLL.
GetAllCurrentPublishedArticles
Next

Now that we have the collection of Articles we want to output in our feed, we just
need to create the appropriate elements for each Article. The next eight lines of code
create the element for the Article and fill in the child Elements with the values from
the Article that was retrieved from the database. These items are the title, description
(contents), link to the Article, date published/created, author, and the categorization.
The code to populate this will look like this:

Dim _articlesBLL As New ArticlesBLL
 For Each _article As ArticlesDataSet.ArticlesRow In _
articlesBLL.GetAllCurrentPublishedArticles
 objX.WriteStartElement("item")
 objX.WriteElementString("title", _article.ArticleTitle)
 objX.WriteElementString("description", _article.
ArticleBody)
 objX.WriteElementString("link", "http://www.yoursite.com/
articles.aspx?id=" & _article.ArticleID.ToString)
 objX.WriteElementString("pubDate", CDate(_article.
ArticleCreatedDate).ToString("R"))
 objX.WriteElementString("author", _article.
ArticleCreatedBy)
 objX.WriteElementString("category", "Articles")
 objX.WriteEndElement()
 Next

All we have left to do now is close out all the XML Elements we've created. Go ahead
and add these five lines to close the elements and close out the output for the user's
browser. The code for that will look like this:

objX.WriteEndElement()
 objX.WriteEndElement()
 objX.WriteEndDocument()
 objX.Flush()
 objX.Close()
 Response.End()

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Images, Files, and RSS

[220]

That's it! Our CMS site's Articles are now available to the world through their
favorite RSS reader. The only thing now is to provide a link on our menu so that the
users can find our RSS Feed. Open the web.sitemap we created for our site and add
the RSS link to it like this:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0"
>
 <siteMapNode url="" title="">
 <siteMapNode url="~/Default.aspx" title="Home" description="Home"
/>
 <siteMapNode url="~/AddImage.aspx" title="Add Image"
description="Add Image" />
 <siteMapNode url="~/Gallery.aspx" title="Gallery"
description="Gallery" />
 <siteMapNode url="~/AddDocument.aspx" title="Add Document"
description="Add Document" />
 <siteMapNode url="~/Documents.aspx" title="Documents"
description="Documents" />
 <siteMapNode url="~/RSS.aspx" title="RSS" description="RSS" />
 </siteMapNode>
</siteMap>

Go ahead and run the site now and click the RSS menu item. Depending on your
browser, you may get an output that looks similar to this (IE7 version).

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 7

[221]

Summary
In this chapter, we covered a great deal about dynamically providing content to
your users. We've explored streaming files and images from the database, as well as
generating RSS feeds "on the fly". However, this is just a small sample of the different
ways this can all be done. I highly recommend you spend some time with other
research materials, and execute some different options within the code, in order
to see what other things you can do. Once you master the concepts of creating the
content dynamically, nearly anything is possible.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Administrator Control Panel
If the content is the "heart" of a good CMS, then the Administrator Control Panel is
surely the "brain". It's the piece that lets all the other pieces do their jobs. Maintaining
users, adjusting permissions, approving Articles, and viewing site settings and stats
are all key aspects of the Control Panel. These are the pieces we will set up in this
chapter, along with giving you a basis to extend these for your own site.

This chapter will cover the following:

•	 Creating the basic site settings table
•	 Creating the BLL and DAL classes
•	 User account management
•	 Article administration
•	 Basic site reporting
•	 Search Engine Optimization

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Administrator Control Panel

[224]

Basic site settings
Most CMS sites have a number of settings that you can configure from within the
Control Panel. These are typically the Site Name (as it appears on the header), the
Site Image (again from the header), and the Footer text. In addition to these three,
you will often also see settings to maintain the Theme, as well as a section for
"additional header information", which you can use for any extra scripts you want
to place in each page and also for things such as analytics scripts. For these items,
we will need a way to maintain them and store these settings. Just as with our site
content, we have a number of options for storing them, but for our CMS, we'll stick
with using the database that we've already created. You should already be familiar
with creating a new database table, so I won't go into great detail here. However,
for our purpose, you will want to create the table, calling it SiteSettings, with the
following columns/data types defined:

We now have the table created, but we need to go ahead and pre-load this table
so that it's easier for us to work with later. For this you will do just like you did
earlier in the book when you pre-loaded the Articles, by running the following
simple Insert script:

Insert Into SiteSettings
(SiteID,SiteName,SiteImage,SiteFooter,SiteAdditionalHeaderInfo,SiteTh
eme)
values
(1,'SimpleCMS',Null,'Website design Copyright 2009 by
SimpleCMS','',Null)

Now that we have the new table and sample data created, we need a way to read
and write the data to it. We've already created a number of DAL datasets, but for
our usage here, we'll explore another way of doing the DAL, as a class, so that
you can see another option available to you. Right-click on the DAL folder in your
Solutions Explorer and choose Add New Item. From the options given, choose
Class and give it a name of SiteSettingsDAL.vb. This will generate a new class
that should look like this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 8

[225]

Imports Microsoft.VisualBasic
Public Class SiteSettingsDAL
End Class

While this class will eventually work very similar to the datasets you created earlier,
we would expect it to carry out only a couple of basic functions—reading and
updating. So, for these two functions, let's go ahead and create them. The first is the
ReadSiteSettings() function, which will look similar to the following:

Public Shared Function ReadSiteSettings() As Data.DataSet
 Dim conn As New Data.SqlClient.SqlConnection(_
 ConfigurationManager.ConnectionStrings(_
 "SimpleCMSConnectionString").ConnectionString)
 Dim cmd As New Data.SqlClient.SqlCommand("Select * from
SiteSettings", conn)
 Dim da As New Data.SqlClient.SqlDataAdapter(cmd)
 Dim ds As New Data.DataSet()
 da.Fill(ds)
 Return ds
End Function

The other function we need is the SetSiteSettings() which, as the name implies,
is our way of updating these settings for our system. That new function will look
similar to this:

Public Shared Function SetSiteSettings(_
 ByVal SiteName As String, _
 ByVal SiteImage As String, _
 ByVal SiteFooter As String, _
 ByVal SiteAdditionalHeaderInfo As String, _
 ByVal SiteTheme As String) As Boolean
 Dim conn As New Data.SqlClient.SqlConnection(_
 ConfigurationManager.ConnectionStrings(_
 "SimpleCMSConnectionString").ConnectionString)
 conn.Open()
 Dim cmd As New Data.SqlClient.SqlCommand(_
 "Update SiteSettings set " & _
 "SiteName = @SiteName, " & _
 "SiteImage = @SiteImage, " & _
 "SiteFooter = @SiteFooter, " & _
 "SiteAdditionalHeaderInfo = @SiteAdditionalHeaderInfo, "
 & _
 "SiteTheme = @SiteTheme " & _
 "Where SiteID = 1 " _
 , conn)

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Administrator Control Panel

[226]

 cmd.Parameters.Add("@SiteName", Data.SqlDbType.VarChar).Value
= SiteName
 If SiteImage = Nothing Then
 cmd.Parameters.Add("@SiteImage", Data.SqlDbType.VarChar).
Value = DBNull.Value
 Else
 cmd.Parameters.Add("@SiteImage", Data.SqlDbType.VarChar).
Value = SiteImage
 End If
 cmd.Parameters.Add("@SiteFooter", Data.SqlDbType.VarChar).
Value = SiteFooter
 cmd.Parameters.Add("@SiteAdditionalHeaderInfo", _
 Data.SqlDbType.Text).Value = SiteAdditionalHeaderInfo
 If SiteImage Is Nothing OrElse SiteImage.Length <= 0 Then
 cmd.Parameters.Add("@SiteTheme", Data.SqlDbType.VarChar).
Value = DBNull.Value
 Else
 cmd.Parameters.Add("@SiteTheme", Data.SqlDbType.VarChar).
Value = SiteTheme
 End If
 Return cmd.ExecuteNonQuery() = 1
 End Function
End Class

While this function may look a bit complicated, it really isn't. The basic premise of it
is to simply take the incoming information—the site settings—and put them into an
SQL statement for updating the database. We've added some additional pieces such
as the parameters, for a couple of purposes. Firstly, they are there to protect you and
prevent what's called an SQL injection, which you can find easily with a search from
your favorite search engine. The second is to show you how you can easily take the
code and elaborate on it, making it more robust, more secure, and more stable.

The next step in our process is to create a BLL class for us to access within our
site when we want to actually do the work. Right-click on your BLL folder and
select the Add New Item option, choosing the Class object and giving it the name
SiteSettingsBLL. It should look similar to this:

Imports Microsoft.VisualBasic
Public Class SiteSettingsBLL
End Class

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 8

[227]

Just like with the DAL class we just created, we will need to create our read and
write functions. Now, we could just create these functions to call directly into the
DAL and pass the returning dataset back, but we will take a more object-oriented
approach. First, we will need to create our SiteSettings object. Within the same
SiteSettingsBLL.vb file, we will add the following code, but we will place it
AFTER the closing "End Class" part of the existing code.

Public Class SiteSettings
 Private _SiteName As String
 Private _SiteImage As String
 Private _SiteFooter As String
 Private _SiteAdditionalHeaderInfo As String
 Private _SiteTheme As String
 Public Property SiteName() As String
 Get
 Return _SiteName
 End Get
 Set(ByVal value As String)
 _SiteName = value
 End Set
 End Property
 Public Property SiteImage() As String
 Get
 Return _SiteImage
 End Get
 Set(ByVal value As String)
 _SiteImage = value
 End Set
 End Property
 Public Property SiteFooter() As String
 Get
 Return _SiteFooter
 End Get
 Set(ByVal value As String)
 _SiteFooter = value
 End Set
 End Property
 Public Property SiteAdditionalHeaderInfo() As String
 Get
 Return _SiteAdditionalHeaderInfo
 End Get
 Set(ByVal value As String)
 _SiteAdditionalHeaderInfo = value
 End Set

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Administrator Control Panel

[228]

 End Property
 Public Property SiteTheme() As String
 Get
 Return _SiteTheme
 End Get
 Set(ByVal value As String)
 _SiteTheme = value
 End Set
 End Property
End Class

This defines our SiteSettings object that we will use whenever we want to
pass our settings around. Now that we have this object, we can look at the
SiteSettingsBLL class we have. We already know we will need two functions—one
for reading and the other for writing the settings. The function to read the settings
will look similar to this:

Public Shared Function ReadSiteSettings() As SiteSettings
 Dim _SiteSettings As New SiteSettings
 Dim _dr As Data.DataRow = _
 SiteSettingsDAL.ReadSiteSettings.Tables(0).Rows(0)
 _SiteSettings.SiteAdditionalHeaderInfo = _
 _dr("SiteAdditionalHeaderInfo")
 _SiteSettings.SiteFooter = _dr("SiteFooter")
 If _dr("SiteImage") Is DBNull.Value Then
 _SiteSettings.SiteImage = "~/Images/SimpleCMSLogo.jpg"
 Else
 _SiteSettings.SiteImage = _dr("SiteImage")
 End If
 _SiteSettings.SiteName = _dr("SiteName")
 If _dr("SiteTheme") Is DBNull.Value Then
 _SiteSettings.SiteTheme = "SimpleCMSTheme"
 Else
 _SiteSettings.SiteTheme = _dr("SiteTheme")
 End If
 Return _SiteSettings
End Function

Note that we added some additional checks in place. Our settings allow us to have
no image, as well as no theme selected, for which we use some predefined default
values. The other function we need to create is the SetSiteSettings() function.
For this the code would look similar to this:

Public Shared Function SetSiteSettings(_
 ByVal _SiteSettings As SiteSettings) As Boolean
 Return SiteSettingsDAL.SetSiteSettings(_
 _SiteSettings.SiteName, _
 _SiteSettings.SiteImage, _
 _SiteSettings.SiteFooter, _

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 8

[229]

 _SiteSettings.SiteAdditionalHeaderInfo, _
 _SiteSettings.SiteTheme)
End Function

It's basically a reverse of the ReadSiteSettings() method—taking the
SiteSettings object and breaking it apart to call the DAL class.

Now that we have our BLL, our DAL, and our database all set up, what do we
do with this all? First off we need to consume the data. You will see that nearly
all of these pieces we defined are part of our Master Page. Let's open up our
SimpleCMS.master and look at the HTML in it. At the top of it we have:

Let's change this so that it's no longer a simple HTML image tag, but instead is an
ASP.NET Image control. That will look like this:

<asp:Image ID="imgSiteImage" runat="server" />

While we're at it, let's go ahead and replace the hard-coded footer text so that it's
using an ASP.NET Label control, like this:

<asp:Label ID="lblSiteFooter" runat="server" />

We also need to add a new control near the existing head ContentPlaceHolder.
That will look like this:

<asp:ContentPlaceHolder id="head" runat="server">
</asp:ContentPlaceHolder>
<asp:Label ID="lblAdditionalInfo" runat="server" />

Now we need to open the Code view of the page. Look at the Page_Load() method
and let's add the following code to it:

If Not IsPostBack() Then
 Dim _SiteSettings As New SiteSettings
 _SiteSettings = SiteSettingsBLL.ReadSiteSettings
 Page.Title = _SiteSettings.SiteName
 imgSiteImage.ImageUrl = _SiteSettings.SiteImage
 lblSiteFooter.Text = _SiteSettings.SiteFooter
 lblAdditionalInfo.Text = _
 _SiteSettings.SiteAdditionalHeaderInfo
End If

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Administrator Control Panel

[230]

We've now made our SimpleCMS pull in our SiteSettings and use them for its page.
In addition, we've set up our site so that we can change the Theme, which we built
earlier in the application. To make the site use these new settings, we need to add the
following to the code for each of our pages:

Protected Sub Page_PreInit(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.PreInit
 Page.Theme = SiteSettingsBLL.ReadSiteSettings.SiteTheme
End Sub

Okay, we have now set our site to use all these great new settings we've established,
but we still have no way to alter the values of these settings, short of directly
modifying them in our database. We have the SetSiteSettings() method created
but we need a way of filling this. This comes back to the Administrator Control
Panel, which is nothing more than a special page within our site. Go ahead and add a
new page to your site, calling it ControlPanel.aspx, but make sure that you do not
select a Master Page to use. You should have a standard ASP.NET Web Form. The
first thing we need to do is to make sure that we limit the access to this new page to
only those people we've set in the Administrator role. To do this, we will create the
Page_Load() event and add the following code:

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
 If Not Page.User.Identity.IsAuthenticated Then
 Response.Redirect("Login.aspx")
 Else
 If Not Page.User.IsInRole("Administrator") Then
 Response.Redirect("Default.aspx")
 End If
 End If
End Sub

We'll also need to add some input controls on the page to allow us to input
our settings. We will need one for each of the SiteSettings we want to maintain.
The HTML for the page will look similar to this:

<table>
 <tr><th>Site Settings</th></tr>
 <tr>
 <td>
 <table>
 <tr>
 <td valign="top">Name:</td>
 <td>
 <asp:TextBox ID="txtSiteName" runat="server" />

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 8

[231]

 </td>
 </tr>
 <tr>
 <td valign="top">Image:</td>
 <td>
 <asp:TextBox ID="txtSiteImage" runat="server" />
 </td>
 </tr>
 <tr>
 <td valign="top">Theme:</td>
 <td>
 <asp:TextBox ID="txtSiteTheme" runat="server" />
 </td>
 </tr>
 <tr>
 <td valign="top">Footer:</td>
 <td>
 <asp:TextBox ID="txtSiteFooter"
 TextMode="MultiLine" runat="server" />
 </td>
 </tr>
 <tr>
 <td valign="top">Add'l Header Info:</td>
 <td>
 <asp:TextBox ID="txtAdditionalInfo"
 TextMode="MultiLine" runat="server" />
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <asp:Button ID="btnSave" runat="server"
 Text="Save" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
</table>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Administrator Control Panel

[232]

Now that we have the inputs defined, we need to actually do something with them.
For this you will want to open up the Code view of the page and add an event for the
btnSave.Click(). That should look like this:

Protected Sub btnSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click
End Sub

Within this new event that we've created, we need to read in the values. You will
need to add the following code to your event:

Protected Sub btnSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click
 Dim _siteSettings As New SiteSettings
 _siteSettings.SiteName = txtSiteName.Text
 _siteSettings.SiteImage = txtSiteImage.Text
 _siteSettings.SiteTheme = txtSiteTheme.Text
 _siteSettings.SiteFooter = txtSiteFooter.Text
 _siteSettings.SiteAdditionalHeaderInfo = _
 txtAdditionalInfo.Text
 If SiteSettingsBLL.SetSiteSettings(_siteSettings) = _
 True Then
 ' All Saved OK.
 Else
 ' There was an error saving.
 End If
End Sub

The page would now accept your inputs and save them to the database, but we
really don't want to have to re-enter all the values each time. So, let's add the
following code to the Page_Load() event so that the existing values are put into
the controls to get us started:

If Not IsPostBack Then
 Dim _siteSettings As New SiteSettings
 _siteSettings = SiteSettingsBLL.ReadSiteSettings
 txtSiteName.Text = _siteSettings.SiteName
 txtSiteImage.Text = _siteSettings.SiteImage
 txtSiteTheme.Text = _siteSettings.SiteTheme
 txtSiteFooter.Text = _siteSettings.SiteFooter
 txtAdditionalInfo.Text = _
 _siteSettings.SiteAdditionalHeaderInfo
End If

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 8

[233]

You should now be able to alter these settings at will. You do need to keep in mind a
couple of items though, and these are areas that you may wish to extend in your site.
The first is that the image you type in must exist in the path you gave it. This means
that you need to get it uploaded to your site. You could use the techniques you
learned in the earlier chapters on uploading images and apply them here. Another
thing to remember is that the Theme you type in must exist within the App_Themes
folder. You need to have a fully developed theme in place. There are additional code
samples on the Internet that show how to read the contents of a folder. With this
you could easily iterate through the App_Themes folder to get a list of Themes in
your site, and then display this list in a DropDownList control, instead of using the
TextBox control, to display the Theme list in the control panel.

User accounts
While we have already created a method for users to come to the site and sign up,
there are still a few functions that an Administrator may want to accomplish—being
able to disable users, approve users, and to set user groups/roles, just to name a few.
To be able to do these, we will need to be able to list out the users, view the details on
each user and, when necessary, be able to modify them. ASP.NET has a number of
functions built in for us to make these things easier, so we'll take what they've done
for us and build on top of it.

The first thing we'll need to do is adjust the Control Panel page to include a place for
us to list out the users in the system. For our site, we'll keep it simple, as a series of
hyperlinks in a Repeater. However, for your usage, you may want to look at other
ways of presenting the list. Back to our site though, go ahead and add the following
HTML to your Control Panel page, just before the closing </table> tag.

<tr style="background-color:Silver;">
 <th>User Administration:</th>
</tr>
<tr>
 <td>
 <asp:Repeater ID="rptrUsers" runat="server">
 <HeaderTemplate>
 <table cellpadding="4"><tr>
 </HeaderTemplate>
 <ItemTemplate>
 <td>
 <asp:HyperLink ID="hyUserName" runat="server" />
 </td>
 <asp:Label ID="lblNewLine" runat="server" />

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Administrator Control Panel

[234]

 </ItemTemplate>
 <FooterTemplate>
 </tr></table>
 </FooterTemplate>
 </asp:Repeater>
 </td>
</tr>

Now that we have a place to display the user list, we need to go into the Code view
for the page and actually retrieve the list. Open the ControlPanel.aspx.vb and
add the following two lines, right after the code we use to fill the SiteSettings in
the Page_Load():

rptrUsers.DataSource = Membership.GetAllUsers()
rptrUsers.DataBind()

We've now retrieved the list of users and bound it to our repeater, but we haven't
told the repeater what to do with this list yet. For this we will need to add the
following code to the ControlPanel.aspx.vb file.

Protected Sub rptrUsers_ItemDataBound(
ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.RepeaterItemEventArgs) _
Handles rptrUsers.ItemDataBound
 If e.Item.ItemType = ListItemType.Item _
 OrElse e.Item.ItemType = ListItemType.AlternatingItem Then
 Dim _item As MembershipUser = _
 CType(e.Item.DataItem, MembershipUser)
 Dim hyUserName As HyperLink = _
 CType(e.Item.FindControl("hyUserName"), HyperLink)
 hyUserName.Text = _item.UserName
 hyUserName.NavigateUrl = _
 "Profile.aspx?user=" & _item.UserName

 If (e.Item.ItemIndex + 1) Mod 3 = 0 Then
 Dim lblNewLine As Label = _
 CType(e.Item.FindControl("lblNewLine"), Label)
 lblNewLine.Text = "</tr><tr>"
 End If
 End If
End Sub

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 8

[235]

The code above will take each user from the list that ASP.NET has generated for us,
and display their username as a hyperlink. It will also, thanks to a little fancy math,
add a </tr><tr> after every third item in the list so that you get a nice, well-formed
grid. You may have also realized that the hyperlinks point to a page called
Profile.aspx, which doesn't yet exist. This will be our next step in the process.
Go ahead and add a new Web Form to the site, calling it Profile.aspx and using
the SimpleCMS.master as its Master Page. We'll want to add some controls to the
page to allow us to display the details of the user we've selected. Therefore, add the
following HTML and WebControls to the page, and within the ContentPlaceHolder1,
your code should look similar to this:

<table>
 <tr style="background-color:Silver;">
 <th colspan="2">User Profile:</th>
 </tr>
 <tr>
 <th align="right">Name:</th>
 <td><asp:Label ID="lblName" runat="server" /></td>
 </tr>
 <tr>
 <th align="right">LastLoginDate:</th>
 <td>
 <asp:Label ID="lblLastLoginDate" runat="server" />
 </td>
 </tr>
 <tr>
 <th align="right">IsApproved:</th>
 <td>
 <asp:CheckBox ID="chkIsApproved" runat="server" />
 </td>
 </tr>
 <tr>
 <th align="right">Email:</th>
 <td><asp:Label ID="lblEmail" runat="server" /></td>
 </tr>
 <tr>
 <th align="right">CreationDate:</th>
 <td><asp:Label ID="lblCreationDate" runat="server" /></td>
 </tr>
 <tr>
 <th align="right" valign="top">Roles:</th>
 <td>
 <asp:CheckBoxList ID="chkRoles" runat="server" />
 </td>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Administrator Control Panel

[236]

 </tr>
 <tr>
 <td colspan="2" align="right">
 <asp:Button ID="btnSave" runat="server" Text="Save" />
 </td>
 </tr>
</table>

What we have is really not much more than a series of labels used to display
the details for the user, but if you look close, there is also a Checkbox and a
CheckboxList. The first is used to indicate if the user is "Approved" or not. This is
how you can enable/disable users within your site. Also, the CheckboxList, as you'll
see shortly, will contain a list of all the roles we've established within our site. And
with a couple of lines of code, it will show you what roles the user is assuming.
Again these Checkboxes will allow us to change the roles that a user is set up in.

Now that we've added the HTML and WebControls to the page, we need to go into
the code file, Profile.aspx.vb, for the page. The first thing we need to do is add a
Page_Load() event and put the following code into it:

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
 If Not Request.QueryString("user") Is Nothing Then
 If Not IsPostBack Then
 Dim _user As MembershipUser = _
 Membership.GetUser(Request.QueryString("user"))
 lblName.Text = _user.UserName
 lblLastLoginDate.Text = _user.LastLoginDate
 chkIsApproved.Checked = _user.IsApproved
 lblEmail.Text = _user.Email
 lblCreationDate.Text = _
 _user.CreationDate.ToShortDateString()

 chkRoles.DataSource = Roles.GetAllRoles
 chkRoles.DataBind()

 For Each chk As ListItem In chkRoles.Items
 If Roles.IsUserInRole(_user.UserName, chk.Value) Then
 chk.Selected = True
 Else
 chk.Selected = False
 End If
 Next

 If Page.User.IsInRole("Administrator") Then
 chkRoles.Enabled = True
 chkIsApproved.Enabled = True

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 8

[237]

 btnSave.Visible = True
 Else
 chkRoles.Enabled = False
 chkIsApproved.Enabled = False
 btnSave.Visible = False
 End If
 End If
 End If
End Sub

This code will do a number of things. The first thing it does is check that a username
was passed through the QueryString() to the page. The next thing it does is fill in
all the details for the user into the WebControls we added to our page. You will see
that it also calls another built-in property in ASP.NET to get a list of all the roles in
our site. We take that list and bind it to the CheckboxList we added. Then we iterate
through this list of Checkboxes and check if the user is in that role. If this is the case,
we make sure that the Checkbox is selected. The last piece of this code is for us to
check the user who is viewing the data and, if he/she is an Administrator, to enable
the Checkbox, CheckboxList, and Button. If the user isn't an Administrator, we
disable/hide these items.

Our next step is to put the code in place so that when an Administrator comes in and
changes a user's IsApproved status or their roles, we can save the changes. For this
we added a Button to our page, with the ID of btnSave. Add the following code to
your page:

Protected Sub btnSave_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnSave.Click
 Dim _user As MembershipUser = _
 Membership.GetUser(Request.QueryString("user"))
 _user.IsApproved = chkIsApproved.Checked
 Membership.UpdateUser(_user)

 For Each chk As ListItem In chkRoles.Items
 If chk.Selected Then
 If Not Roles.IsUserInRole(_user.UserName, chk.Value) Then
 Roles.AddUserToRole(_user.UserName, chk.Value)
 End If
 Else
 If Roles.IsUserInRole(_user.UserName, chk.Value) Then
 Roles.RemoveUserFromRole(_user.UserName, chk.Value)
 End If
 End If
 Next
End Sub

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Administrator Control Panel

[238]

That's user Administrator in its simplest form. You will probably want to extend
the functionality to fit your needs, but this should be sufficient to get you started.
You'll find that if you start to look through all the properties of the Membership,
MembershipUser, and Roles functionality, there is a lot you can do, all pre-built for
you by Microsoft to make your work easier. Look into the Profiles system within the
ASP.NET framework, and with this, you could add additional pieces of information
beyond the standard membership items. You could add pieces such as First/Last
Name, Address, Phone, and even look at things such as User Avatars. These are all
pieces that can give your site additional flare and make it feel more comfortable to
your users, thereby ensuring their return visits, which is often the goal of a web site.

The last bit of User/Role Administrator I want to touch on in this section is the
ability to add new roles to the system, without having to go through the ASP.NET
Site Configuration tools you used before. While we don't have any functionality in
place to use any new roles, you may find that your site will. For this purpose, let's go
back to the ControlPanel.aspx page in its HTML view and add the following right
before the </table> tag:

<tr style="background-color:Silver;">
 <th>Role Administration:</th>
</tr>
<tr>
 <td>
 <asp:TextBox ID="txtNewRole" runat="server" />
 <asp:Button id="btnSaveRole" runat="server" Text="Add" />

 <asp:Label ID="lblRoles" runat="server"></asp:Label>
 </td>
</tr>

This is a simple piece, so we don't need to create an all new page for it. We'll just tuck
it into our existing Control Panel. It's a simple TextBox for us to enter the name of
a new role we want to create, a Button for us to call the system and tell it about the
new role, and a Label that we'll use to show all of the roles we currently have in the
system. First, let's populate the Label with the existing roles we've defined. In our
Page_Load(), right before the first line of code that says If Not IsPostback(),
we need to add the following:

lblRoles.Text = ""
For Each _role As String In Roles.GetAllRoles
 lblRoles.Text += "" & _role & ""
Next
lblRoles.Text += ""

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 8

[239]

This will take our Label and fill it with all the roles as mentioned with a nice bullet list,
using the and tags. Now, we'll need to open the ControlPanel.aspx.vb
file and add the following event to it:

Protected Sub btnSaveRole_Click(_
ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnSaveRole.Click
 If txtNewRole.Text.Trim.Length > 0 Then
 If Not Roles.RoleExists(txtNewRole.Text) Then
 Roles.CreateRole(txtNewRole.Text)
 End If
 End If
End Sub

This piece of code will first check to see that they entered a new role's name, then if
that role already exists, and lastly it will call the system and tell it to save this new
Role. We now have a fully functional user and role administration system in place,
and even an added benefit of the Profile page. The Profile can really make your
users feel like they are part of the site, but more important is that these Profiles,
when associated in roles, are the key to the functionality of the site. With proper
assignments into roles and the implementation of the way to check the current user's
assignment, you can enable and disable portions of the site. This can be exceptionally
handy as your site grows, and you may need to allow responsibility to others to help
with the maintenance. By granting special permissions through roles, you could split
apart these maintenance features. Perhaps you want one group to be able to upload
documents, another to upload images, and perhaps you would like two more groups
to be approvers of these content sections. This is all easily done by using the pieces
covered here.

Articles
Earlier in the book, we gave you the ability to create new Articles for the site. As part
of the Articles, we set up the ability to allow them to be approved, through the use
of the Published property. Now we need to give certain users the ability to go in and
approve these Articles. As we've worked with UserControls for much of the Articles
section of this book, we'll continue with that idea here. Let's go ahead and add a new
UserControl to the Controls folder, calling it ApproveArticles.ascx. Now we need
to add some HTML and WebControls to the new UserControl we created so that we
can display the data. Add the following to the HTML of the ApproveArticles.ascx:

<asp:GridView Id="grdUnapprovedArticles"
 runat="server" DataKeyNames="ArticleID"
 AutoGenerateColumns="false">

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Administrator Control Panel

[240]

 <Columns>
 <asp:BoundField DataField="ArticleTitle"
 HeaderText="Title" />
 <asp:BoundField DataField="ArticleSummary"
 HeaderText="Summary" HtmlEncode="false" />
 <asp:ButtonField ButtonType="Button"
 Text="Delete" CommandName="Delete" />
 <asp:ButtonField ButtonType="Button"
 Text="Approve" CommandName="Approve" />
 </Columns>
</asp:GridView>

Now that we have the HTML and WebControl using the ASP.NET GridView, let's go
the the ApproveArticles.aspx.vb code view and add the following so that you can
see how this will work:

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
 Dim _ArticlesBLL As New ArticlesBLL()
 grdUnapprovedArticles.DataSource = _
 _ArticlesBLL.GetAllUnpublishedArticles
 grdUnapprovedArticles.DataBind()
End Sub

In this code, we call out to the ArticlesBLL. However, the function we called,
GetAllUnpublishedArticles(), doesn't exist yet. This is what we'll need to
do now, but we need to start down at the DAL, in the ArticlesDataSet. Open the
ArticlesDataSet and let's add a new query to the ArticlesTableAdapter. We'll use
the SELECT statement option and then SELECT which returns rows. For the SQL
statement that's generated, you will want to alter it so that it looks like this:

SELECT ArticleID, ArticleTitle, ArticleBody, ArticleSummary,
ArticleCreatedBy, ArticleCreatedDate, ArticlePublished,
ArticleExpirationDate
FROM Articles where ArticlePublished = 0

What this will do is limit the results to only those Articles from the database that
have a 0 (or False) for the ArticlePublished value. We still need to give names
to the new methods we created. For this we'll use FillAllUnpublishedArticles
and GetAllUnpublishedArticles. Now, let's got to our ArticlesBLL and add the
following function to the existing code:

' Get All Unpublished Articles Function
<System.ComponentModel.DataObjectMethodAttribute(_
System.ComponentModel.DataObjectMethodType.Select, True)> _

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 8

[241]

Public Function GetAllUnpublishedArticles() As _ ArticlesDataSet.
ArticlesDataTable
 Return Adapter.GetAllUnpublishedArticles()
End Function

With this we should now have a UserControl that will display all of the unpublished
Articles in the system. While this control will now display our unpublished Articles,
we don't have a way to interact with them yet. We'll need to add a couple of events
to the code for this—one for deleting the articles and the other for approving them.
For the delete operation, we can use the following piece of code:

Protected Sub grdUnapprovedArticles_RowDeleting(_
ByVal sender As Object, ByVal e As _
System.Web.UI.WebControls.GridViewDeleteEventArgs) _
Handles grdUnapprovedArticles.RowDeleting
 Dim _id As Integer = _
 CInt(grdUnapprovedArticles.DataKeys(e.RowIndex).Value)
 Dim _ArticlesBLL As New ArticlesBLL()
 _ArticlesBLL.DeleteArticle(_id)
 grdUnapprovedArticles.DataSource = _
 _ArticlesBLL.GetAllUnpublishedArticles
 grdUnapprovedArticles.DataBind()
End Sub

And for our approve operation, we can use the following code snippet:

Protected Sub grdUnapprovedArticles_RowCommand(_
ByVal sender As Object, ByVal e As _
System.Web.UI.WebControls.GridViewCommandEventArgs) _
Handles grdUnapprovedArticles.RowCommand
 If e.CommandName = "Approve" Then
 Dim _id As Integer = _
 CInt(grdUnapprovedArticles.DataKeys(_
 e.CommandArgument).Value)
 Dim _ArticlesBLL As New ArticlesBLL()
 Dim _article As ArticlesDataSet.ArticlesRow = _
 _ArticlesBLL.GetDataByArticleID(_id).Rows(0)
 _article.ArticlePublished = 1
 _ArticlesBLL.UpdateArticle(_
 _article.ArticleID, _
 _article.ArticleTitle, _
 _article.ArticleBody, _
 _article.ArticleSummary, _
 _article.ArticleCreatedBy, _
 _article.ArticleCreatedDate, _

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Administrator Control Panel

[242]

 _article.ArticlePublished, _
 _article.ArticleExpirationDate)
 grdUnapprovedArticles.DataSource = _
 _ArticlesBLL.GetAllUnpublishedArticles
 grdUnapprovedArticles.DataBind()
End If
 End Sub

Now that the control is fully functional, we need to add it to our ControlPanel.aspx.
Open up your page, and at the top of the page, below the <@...> directive, add
the following:

<%@ Register src="Controls/ApproveArticles.ascx"
tagname="ApproveArticles" tagprefix="uc1" %>
Then, down at the bottom of the page, right before the </table> tag,
add the following:
<tr style="background-color:Silver;">
 <th>Unpublished Articles</th>
</tr>
<tr>
 <td>
 <uc1:ApproveArticles ID="ApproveArticles1" runat="server" />
 </td>
</tr>

We now have a fully functional Articles system, complete with adding, approving,
and even deleting operations. While this code is fairly simplistic, it's all designed
around the idea that you can take this and expand upon it, customizing it for your
needs and experiences. There are any number of ways that all of these same pieces
could be accomplished. We've shown you only a few different options. Find the one
(or ones) that works for you and extend it to cover the other pieces. By taking the
code and experimenting, you will find that your knowledge and understanding of
how these pieces work will be greatly increased, and soon you should find yourself
tweaking things you never would have imagined at the beginning.

While we have tried to cover many different options while presenting you with the
samples for the Articles module, there are sure to be many others out there, but we
hope the principles you've learned here will aid you in understanding them, and
perhaps give you the advantages to take these different methods and methodologies,
and incorporate them into your own code, both easily and effectively.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 8

[243]

Reporting
Reporting for a web site can be as simple as you would like, or as complex as
building the Empire State Building, and the ways to go about it are about as varied
as anything out there. For the sake of time, and to keep you from being buried, we'll
stick to a fairly simple approach, but we'll also touch upon some other suggestions
and ideas.

To start off, we need to decide what exactly it is that we want to report on. A few
simple, key items should be enough to get you started. In our site, let's track the page
that's visited, when it's visited, and some basic browser information from the user.
For this we will need to store this data someplace and our database is perfect.
Let's create ourselves a new table, calling it SiteStats, with the following setup:

Like most of the pieces we've done to this point, we will need to create both a DAL
and BLL for handling our data. As we're taking a very simplistic approach to our
reporting, we'll go with a small, object-based system like we did for the SiteSettings.
Go ahead and create a new class in your DAL folder, calling it SiteStatsDAL.vb.
We'll need a method to add a new row to our table and a way to read the results.
For the Add method, let's create a new function called AddStat(). We'll want it to
look like this:

Public Shared Function AddStat(_
ByVal PageURL As String, _
ByVal VisitedDate As DateTime, _
ByVal BrowserInfo As String) As Boolean
 Dim conn As New Data.SqlClient.SqlConnection(_
 ConfigurationManager.ConnectionStrings(_
 "SimpleCMSConnectionString").ConnectionString)
 conn.Open()
 Dim cmd As New Data.SqlClient.SqlCommand(_
 "Insert Into SiteStats " & _
 "(PageURL,VisitedDate,BrowserInfo) " & _
 "values " & _
 "(@PageURL,@VisitedDate,@BrowserInfo) " _
 , conn)
 cmd.Parameters.Add("@PageURL", _
 Data.SqlDbType.VarChar).Value = PageURL

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Administrator Control Panel

[244]

 cmd.Parameters.Add("@VisitedDate", _
 Data.SqlDbType.DateTime).Value = VisitedDate
 cmd.Parameters.Add("@BrowserInfo", _
 Data.SqlDbType.VarChar).Value = BrowserInfo
 Return cmd.ExecuteNonQuery() = 1
End Function

The other method we need is the Get method. Let's go ahead and create a new
function, calling it GetStats(), with code that looks like this:

Public Shared Function GetStats() As Data.DataSet
 Dim conn As New Data.SqlClient.SqlConnection(_
 ConfigurationManager.ConnectionStrings(_
 "SimpleCMSConnectionString").ConnectionString)
 Dim cmd As New Data.SqlClient.SqlCommand(_
 "Select * from SiteStats", conn)
 Dim da As New Data.SqlClient.SqlDataAdapter(cmd)
 Dim ds As New Data.DataSet()
 da.Fill(ds)
 Return ds
End Function

You may want to add other methods, getting only recent records or records for
specific dates or pages, but we'll leave that for you to decide. We now need to
create our BLL class and our object. In your BLL folder, add a new class, calling it
SiteStatsBLL.vb. First, we'll need to create a new class in the file for the object.
Place the following code right after the "End Class" in your file:

Public Class SiteStat
 Private _PageURL As String
 Private _VisitedDate As DateTime
 Private _BrowserInfo As String
 Public Property PageURL() As String
 Get
 Return _PageURL
 End Get
 Set(ByVal value As String)
 _PageURL = value
 End Set
 End Property
 Public Property VisitedDate() As DateTime
 Get
 Return _VisitedDate
 End Get
 Set(ByVal value As DateTime)

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 8

[245]

 _VisitedDate = value
 End Set
 End Property
 Public Property BrowserInfo() As String
 Get
 Return _BrowserInfo
 End Get
 Set(ByVal value As String)
 _BrowserInfo = value
 End Set
 End Property
End Class

Now, within the SiteStatsBLL class, we will need two methods just like we did for
the DAL—an Add and a Get method. For the Add method, we'll use a function called
AddStat(), with the following code:

Public Shared Function AddStat(_
ByVal PageURL As String, _
ByVal VisitedDate As DateTime, _
ByVal BrowserInfo As String) As Boolean
 Return SiteStatsDAL.AddStat(_
 PageURL, _
 VisitedDate, _
 BrowserInfo)
End Function

And for the Get method, we'll call the function GetStats(), and use the following:

Public Shared Function GetStats() As _
Generic.List(Of SiteStat)
 Dim _return As New Generic.List(Of SiteStat)
 Dim _ds As Data.DataSet = SiteStatsDAL.GetStats
 For Each _dr As Data.DataRow In _ds.Tables(0).Rows
 Dim _siteStat As New SiteStat
 _siteStat.BrowserInfo = _dr("BrowserInfo")
 _siteStat.PageURL = _dr("PageURL")
 _siteStat.VisitedDate = CDate(_dr("VisitedDate"))
 _return.Add(_siteStat)
 Next
 Return _return
End Function

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Administrator Control Panel

[246]

Now that we've got all our classes and methods created, we need to actually put
some code into our site to save the information. In the Code view of each page, we
should already have a Page_Load() event. Paste the following into this event as the
first line:

SiteStatsBLL.AddStat(Page.Request.Url.PathAndQuery, _

Now, Page.Request.UserAgent)

We are now logging every page hit in the site to our database. All we are missing
now is a way to view the logs. While we could simply stick a small viewer into our
Control Panel page, it's really something that is independent of this. For our use,
let's simply create a new page for our site, calling it StatReport.aspx and use the
SimpleCMS.master for our Master Page. Let's go ahead and add a GridView control,
and use an ObjectDataSource to bind it. Our resulting HTML should look like this:

<asp:GridView ID="grdStatDetails" runat="server" AllowPaging="True"
AutoGenerateColumns="False" DataSourceID="ObjectDataSource1">
 <Columns>
 <asp:BoundField DataField="PageURL" HeaderText="PageURL"
 SortExpression="PageURL" />
 <asp:BoundField DataField="VisitedDate"
 HeaderText="VisitedDate"
 SortExpression="VisitedDate" />
 <asp:BoundField DataField="BrowserInfo"
 HeaderText="BrowserInfo"
 SortExpression="BrowserInfo" />
 </Columns>
 </asp:GridView>
 <asp:ObjectDataSource ID="ObjectDataSource1"
 runat="server" SelectMethod="GetStats"
 TypeName="SiteStatsBLL">
 </asp:ObjectDataSource>

Go ahead and browse around the site a little, and then go to our new
StatReport.aspx page (did you add it to your menu). You should get results
similar to this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 8

[247]

There you have it, Site Reporting, albeit in its simplest form, for you to use.

As you may have noticed that the tracking we are showing you here is quite limited
while completely functional. You will want to take this and extend it long before you
ever put your site up. While most functions of a site can be added as you go along,
there is a distinct flaw in that ideology when it comes to reporting. There is no way
to go back and get additional data after the visit. By that I mean if you start to track
another piece of data one day, let's say Default Language settings on the browser,
you won't have any of this data from before the time you started to track it.

The key to reporting is data, and lots of it, all the time. The more you gather, the
more you can know, as well as the better you can adjust your site to fit your users'
needs. Take the time at the beginning of your site design to make sure you have
covered all the things you will want to track. Get these pieces implemented early on,
preferably before you even launch your site. I've found that it's better to gather more
information than you may think you'll ever need, simply because you never know
what you may want tomorrow.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Administrator Control Panel

[248]

A few pieces that I highly recommend you investigate adding from the start may be
view-counts on the individual module content pieces you've built. Wouldn't it be
nice to know how many times a particular Article has been viewed? Perhaps adding
a counter to the documents and image pieces to track how many times they've been
retrieved? These are pieces that, as mentioned, you can't go back and fill in later,
so it's key to add these now. Perhaps you want to log all the errors that may have
happened with your site and display these in a report. All of these pieces work under
the same principle as the reporting section you've just written. You could look at
using the same table in your database or even look at adding others—the choices are
all up to you. This is why it's difficult for anyone else to tell you what you need to do
here, but hopefully we've shown you enough to let you take the pieces and arrange
them into something larger that will serve you well.

The last thing I want to briefly cover when it comes to the area of site stats and
reporting is that there are a great number of third-party tools for this. There are some
such as Awstats and web trends that sit on your server and intercept all the calls to
your site and generate some beautiful reports. There are also things such as Google
Analytics, which would plug right in to the Additional Header Information piece in
our SiteSettings, which gives you some other wonderful tracking systems.

With these third-party applications, it takes all the work off you for maintenance,
and since these applications are constantly being updated to include new browsers
and anything else that might change, you can eliminate the need for any extra work
on yourself. These tools are extremely well tested and will come with all the features
you could think of. I highly recommend looking into these other types of reporting
tools—maybe not as full replacements, but perhaps as additional sources. Let these
other tools gather things such as browser versions, languages, and even what page
they visited. However, continue to use your own tools to track specific pieces such as
the view-counts, and you will find that you will get a much more robust view of the
usage of your site.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 8

[249]

Search Engine Optimization
While the idea of Search Engine Optimization (SEO) isn't really a function of the
Administration of the site, it is another one of those key pieces that happen "under
the covers" of a site. With that in mind, I thought it would be a good time to bring
it up so that you can implement it when you are working on your site. Many
developers will fail to take advantage of the little pieces that you can add, or simply
do "right", to make their site better when it comes to SEO. If your site isn't going to
be exposed on the Internet, being used on an internal network/intranet, perhaps you
can skip over this, but otherwise I think it pays to take just a few moments to talk
about it.

I'd probably start by saying that there is some much more detailed work available
on the topic, and that you should spend some time researching it to learn more.
Sites such as Google will provide you page after page all devoted to this topic,
and sites such as Wikipedia.org are constantly being updated to give you the most
up-to-date information available. Beyond that I'll give you the quick rundown. SEO
is, simply put, making your site easier for the search engines to classify, categorize,
parse, and generally "learn" about. Sites with poorly implemented SEO techniques
will find themselves almost unreachable when someone opens their favorite search
engine. This would mean less visitors, and less visitors means less usage. If people
can't find, or find out about your site, then they can't come to it and read all the
information you've made available to them.

While I'm not going to cover all the details of SEO, I will try to cover a few of the big
hitters and help you start off on the right track.

•	 Create a unique title for your page:
Every page in your site will have the ability to have its own unique title
(the <title> tag that's part of the header and/or page declaration). By giving
each of your page its own title, the search engines will know that these pages
are different, and therefore will be classified/tracked independently. This
gives a much more detailed breakdown of your site for the searching users.
This title is also one of the key fields that the search engines base their results
on, typically the first priority key. Be detailed in your page title, but make
sure it's to the point.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Administrator Control Panel

[250]

•	 Add a <meta> description tag:
Within the <head> tag of your pages, in addition to the <title> tag, you
can also add what's referred to as a <meta> tag. This is a piece of additional
information that really doesn't show to the site user, but is crucial for many
search engines. A sample of the <meta> tag may look something like this:
<head>
<title>...</title>
<meta name="description" content="Simple CMS" />
</head>

In this sample, the <meta> tag is for the description of the site. This is what
many search engines will use when parsing the contents of your page.
A good description tag, when it's filled with detailed, useful information,
will be all that your user needs to know they've found what they need
when searching. In our sample, I used Simple CMS as the content of the
description, but this would actually be a bad example. You will want to
build your content section so that it's as detailed as possible.

Now there are a number of other pieces you could dig into for proper SEO, but if you
take on these first two properly, you may find that you've already covered most of
the basics. The other items I just want to mention to look into would be proper URL
paths and the use of a SiteMap. These are additional pieces that many search engines
will crawl through when evaluating your site.

Summary
In this chapter, we covered a number of items quite quickly, and by now you should
be getting more familiar with the tools and the methodology of the site, but just
because we covered them quickly does not mean they are not important items. The
Administrator Control Panel is really an intricate part of your site. It allows you,
as an Administrator, to control a number of aspects of your site and gives you the
ability to customize nearly all of it. Take what you've learned here and expand it,
and I think you will find that there is a wonderful opportunity for you to create a
site that is truly unique, but at the same time one that can be based on some shared
principles of reusability. A simple control panel adjustment here and there, and
you've suddenly got an entirely new site, all without a single line of code or even a
deployment of your site. We hope that you can take these pieces and grow them into
something larger.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Further Possibilities
Now that you have a working CMS, where do you go from here? As you probably
noticed throughout this book, we touched upon a number of different areas and
mentioned a few other options along the way, but there are still a number of other
possibilities yet to be discovered. In this chapter, we'll try to touch upon a few other
options so that you can see just how you may want to extend your site.

At the end of this chapter, we will have covered:

•	 Possibilities for upsizing your SQL Server
•	 Suggestions for additional modules for your site
•	 Using base pages and inheritance
•	 Handling (trapping) errors

Upsizing to the SQL Server
The site we developed and designed in our book is based around the Microsoft
SQL Express database engine. While this engine is quite robust, we mostly did
this because of the cost involved, or lack thereof. Due to the nature of the database
being a file-based engine, there are a number of hosting providers, and if you are
going to use a third-party host, that may not allow you to use SQLExpress. You may
also determine that your site will be a heavily used site with thousands of users. If
this is the case, you may want to look at using the "full" version of Microsoft SQL
Server. With this, you would have all of the additional capabilities, depending on
the specific version you were to use, as well as the more robust engine. I highly
recommend you go to the Microsoft web site and look at the different options
available when choosing your database engine, and then use that in correlation
with your needs and what your hosting provider may offer.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Further Possibilities

[252]

One of the best things about switching to the full version of SQL Server is that you
don't have to change any of your code. SQL and SQLExpress have a shared "core" that
does all of the database work, so all of the queries we've written within our application
will work exactly the same way. The only piece of code within the application that you
would need to update is the connection string within the web.config file.

To use the full version of SQL, you just need to first install it on a server. The full
installation instructions for this will come with your SQL software. If you're using
a hosting provider for your web site, then this has already been done for you. After
that you have a couple of options. If you are starting off with a new web site, you can
follow the same methods that were covered in Chapter 2, but if you are upsizing, it's
even simpler. Open up your SQL Server Management Studio, connecting to your
SQL Server. Expand the Object Explorer and you should see a number of folders in
your tree, like this:

Right-click on the Databases folder and select the Attach menu option. Use the
Add... button to browse to the SimpleCMS.mdf database file that you have for
your existing site.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 9

[253]

That's it. Your SQL Server Management Studio should now show your SimpleCMS
database on your server.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Further Possibilities

[254]

From here, you can open your site and go into your web.config. Open the
<connectionStrings /> section and find your connection string.

<add name="SimpleCMS_DatabaseConnectionString" connectionString="Data
Source=.\SQLEXPRESS;AttachDbFilename=C:\Inetpub\wwwroot\
App_Data\SimpleCMS.mdf;Initial Catalog=SimpleCMS.mdf;User
ID=sa;Password=SimpleCMS" />

You will want to replace it with the following, making sure to use your
SQL Server name:

<add name="SimpleCMSConnectionString" connectionString="server=YOUR_
SERVER;Integrated Security=True;Trusted_Connection=yes;database=Simple
CMS" providerName="System.Data.SqlClient"/>

If you need help with configuring your connection string, I highly recommend going
on to the Internet for assistance. The web site www.ConnectionStrings.com is a great
resource for all of this information. After you get your string configured, go ahead
and run your application, and test it out. You may find that you get an increase in
the performance because the full versions of SQL Server are much more optimized.
Beyond simply connecting to the server, depending on the version of SQL Server you
have, you may find a number of other options available to you. Automated backups,
load balancing, and scheduled jobs are just a few things you may want to explore
within SQL Server.

Additional modules
Beyond the Articles and Files (Documents and Gallery) Modules we've created
within the site, you may want to look at adding some others. Many CMS sites will
offer options such as Forums, Messaging, and Videos. These are all ideas you may
want to incorporate within your site. For these, or any others you may think of, it's
just a matter of following the same patterns we've been using throughout this site.

Start with planning out your Module. It's crucial to know how you want it to work
before you start off, or you may find yourself rewriting large pieces of code (and I'm
sure that no one really wants to do that). Once you have your concepts all laid out,
start by creating the individual pieces. If you need some new tables in your database,
get those created first.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 9

[255]

Next, you'll want to take the time and get your DAL all "wired up" using the Typed
Dataset option, as we did with the Articles module, or you may want to use the
Object-based system like we did with the SiteSettings module—it's up to you. I
highly recommend that whichever method you go with, you use it for all your
modules. We purposely used differing methods in this book, simply to show you
different possibilities. However, maintaining a site using a mixture of methodology
is quite difficult at times.

The next step, just as we've done before, would be to create your BLL. Make sure to
keep your specific business rules within the context of your BLL and not in the UI,
just to make things easier for yourself as you expand and grow your site. In addition,
you will want to make sure to write detailed validation rules to ensure your site is
always getting the best possible data. Another item that I strongly recommend you
incorporate into your BLL is the use of comments. Whenever possible, add a simple
comment or note to your code explaining what, and why, that piece of code is there.
This is because as your site grows and expands, you will always know what that
piece is for. This will also allow other developers to come into a piece of code and
know immediately why it was designed and what it's purpose is—a "must have"
in any multi-developer situation.

Once the layers are in place, go ahead and create your UI. Take into account
the Master Page(s) you may have created, the CSS/Skin/Theme files you've
incorporated, and all the other shared bits. The UI is all the user ever sees,
and while it's typically very straightforward, it's really your only chance to
gain your users'/customers' attention. The best written code with a poor UI will
suffer dramatically.

The key to using the module-based approach, as we've done here, is that these pieces
are really designed to be implemented with as little direct impact on the rest of the
site. By doing this, you ensure the stability of your site, which is critical. Along with
this, you also ensure that when you've got the new pieces completed, you don't have
to spend hours testing all the other pieces of your site again.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Further Possibilities

[256]

Base pages
The concept of inheritance is one that is at the root of all object-oriented
programming. All the pages in our site are currently "inheriting" from the System.
Web.UI.Page class that is part of the ASP.NET framework—but they don't have
to. One concept that you will find in many applications is the use of a "base" class.
The idea behind this is that if you have all of your classes (or pages in our case)
inheriting from a single class of your own, then you have given yourself a shared
place for many things to reside. Just like in the idea behind the Master Page,
we can do this ourselves. Create a new class in your app_code folder, calling it
SimpleCMSBasePage.vb. It will start off simple and empty like this:

Imports Microsoft.VisualBasic
Public Class SimpleCMSBasePage
End Class

What you can do now is set it up so that it inherits from System.Web.UI.Page.
(You'll come to know the reason in a while.) To do this, change the Class definitions
to look like this:

Imports Microsoft.VisualBasic
Public Class SimpleCMSBasePage
 Inherits System.Web.UI.Page
End Class

Now, let's take a look at all our existing pages. You'll see that every one of them has
the following piece of code in them:

Protected Sub Page_PreInit(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.PreInit
 Page.Theme = SiteSettingsBLL.ReadSiteSettings.SiteTheme
End Sub

Copy that piece from one of the pages and put it into our new class so that it looks
like this:

Imports Microsoft.VisualBasic
Public Class SimpleCMSBasePage
 Inherits System.Web.UI.Page

 Protected Sub Page_PreInit(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreInit
 Page.Theme = SiteSettingsBLL.ReadSiteSettings.SiteTheme
 End Sub

End Class

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 9

[257]

Open the code (****.aspx.vb file) for each of our pages in our site. Remove the
code that we just copied from all of them. And here comes the really cool part. Take
the line that says:

Inherits System.Web.UI.Page

and change it so that it now reads:

Inherits SimpleCMSBasePage

What we've just done is make all our pages inherit from the SimpleCMSBasePage
class that we've created, which in turn inherits from the System.Web.UI.Page class.
We get all the functionality of the ASP.NET Page class in addition to any extra code
we want to put into our own base class. Beyond using it just for the simple event
we did above, you could easily add any number of things to this class. Functions,
properties, and even other events are all available to you to put in this new class and
remember, anything you put here will automatically be available to you from any of
your pages. Perhaps you want to do additional logging of the visits to your pages,
and this would be a great place to put that logger.

Another thing that you may want is a place to store static constants for use in your
site. This would be another time when the base page would be useful. Now, isn't that
pretty cool, but wait...there's more. Not only can we do this with our Page classes,
but we can also do this with all our DAL and BLL classes. By having all your BLL
classes inherit from a single one, you could write some of your functionality here,
thereby not having to repeat it in each BLL class. The same thing goes for your
DAL classes. You can create any number of extra inheritance layers that you need
as well. These additional layers can add a nice way of separating code and keeping
things from getting overly cumbersome in a single file, but be careful not to overdo
it, as you can easily cross the line and turn the code into something tough to weed
through. When you add too many layers, it's not always easy to track down where a
problem may originate, and none of us want to spend more time than necessary on
that kind of a thing.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Further Possibilities

[258]

Error trapping
One key concept that we really only briefly touched upon in our site is how you
want to handle errors that may occur. There are a number of different methodologies
that you may come across if you do some searching on the Internet, but the one
thing you will nearly always see is that you need a common way of handling them
for your application. Whether you log them into the Event Viewer in the Operating
System of the server, write them to a table in your database, or even both. However,
you will want to make sure you do this consistently. In addition, you will also want
to make sure that your users always know how to find any information on an error
that may impact them.

There are two basic concepts when it comes to errors in an application. The first is
"handled" errors. These are things that you can expect to happen. Validation failures,
missing data, incomplete data, and so on, are all common occurrences of a "handled"
error. We have numerous points within our application where an IF/THEN check
may produce a failure for us. For these you will want to:

1. Log the error appropriately.
2. Let the user know.

For logging the error, I'd suggest you put a simple LogError() method in the new
SimpleCMSBase* classes that we created earlier. This one method can be called
from any of the other classes that have inherited from this one, giving you a single,
unified point for logging these messages. Beyond simply logging these errors, you
will want to make sure the user knows what to do. For this, the best way is simply
to put a message on the screen telling them what happened and what they can do,
if anything. By using a consistent place on the screen to display these messages, and
by displaying them in a consistent way (same color, font, and so on), your users will
hopefully be able to handle most situations themselves.

The second type of error is what's called an "unhandled" error. These are errors
that you haven't specifically coded for, but that doesn't mean they aren't expected.
No matter how much time you spend making your site just perfect, and regardless
of the countless hours you spent testing your site (you did test it—all right?),
there is always the possibility of an error. For this you will want to look at a few key
pieces—the Page, the web.config, and the global.asax file. I won't go into great
depth on these, as you will surely find more information than you would ever want
with a quick Internet search, but briefly:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Chapter 9

[259]

•	 The Page has a few built in methods for handling errors. OnError() and
Page_Error() are both exposed to us for use within the Page class.

•	 The global.asax file, if you add one to your site, will have some methods
of its own that are called any time an error occurs, specifically the
Application_Error event.

•	 Lastly, but certainly not least, is the web.config. Within this file is a
<customErrors /> section. This is where you can tell your application to do
specific things such as redirect to special pages in your site, whenever certain
types of errors occur.

Handling errors and properly logging them is really only half of the puzzle. Now
you, as the person in charge of the code, need to know that an error occurred. Many
sites will incorporate some messaging, through email, to let a specific user know
whenever an error occurred. This lets you to be quickly responsive to your site and
correct errors before many users may even report them.

In addition, I recommend that you have some way of reviewing your error logs,
either manually or in a special error page in your site. We've briefly touched on
this in the last chapter, but it's worth repeating a little here. A good report to view
the errors, and perhaps a way to flag/mark a status on them, is incredibly useful.
You will want to check this report frequently so that you can ensure your users are
getting the best experience they can. I suggest that you even publish some of these
to an Article on your site, so if a user is getting an error, he/she can know that it is
being looked into, and you will especially want to let the users know when these
fixes have been put into the site. This gives your users some feeling that they are part
of a solution and not just a problem. These users will be your best interactions. This
is because when they feel more comfortable, they will share their experiences more,
and will be happy to share with you, any errors they may receive. By being vigilant,
you can continuously work on making your site better, and that's what everyone
wants in the end.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Further Possibilities

[260]

Summary
Now that you've got your site completed, modules written, UI looking sharp,
interfaces running smoothly, and are feeling all-around good about the work you've
done, what should you do now? The simple answer is "keep going". Take time to
review what you've done. Re-evaluate the code you wrote. Nearly every developer
out there finds that when he/she completes a project that they are a better developer
than they were at the start. With that in mind, the code you did at the beginning
is probably not as "good" as what you wrote at the end. See if you can make it
better. Take the time to optimize the code, combine any duplicate code into shared
functions, or make them into custom controls if they are pieces for your pages. Take
time to look around the Internet at other sites with similar usages as yours, and look
for ideas. Talk with your users and ask them what they like or don't like in the site,
and see if you can improve upon it. Find out what new functionality may benefit the
people who use your site and see what it would take to incorporate these concepts
into your code.

The basic idea is that a web site, or really any application, is never really "done".
Every good site out there is making improvements, or should be, on a continuing
basis. There are always new techniques, new functionality, and new options available
to developers to help them make better applications. Take time to see what's out
there, collect that information, and see what it can do for you and your site.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Index
Symbols
<asp:<aspFileUpload />

activities 181, 182
advantages 183
database, modifying 184
dataset, creating 184-186
generation methods, choosing 190, 191
GetData() method 186
limitations 183
query type, choosing 187
SQL INSERT statement, specifying 188
SQL SELECT statement, specifying 189
using 182

<connectionStrings /> 254
<head> tag 156
 tag

about 180
limitation 180

<input type=“file”/> tag 181
 installing

ASP.NET 3.5 13
Visual Web Developer Express 2008 13

<table> tag
about 157
using, from child/content page 158, 159

A
Administrator Control Panel

about 223
key aspects 223
new page, adding 230, 231

application-base user authentication system
advantage 103
drawback 103

ArticleID parameter 84
Articles

administrating 239, 241, 242
ArticlesBLL class, BLL

AddArticle function 93
DeleteArticle function 93, 94
GetArticleByArticleID function 93
GetArticles()function 93
layer, testing 95
methods 92, 94
UpdateArticle function 93

Articles module
about 135
additional features 154
building 142
publication process 136
purpose 136
user control 137

Articles module, building
Author 153
business logic layer 145
data access layer, creating 143, 144
database layout 142
Editor 153
Publisher 153
Registered User 153
user controls, building 145

ASP.NET
advantages 8
databound controls 52
default login page, changing 114
IIS, installing 10
Master Pages 9
membership 8, 104
need for 8
password complexity 113

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

[262]

profiles 8
QueryString 59
Server.Transfer vs HyperLink 28
setup, configuring 13
setup, testing 13
Themes 9
Themes, components 9
version 1.0 9
version 2.0 9
version 2.2 9
version 3.0 9
version 3.5 9, 10
version 3.5, installing 13
Visual Basic, using 8
Visual Web Developer Express 2008,

installing 13
ASP.NET 2.0. See ASP.NET
ASP.NET membership

about 104
administration role, creating 122
cookies, using 104
roles 122
SqlMembershipProvider 104

aspnet_regsql.exe
about 119, 120
arguments 119
command line 120

ASP.NET setup, configuring. See ASP.NET
setup, testing.

ASP.NET setup, testing
IIS, configuring on Windows Vista 16, 17
IIS, configuring on Windows XP 14, 15, 16
IIS installation, testing 18, 19
NTFS permission, setting 17, 18

B
base pages

susing 256, 257
basic site settings

additional header information section 224
BLL class, creating 226, 228
features 226
Footer text 224
Page_Load() event, adding 232
Page_Load() event, using 230
Page_Load() method, using 229

reading function 228
ReadSiteSettings() function, creating 225
SetSiteSettings() function, creating 225, 229
Site Image 224
Site Name 224
table, creating 224

BLL, multi-tier architecture
ArticlesBLL class 92
features 92

Business Intelligence Development Studio
(BIDS) 35

Business Logic Layer. See BLL, multi-tier
architecture

C
Client Access Licenses (CALs) 103
CMS

about 6
architecture 77
Articles 239
basic site settings 224
database, creating 37
database, using 32
drawbacks 31
file cabinet 6
form authentication, adding 118-132
reporting 243
SimpleCMS database, using 46
user accounts 233
Web Content Management Systems 7

CMS architecture
about 77
multi-tier architecture 78

Columns / Fields 61
Content Management System. See CMS

D
DAL, multi-tier architecture

about 85
data filtration, from dataset 87, 88, 89
delete method 91
Fill method 87
GetData() method 87
insert method 90
typed dataset, creating 85, 87
update method 91

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

[263]

Data Acess Layer. See DAL
database

advantages 32
creating 37
creating, Management Studio Express used

38, 39
Management Studio Express used 41, 42
need for 32
normalization 70
SimpleCMS database, using in Visual Web

Developer 44
SimpleCMS database, using in Visual Web

Developer 44
table, creating 41, 42, 44
user account, changing 74, 75
Windows authentication vs SQL server

authentication 39
database table, multiple content pages

altering 56
new column, adding 57

data layer, multi-tier architecture
about 80
application, modifying 81
article 81
Articles table, creating 82, 83
Articles table, sample data 83, 84
Articles table, settings 82
page 81
Pages table, creating 81
pane 81
Panes table, creating 82

data store. See data layer, multi-tier archi-
tecture

Default.aspx file, SimpleCMS database
creating 46, 47
data source, binding to Repeater control 50,

51
data source, configuring 47, 48, 49
Repeater control, creating 50

document repositories
about 208
generation methods, choosing 209
HTML formats, adding 212, 213
page, creating 210
Repeater control, using 211, 212
SQL SELECT statement, specifying 208
StreamFiles.aspx page, calling 214-216

downloading
SQL Server Express 2005 33

Dynamic Link Libraries (DLLs) 8

E
entity

attributes 68
courses 70, 71
Foreign Key (FK) 70
instructors 70, 71
Primary key 68
relationships 69-72
students 70, 71

error
handled errors 258
LogError() method 258
logging 258
logs, reviewing 259
OnError() method 259
Page_Error() method 259
trapping 258
unhandled error 258

F
FileID

FileIDabout 184
forms authentication

adding, to CMS 118-132
ASP.NET membership roles 122
configuring 105-118
content, securing 128, 129
existing SQL database, aspnet_regsql.exe

tool 119
existing SQL database, preparing 118
login page, creating 125
LoginStatus control 130, 131
new user, registering 125-128
PasswordRecovery control 131, 132
user accounts, creating 121
users, adding to roles 123-125

forms authentication, configuring
enabling 107, 108
home page, creating 106
login, creating 117, 118
login page, creating 113
Master Page, creating 106

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

[264]

membership database, creating 108, 109,
110

new application, creating 105, 106
SqlMembershipProvider, configuring 110-

112
user account, creating with ASP.NET

configuration tool 115, 116
using 105
web.config file 107

forms authentication, using. See forms
authentication, configuring

G
generation methods, document repositories

 choosing 209
GetArticles() function 93
GetArticleByArticleID function 93
GetData() method 87,186
GetStats() function 245
Gridview properties, setting 194
GROUPBY clause

about 65
Having Clause 65

GUID

H
handled errors 258
headerZone 175,176
HTML formats, document repositories

adding 212, 213
Hyperlink column, image gallery

adding 206, 207

I
IIS, installing

about 10
in Windows Vista 12
in Windows XP Pro 11
operating system 11
versions 11

image gallery
about 191
business object, choosing 197
data connection, setting up 194-196
data methods, defining 198

Data Source configuration Wizard 197
FileDescription parameter 200
FileName parameter 200
Gridview properties, setting 194
Hyperlink column , adding 206, 207
IF/THEN check, adding 200
image column, adding 206
new page, creating 198, 199
Now() method, using 200
page, browsing 202
page, choosing 201
page, creating 192, 193
Page_Load event, adding to code 204
SiteFilesBLL option, choosing 197
TableAdapter Query Configuration Wizard

195
View column 207
Web form, adding 203

images
about 180
and file, working 180

inheritance 256
installing

IIS 10
IIS, in Windows Vista 12
IIS, in Windows XP Pro 11
SQL Server Express 2005 34, 35

Internet Information Service. See IIS, in-
stalling

L
LINQ (Language Integrated Query) 10
localhost 20

M
Master Page, presentation layer

building 95
default.aspx home page, creating 97, 98
designing 96
dynamic content, adding 98-101

Master Pages
about 155-157
ContentPlaceHolders 156, 157
<@...> declaration 156
things, putting together 157
viewing 156

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

[265]

menus
about 163
Add Root Item option 166
<a href..> tags 163
AutoFormat option 165
customizing 165-169
data type source, choosing 170, 171
root item, adding 167
SiteMapDataSource 172, 173
Site Map option 169, 170

module
additional options 254
planning 254
Typed Dataset option 255

multiple content pages, creating
about 55
database table, altering 56
SqlDataSource, altering 58-60

multi-tier architecture
about 78
BLL 79, 92
data layer 79, 80
presentation layer 79, 95

N
NULL data

dealing with 43

O
OnError() method, error 259

P
page hierarchy

Inherits declaration 174
logical hierarchy 173
programmatic hierarchy 173

presentation layer, multi-tier architecture
developing 95-101

Q
QueryString, ASP.NET 59

R
Really Simply Syndication. See RSS feeds;
region. See Zones
Relational Database Management System

(RDBMS) 33
reporting

about 247, 248
GetStats() function 245
SiteStats table, creating 243-245
reportingStatReport.aspx page, creating

246
Rows / Records 61
RSS feeds

about 216
file, generating 216- 220
RSS feedsXML output 216

S
Search Engine Optimization. See SEO
SELECT query, SQL Server

about 63
ALL option 64
COUNT option 64
DISTINCT option 64
GROUP BY clause 65
GROUP BY clause, Having clause 65
ORDER BY clause 65
TOP 64
WHERE clause 63
WHERE clause, AND 63
WHERE clause, LIKE 63
WHERE clause, OR 63

SEO
about 249
META description tag, adding 250
unique title, creating 249

SimpleCMS database
Default.aspx file, creating 46, 47
Edit.aspx, creating 51, 52, 53, 54
using, in CMS 46

simple content management application,
writing

about 20
Default.aspx page, content.txt 22- 24
Default.aspx page, creating 20, 21

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

[266]

Edit.aspx page, creating 21-29
FCKEditor, downloading 25
FCKEditor, using 25

SQL injection
about 72
example 72
preventing 73

SqlMembershipProvide, forms authentica-
tion

applicationName 112
AspNetSqlMembershipProvider, adding

111
configuring 110
defaultProvider 112
enablePasswordReset 112
enablePasswordRetrieval 112
requiresQuestionAndAnswer 112

SQL Server
commands 61
database, specifying 80
DELETE query 66
GUID 69
IDENTITY column 69
INSERT query 65
MERGE query 66
other queries 66
query syntax 61
SELECT query 63
SQL Serverupsizing 251-254
Unique Identifier 69
UPDATE query 66

SQL Server Express
advantages 33
limitations 33
need for 32

SQL Server 2005 Express
downloading 33
installing 34, 35
installing, feature section 34
Management Studio Express. installing 35
Management Studio Express, running 36,

37
SQL Server Reporting Services (SSRS) 35
System Error 32 45

T
themes

<pages> element, selecting 161
about 159
new item, adding 160
Skin file 160, 162, 163
stylesheet 160, 161
web.config 161

U
user accounts

Checkbox 236
CheckboxList 236
code, placing 237
Control Panel page, adjusting 233, 234
new roles, adding 238
Profile.aspx, calling 235
tasks 233

user control, Articles module
advantage 137
articles, listing 145-152
building 137-145
creating 138
registering, in web.config file 141
single folder, need for 139

V
Visual Web Developer Express 2008

Default.aspx file 106
 installing 13

W
Web Content Management Systems, CMS 7
Windows authentication 116
Windows authentication vs SQL server

authentication
about 39
SimpleCMS database, configuring 40
user account, configuring 39

Windows Communication Foundation
(WCF) 9

Windows Presentation Foundation (WPF) 9

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

[267]

X
XML output, RSS feeds 216

Z
Zones

body Zone 175, 177
footer Zone 175, 176
header Zone 175, 176
setting up 177
side Zone 176
three column layout 175
two column layout 175

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

Thank you for buying
ASP.NET 3.5 Content Management
System Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

ASP.NET 3.5 Social Networking
ISBN: 978-1-847194-78-7 Paperback: 580 pages

An expert guide to building enterprise-ready
social networking and community applications with
ASP.NET 3.5

1. Create a full-featured, enterprise-grade social
network using ASP.NET 3.5

2. Learn key new ASP.NET topics in a practical,
hands-on way: LINQ, AJAX, C# 3.0,
n-tier architectures, and MVC

3. Build friends lists, messaging systems, user
profiles, blogs, message boards, groups,
and more

4. Rich with example code, clear explanations,
interesting examples, and practical advice – a
truly hands-on book for ASP.NET developers

ASP.NET MVC 1.0 Quickly
ISBN: 978-1-847197-54-2 Paperback: 256 pages

Design, develop, and test powerful and robust web
applications with MVC framework the agile way

1. Rapid guide to building powerful web
applications with ASP.NET MVC framework

2. Covers all facets of web application
development including requirement analysis,
design, building, testing, and deployment

3. Explore the ASP.NET MVC framework with
several newly released features including
WebForms, Script Combining, jQuery
integration, and ASP.Net MVC AJAX helpers

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

ASP.NET 3.5 Application
Architecture and Design
ISBN: 978-1-847195-50-0 Paperback: 260 pages

Build robust, scalable ASP.NET applications quickly
and easily.

1. Master the architectural options in ASP.NET
to enhance your applications

2. Develop and implement n-tier architecture
to allow you to modify a component without
disturbing the next one

3. Design scalable and maintainable web
applications rapidly

4. Implement ASP.NET MVC framework to
manage various components independently

Enhancing Microsoft Content
Management Server with
ASP.NET 2.0
ISBN: 978-1-904811-52-7 Paperback: 224 pages

Use the powerful new features of ASP.NET 2.0 with
your MCMS Websites

1. Get Microsoft Content Management Server
Service Pack 2 up and running

2. Use the most exciting features of ASP.NET 2.0
in your MCMS development

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Download at Boykma.Com

	Cover
	Table of Contents
	Preface
	Chapter 1: Planning and Building your First Content Management System
	What a Content Management System is
	Web Content Management Systems

	Why use ASP.NET
	ASP.NET membership and profiles
	ASP.NET Master Pages and Themes
	ASP.NET 3.5

	Setting up your environment
	Installing IIS
	Operating systems and IIS versions
	Installing IIS in Windows XP Pro
	Installing IIS in Windows Vista

	Installing ASP.NET 3.5
	Installing Visual Web Developer Express 2008
	Configuring and testing your setup
	Configuring IIS on Windows XP
	Configuring IIS on Windows Vista
	Setting NTFS permissions
	Testing IIS

	Writing a simple content management application
	Default.aspx
	Content.txt

	FCKEditor
	Edit.aspx

	Summary

	Chapter 2: Adding a Database to a Content Management System
	Why use a database
	Why use SQL Server Express
	Installing and configuring SQL Server 2005 Express
	Installing SQL Server 2005 Management Studio Express
	Running SQL Server 2005 Management Studio Express

	Creating a database for our simple
Content Management System
	Creating a new database with Management Studio Express
	Windows authentication vs. SQL server authentication
	Configuring an SQL user account
	Configuring the database to use the SQL Server account

	Creating a database table with Management Studio Express
	Using the SimpleCMS database in Visual
Web Developer

	Using the SimpleCMS database in the CMS application
	Creating a new Default.aspx file
	Configuring the data source
	Binding the Data Source to a Repeater control

	Creating a new Edit.aspx

	Creating multiple content pages
	Altering the database table
	Adding data to the new column

	Altering the SqlDataSource code

	Understanding SQL Server commands
	SQL query syntax
	SELECT queries
	WHERE clause
	TOP
	ALL | DISTINCT
	COUNT
	GROUP BY clause
	ORDER BY clause

	INSERT queries
	UPDATE queries
	DELETE queries
	Other queries

	Entities and relationships in brief
	Entities
	Entity relationships

	SQL injection
	Preventing SQL injection

	Changing the database user account
	Summary

	Chapter 3: Content Management System Architecture
	Multi-tier architecture
	The data store
	The Pages table
	The Panes table
	The Articles table

	The data access layer
	Creating the typed dataset
	Filtering data from the dataset
	Insert method
	Update and delete methods

	The business logic layer
	The ArticlesBLL class

	The presentation layer
	Building the Master Page

	Summary

	Chapter 4: Adding Security and Membership to a Content Management System
	ASP.NET membership
	Configuring and using forms
authentication
	Creating a new application
	Creating the home page
	Create the Master Page

	Enabling forms authentication
	Creating the membership database
	Configuring the SqlMembershipProvider
	Creating the login page
	Creating a user account with the ASP.NET configuration tool
	Creating a login

	Adding forms authentication to our CMS
	Preparing an existing SQL database
	The aspnet_regsql.exe tool

	User accounts
	Membership roles
	Adding users to roles

	Login page
	New user registration
	Securing content
	Login status

	Summary

	Chapter 5: Creating the Articles Module
	Application specifications
	The Article publication process
	User controls
	Building a user control

	Additional specifications

	Building the Articles module
	Database layout
	Data access layer
	Business logic layer
	User controls
	Listing Articles

	Author, Editor, and Publisher roles

	Additional features
	Summary

	Chapter 6: Pages and Zones
	Master Pages
	Themes
	Menus
	Page hierarchy
	Regions and Zones
	Summary

	Chapter 7: Images, Files, and RSS
	How images and files work on the Web
	File upload control and beyond
	Image gallery
	Document repositories
	RSS feeds
	Summary

	Chapter 8: Administrator Control Panel
	Basic site settings
	User accounts
	Articles
	Reporting
	Search Engine Optimization
	Summary

	Chapter 9: Further Possibilities
	Upsizing to the SQL Server
	Additional modules
	Base pages
	Error trapping
	Summary

	Index

