SOFTWARE

ENGINEERING
for

IMAGE
PROCESSING
SYSTEMS

Phillip A. Laplante

@ CRC PRESS

Also available as a printed book
see title verso for ISBN details

SOFTWARE
ENGINEERING

for

IMAGE
PROCESSING
SYSTEMS

IMAGE PROCESSING SERIES

Series Editor: Phillip A. Laplante, Pennsylvania State University

Published Titles

Adaptive Image Processing: A Computational Intelligence Perspective
Stuart William Perry, Hau-San Wong, and Ling Guan

Image Acquisition and Processing with LabVIEW™
Christopher G. Relf

Image and Video Compression for Multimedia Engineering
Yun Q. Shi and Huiyang Sun

Multimedia Image and Video Processing
Ling Guan, S.Y. Kung, and Jan Larsen

Shape Analysis and Classification: Theory and Practice
Luciano da Fontoura Costa and Roberto Marcondes Cesar Jr.

Software Engineering for Image Processing Systems
Phillip A. Laplante

SOFTWARE
ENGINEERING

for

IMAGE
PROCESSING
SYSTEMS

Phillip A. Laplante

CRC PRESS

Raton London New York Washington, D.C.

This edition published in the Taylor & Francis e-Library, 2005.

“To purchase your own copy of this or any of Taylor & Francis or Routledge’s
collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk””

Library of Congress Cataloging-in-Publication Data

Laplante, Phillip A.
Software engineering for image processing systems / Phillip A. Laplante.
p. cm. — (Image processing series)
Includes bibliographical references and index.
ISBN 0-8493-1376-7
1. Image processing. 2. Software engineering. I. Title. II. Series.

TA1637.L34 2003
621.36"7—dc21 2003046213

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2004 by CRC Press LLC
No claim to original U.S. Government works
International Standard Book Number 0-8493-1376-7
Library of Congress Card Number 2003046213

ISBN 0-203-49610-8 Master e-book ISBN

ISBN 0-203-58596-8 (Adobe eReader Format)

Dedication

fo
Nancy, Christopher, and Charlotte

Preface

This book is not intended to be a traditional software engineering text — there are
many good ones. Instead, it is designed specifically for those involved in image
processing systems. It provides a modern engineering framework for the specifica-
tion, design, coding, testing, and maintenance of image processing software and
systems. In particular, the focus is on imaging systems as a special case of software,
thereby providing a common framework and language of discourse for imaging
engineers of all backgrounds. This common framework, in turn, should lead to more
reliable and economical software throughout the imaging industry.

This text is about image processing, but it contains none because it is not about
the images; it is about the software systems that process them. Image processing
systems are found everywhere in such places as digital cameras, photocopying
systems, computer scanners, video games, industrial inspection, medical imaging,
and defense applications. It seems that a software engineering book devoted to this
important application domain is overdue.

This text is intended to help those in industry who, though practicing as software
engineers, have had little or no formal training in software engineering. The typical
reader will have an undergraduate degree in mathematics or in an engineering or
physical science or the equivalent experience. Some experience in working on a
software project team, as a requirements writer, designer, developer, tester, or
manager, would be helpful but is not essential. No experience in programming in
any particular language is assumed on the part of the reader. It would be helpful if
the reader had a mathematical background at least embracing calculus, but this is
not essential since most of software engineering does not involve deep formulaic
principles.

It is hoped that those who read this text will come to reject the many miscon-
ceptions about software, software engineering, and software engineers. Then the
main contribution of this text will be to enhance the quality of software produced
by the imaging industry and the standing of those who build these systems.

Acknowledgments

I am indebted to my Penn State colleague Dr. Colin Neill for numerous ideas,
discussions, many of the nicer figures, and his strong influence on me and his
instruction on the best practices in object-oriented technologies. In particular, he
deserves coauthor credit for Chapters 4 and 5, as much of the material was drawn
from a series of papers that we wrote together (Laplante and Neill, 2002a; Laplante
et al., 2002c, 2002e, 2003b; Neill and Laplante, 2002b, 2003a) and from his own
work (Neill and Holt, 2002a; Neill and Gill, 2003b).

I also thank Dr. Dave Sinha, chief software scientist at Kodak Medical Imaging,
for discussions on applications and Dr. Michael Hinchey of the NASA Software
Engineering Lab at Goddard Space Flight Center for discussions on requirements,
design, and formal methods. My colleague Will Gilreath also provided helpful
feedback on the draft manuscript.

Over the years, many of my graduate students have provided insight into “real-
world” practices. I would like to acknowledge these students for many informative
discussions and, in particular, Mike Rzucidlo for his work on software black boxes
and fault tolerance, which contributed significantly to the sections on those topics.

Finally, I would be remiss if I neglected to thank CRC’s engineering editor, Nora
Konopka, for her many years of support on this and other projects; Helena Redshaw
for her assistance during the editorial and preproduction processes; Sheyanne Arm-
strong for a thoughtful copy edit; and project editor, Marsha Hecht, for her guidance
in completing this endeavor.

Author

Dr. Phillip A. Laplante is associate professor of software engineering and a member
of the graduate faculty at the Pennsylvania State University. He is also the chief
technology officer of the Eastern Technology Council, a nonprofit business advocacy
group serving the Greater Philadelphia Metropolitan Area. Before joining Penn State,
Dr. Laplante was a professor and later senior academic administrator at several other
colleges and universities.

Prior to his academic career, Dr. Laplante spent almost 8 years as a software
engineer and project manager working on avionics (including the space shuttle),
CAD, and software test systems. He has authored or edited 15 books and more than
100 papers, articles, and editorials. He co-founded the journal Real-Time Imaging,
which he edited for 5 years, and he created and edits the CRC Press book series on
image processing.

Dr. Laplante received his B.S., M.Eng., and Ph.D. in computer science, electrical
engineering, and computer science, respectively, from Stevens Institute of Technol-
ogy and an M.B.A. from the University of Colorado. He is a senior member of the
Institute of Electrical and Electronics Engineers (IEEE) and a member of numerous
professional societies, program committees, and boards. He is a licensed professional
engineer in Pennsylvania and has provided consulting services to Fortune 500
companies, the U.S. Department of Defense, and NASA on real-time systems, image
processing, and software engineering. Dr. Laplante also serves on the boards of
several privately held companies.

Contents

Chapter 1 Software Engineering: An OVEIVIEWcccoceevuerieniineenenieneneenennne 1

L1 INEOAUCHION ..ottt sttt et 1
1.2 A Case for a Software Engineering Approach to Building

IMAgING SYSTEIMScouviiiiiiiieieeiteeet ettt sttt 2

1.3 The Role of the Software Engineer...........c.cceeereevenienenienenienenieneeecnenn 3

1.4 The Nature of Software for Imaging Systemscccccocevvvevercienenvieneenienennn 4

1.5 Case Study: A Visual Inspection SYStemccccevereererienienienensieneeieneenns 5

1.6 Misconceptions about Software Engineering..........cccccveeevenerieneniencnnecnene 7

L7 EXEICISES .eeeutiiieiieiieieettet ettt ettt ettt st ettt sttt ettt ettt et be e 8

Chapter 2 Imaging Software and Its Propertiesc..coccvverevvenienienieenscncnennenn 9

2.1 Classification of Software QUAlItiescccueeervieeeiiiieriieeeiie e eeree e 9

2.1.1 ReHADIELY ceveuieiieiieiiieieee ettt e 9

2.1.2 COTTECNESS ..ottt ettt ettt ettt st et 12

2.1.3 Performancec..coceeiecienieniinieninieneeieieereseere et 12

2,14 USADIILY c.eouveiieiieiieiieeeee ettt 13

2.1.5 INterOPerabilitycccccocuiiriiniiiiienieeiee ettt 13

2.1.6 Maintainabilityccccooeerieiiiiiieeeee s 13

2,17 POTLabIlity ..eeevieiiieiieiieeteee ettt 14

2.1.8 Veriflabilityccceieuirieiiiincrieniisi et 14

2.1.9 Summary of Software Properties and Associated Metrics................ 14

2.2 Basic Software Engineering PrinCiplesccccoecuervieniiensieinienneenieeceneens 15

2.2.1 Rigor and FOormality.........cceceevieniiiriiiinienienieeieenee et 15

2.2.2 Separation Of CONCEINS.....cccueervierierriierienieenteenieenteesieeseesbeesieesaeees 15

2.2.3 MOAUIATILY ..eeutieiiiiiieiieeteee ettt et st 15

2.2.4 Anticipation Of Change.........cccccevvuerriiiriieriiienieeieenieeeesee e 18

2.2.5 GENETANILY ..eevuviiiiiiiieiieete ettt ettt et es 20

2.2.6 INCTEMENLAIILY.....veeiieriiieiieeie ettt et st 20

2.2.7 Traceability.....ccocueerieriiiiieeie ettt ettt 20

2.3 EXEICISES..ueeuiiruiiierieiieiieeiteteett ettt ettt ettt ettt et e 22

Chapter 3 Software Process and Life Cycle Modelsc.cceevveneereecienncnnenne. 23

3.1 Software Processes and MethodolOgiesccceveeveirienenieneiieneeieeeene 23

3.2 Software Life Cycle MOdeIS.......cccoeiirieiiieienieieseeiesteee e 23

3.2.1 The Waterfall Modelcccooiiiirieiieieieeeee e 24

3.2.1.1 Software CONCEPLiONccceerveereerreeieeriesieeienieeie e eeeseeenees 25

3.2.1.2 Requirements Specificationcccceeceereeeeneereeneereeneenne. 25

3.2.1.3 Software Desigh.......ccccevevveririneneninienieieeeieeeeeeeeseeaeas 26

3.2.1.4 Software Development.........c.ccoccverervenienienieneeceerenenenennens 26
32,15 TESHNZ .ceeieieieiieiieeeeeteee sttt ettt 27
3.2.1.6 Software Maintenanceccceeeerueeeeseeeeneeeeeneeeeseeenees 27
3.2.1.7 Backtracking Transitions in the Waterfall Life
CYCLE ettt s 27
3.2.1.8 Waterfall Model SUmMmMaryc..coceevevueruenvecieneenenenennns 28
322 VMO ..ottt 28
3.2.3 The Spiral Modelccoceriririninininienienienctcreteeeeeteeeeee e 28
3.2.4 Evolutionary Modelccceceriminirininenineiceieeeeeeeeeeeeseneens 30
3.2.5 Incremental Modelccoooeiiiiiiiiieieieeeee e 31
3.2.6 Fountain Modelccooouiiiiiiiiiiieieieeeee e 31
3.2.7 Lightweight MethodolOZIescccecerirrinieniinienieieieieieeeeeeeceenees 32
3.2.8 Unified Process Model..........ccccoeriririiniinieieseeeeeee e 34
3.2.9 Capability Maturity Modelcccceceririneninenienienieieieeeeeeecnennens 34
3.29.1 CMM-1: Initial...cccoererineniniicienicicieeeeceececeeeese s 34
3.29.2 CMM-2: Repeatablecccceoeiiiiiniiiiiiiieeccceeeee, 34
3293 CMM-3: Definedcccecereriruinieneniieienieeeeeeeeeeeeneenens 35
3294 CMM-4: Managedcoceveruemrenienenienienieeeeeeeeeeeesennens 35
3.2.9.5 CMM-5: OptimizZing......cccevveruirrerenenienienieeeeeeeeeeeenennens 35
3296 CMM-L .ottt 35
3.2.10 Prototyping and RiSKcc.cccceeeriririnininineniciceiceeeeeeceeecsenneas 35
3.3 Software Standardsceccoeieiiiieiieeee e 36
3.3.1 DOD-STD-2160TA ..cooiiieieiririeieeenesteeesiesteteteteeeeee et seeas 37
3.3.2 DOD-STD-498 ...ttt sttt ettt et 37
3.3.3 ISO 9000-3 ...ttt sttt ettt 38
3314 ISO/IEC ...ttt sttt ettt ettt 39
B4 EXCICISES..eeutiuietieuieteete st etesteete et e ete et te b e esee bt ene e bt eneesseeneesseeaesaeensesneeseeneans 40
Chapter 4 Software ReqUIrementscoceeoeriererienenrieneeneneeneneene e 41
4.1 Requirements Engineering Processcocceceveenirienenienenicneeeneeieeeen 41
4.2 Types of REQUITEMENEScooueriieriiriiienienieeie sttt 42
4.3 Requirements USEIScccceererierienieniinienieetesieetesieentesitesiesite st einesieesae e 43
4.4 Formal Methods in Software Specificationccccevevvierervienennieneeniencenn 44
4.4.1 Limitations of Formal Methods...........ccccccovininininininenniiinenene, 45
A2 Z s 46
4.4.3 Finite State Machines..........ccccceevveiririninininieniencicreeeeeeeeee e 46
444 StateChartsc.cocevvieieiieieieieecee s 49
445 Petrl NEtS..oouiiiiiiiiiiiieiceeeeceeet s 51
4.5 Specification of Imaging Systems: A Survey of Current Practices.............. 53
4.5.1 Multiresolution Block-Matching System Specification
Using a Block Diagram and Flowchart..........ccoceverveniiicnnncnnne 55
4.5.2 Collision Testing of Graphical Objects Using Pseudo-Code............ 56

4.5.3 Functional Representation of Machine Vision System
Using a Structured Approach..........ccccoeceevereenenienenienenienecieneenn 56

4.5.4 Markov Random Fields Image Reconstruction Using

Object-Oriented DeSigncceeveruieiiirieiieiee et 57

4.0 CASE STUAY..cvioverertititeieieteteteeet ettt ettt ettt ettt ettt et saee 58

4.6.1 Structured Analysis and Design........ccccocevverinenenenienicneneninenceenne, 59

4.6.2 Structured ANALYSIScoveeveriereieinieeneeene sttt 59

4.7 Object-Oriented ANALYSIS......ccccvererierieieeieie ettt 61

4.8 Object-Oriented vs. Structured Analysiscoceeverererenenenenieneeeeeeneenens 62

4.8.1 Recommendations on Specification Approach for

IMaging SYSIEMScccueeuieiieieiieieete ettt 64

4.9 Organizing the Requirements Documentccccoeevevenieneenienieneeenenennens 64

4.9.1 Writing Good ReqUIrements...........c.ceceeererrenreneneeneenieneeeeeeeeeeennes 66

4.10 Requirements Validation and ReVIEWccoeceevirieniiiieiieieneeeseeen 67

4.11 Some Surprises about Current Software Specification Practices.................. 68

Z I I 0 o) o T USSR 68

4 11.2 SUIPIISE 2 ettt ettt ettt sttt et e e et e e eae ettt esaeeneesaeeneas 68

4113 SUIPTISE 3 oottt sttt ettt 68

11,4 SUIPTISE 4 ..ottt sttt ettt 69

412 EXOICISES.c.ueeueieuierteeieetieieeteeste et ettt et ettt e e s et e eesaeebesntebeeneesbeenaeeaeeneeeneenes 69

Chapter 5 Software System Design........cocueverieririiininiienieieneeetee e 71

5.1 The Design ACHIVILY .c..couevuerieiiieieieieieeetetee e 71

5.2 Procedural-Oriented Design.........cccecueiririniinininineneneieeeeceeeeeeeeeee 72

5.2.1 Parnas Partitioningccccecevivirerinenenienieieieierereeeeeeee e 72

5.2.2 Structured DeSiZh......cceeviirieniirieiiiienieeteeeeseeee et 74
5.2.2.1 Transitioning from Structured Analysis to

Structured Design......c.cceeeiereeniiriinenienenieeeeeeeee 74

5.2.2.2 Data DICtIONAIIESc.ceverueruieiirienieieieierereieeeeeeeeee e 76

5.2.2.3 Problems with SASD in Imaging Applications.................. 77

5.2.2.4 Real-Time Extensions of SASD.......ccccccccevevnvinvnvninnne. 78

5.2.3 Design in Procedural Form Using Finite State Machines................. 78

5.3 Object-Oriented DeSiZNccceeviriiririeniiienieieneeeseeeetee et 80

5.3.1 Benefits of Object Orientation..........ccoceeveereerieneenieneeneneeneeeeneenees 81

5.3.1.1 Open—Closed Principlecccooereenerienenienenieneeienene 81

5.3.1.2 Once and Only ONCecoceevueereireenienienienienieeieseeeeeenne 82

5.3.1.3 Dependency Inversion Principle........c..ccocevvenervieneniennnne. 82

5.3.1.4 Liskov Substitution Principlecc.ccocevereenciiennncnnne. 82

5.3.2 Design Patternsc.ccoceevierieniinieniiiienieeteieeesi ettt 83

5.3.3 Object-Oriented Design Using Unified Modeling Language............ 84

5.3.4 Modeling Time EXPICItlY......ccocerirvieneniiiniiiinieicneeeeeeceeeenee, 84

5.3.5 Visual Inspection System Case Studyc..cccceveevenieninieenenneenennne. 88

5.4 Hardware Considerations in Imaging System Designc..ccocceceereeniencnnee. 93

SA.1 PIOCESSOIS ...couviuiiiieiieiieiieiieie sttt sttt ettt 94

5.4.2 Non-von Neumann Archit€Cturesccoeevevuerueneeveeeneeeeeneneenene. 95

5.4.2.1 Single Instruction Single Dataccoccevervienervienenniennnn. 95

5.4.2.2 Single Instruction Multiple Data..........cccccecuenirviininnicnnnne 95

5.4.2.3 Multiple Instruction Single Data........ccccceeveveeveeircencnnenne. 96

5.4.2.4 Multiple Instruction Multiple Datacc.cceceeveevrercnnenne. 96

5.4.3 Interrupt Handling........ccccoceeerinininineneniciciecceeeeeecececeene 96

544 MEIMOTY ..ottt 97

5.4.5 Input and OULPUL.......ccceeeriririininirinteereteteeeeeeeeee et 97

5.5 Fault-Tolerant DesigN........ccccovevuerieieiriririninenenteseneeseeteeeeee et 99
5.5.1 Spatial Fault TOlerance..........c.cceccveruerenenenienienienieieieeeeeeeeeeenenes 99

5.5.2 Using a Kalman Filter in the Case Study Systemccccccceceeuenenne. 99

5.5.3 ChECKPOINLS ...coveeviruiriirteieieieieteeetet ettt 102

5.5.4 Recovery BIOCKSccceririirieieieieiiinieeneneseceecee e 102

5.5.5 Software Black BOXES......ccceevieruiriiinieienieeeeee e 104

5.5.6 N-Version Programmingccccoeeveeveveeneninenenenenieneneneennennens 105
5.5.6.1 Built-In Test SOftWareccccceveererienereererieeeeene 105

5.5.6.2 CPU TEStNZ .ccueeueruirririenieriintenienientetereeeeereeeneeneeeeaeenens 106

5.5.6.3 Memory TeStiNg.....cccevereruirienerenienienieieieiereeeeeeeeenees 106

5.5.6.4 Other DEVICESc.eeviruieiieeieiieiieieeiesee et 107

5.0 EXCICISES...ieuiiiieiieiieieei ettt ettt sttt sttt st n et 107
Chapter 6 The Software Production Process.........ccccevvvierienciieniencieenieeieennen. 109
6.1 Programming Languagescccceuevvevirieieininieniieinenieeeeseeseevene e 109
6.1.1 Parameter Passing Techniques..........ccccccecveviririninicninicnicnicnieienns 110

6.1.2 Call-by-Value and Call-by-Reference..........c.cccocevviereroiininnienennncnne 110

6.1.3 Global Variablesccceeerieienieieiiieieieinceeese e 110

6.1.4 RECUISION.....ccuiriiiiiriiititeietcteetetee et 111

6.1.5 Dynamic Memory AIlOCAtIONccceevuereererienierienienienieeeesieeeene 111

0.1.0 TYPINE..eiuiiiiiieiieeteetet ettt sttt 112
6.1.7 Exception Handling..........ccccecueveriiiniiniiiiniiienenteeeeeeeeseeeee 112

6.1.8 MOAUIATILY ..cuveiieiiiiieieniieieeceete e 113

6.1.9 Brief Survey of Languagescccccoceevereenenienenienenienieeeeseeeee 114
6.1.9.1 Ada O5...coiiiii 114

6.1.9.2 Assembly Language.........cccccoevveenirniinenninennenicieneeene 115

6.1.9.3 Caae e 115

6.1.9.4 CHa e 116

6.1.9.5 FOItran......ccccoeviriviniiiniiiceeseceeeeee e 116

6.1.9.6 JaVaA..ciiiiiiiiiie e 117

6.2 Writing and Testing Code........ccceveeviiriinierieniiienerteeeteeete e 118
6.2.1 Example: The Unix/Linux C Compiler.......c..ccocevviererienenveenennnenne 119

6.2.2 Handling Compiler EITorscccccoveeviiienenienenieneneneeieeeeee 120

6.2.3 Some Debugging Tips: Unit-Level Testingcccccoceeevereevienennnenne 120

6.2.4 Extended Syntax and Semantic Checking..........cccccovevvverenvienennnenne 120

6.2.5 Symbolic Debugging........c.ccccevuerieniniiineiiiniieneeeeeeeeeeene 121

6.2.6 Test-First Coding.......ccccevueririiniriiniinie ettt 122

6.2.7 Know the Compiler.........ccoceeieriiiiiniiniiiieiieiecteeeeeeeseee e 122

6.3 Coding Standardscoceeeereriininienie e 123

6.4 ReVIEWS aNd AUGILS.....coovviriiiiieiieieee ettt e et eeeeiaae e e e eeans 124

0.5 DOCUMENLALIONuvvviiiiieiiiieeeeeceiieee et eeee e e e e et e e e e e esnaeeeeeessnsereeessennes 126

6.0 EXCICISES...eeuiiiieieeiieieci ettt ettt sttt sttt sttt 127
Chapter 7 Software Measurement and Testing.........c..coceevveveeneneeneniencneenne. 129
7.1 The Role Of MELIICS ...cc.eeriiriiiieiiiieeienieeie ettt 129
711 Lines Of COde....ccueiuieiiniiiiiniieiieitenteteseee et 129

7.1.2 McCCabe’s MEIIIC...c..ccuerutiiieiieniieieniteie sttt ettt 130
7.1.2.1 Measuring Software Complexity.......c..ccocereerereereneennens 130

7.1.2.2 Determining the Limit on Number of Test Cases 132

7.1.3 Halstead’s MEtriCs.....cceeuiruirieniiriinienie ettt 132

7.1.4 Function POINEScc.eeoiiiiiiiiniiniiiienieteneeeeeesceese e 133

7.1.5 Feature POINLS.....cc.cociiviiiiiiiiienieeieseee ettt 137

7.1.6 Metrics for Object-Oriented SOftware.........ccccoveevverereieneesieneennenne 137

7.1.7 ODbjections t0 MEIIICS...c..ceruerierierierieeie ettt ettt 138

7.2 Faults, Failures, and Bugs........ccccooceeviriiniiiiniiieeiieeceeceeesieeeee 138
7.3 The Role Of TESHNG ...cc.veriiriiiiiiiiieierieee ettt 139
7.4 Testing TeChNIQUEScceeruiriiriiiiinieeieecee ettt 139
7.4.1 Unit-Level TeStING.....cocevteriirieriiiinienie ettt 139
7.4.1.1 Black BOX TeStiNgccccecereenirieniinieneeieneeieneeesieeens 139

7.4.1.2 White BOX TeStiNgccceevverieririeniirieneeieneeieneeiesieeene 141

7.4.2 Testing Object-Oriented SOFtWArecceverienerienenienieeieneeene 142

7.4.3 System-Level TeStiNg.......ccceevuereriiirieniniinientenerteseeeesieeeeseeee e 142
7.4.3.1 Cleanroom TeSting........ccceeceervereenernieneerieneeneneeieseenens 143

T.4.3.2 Stress TeStNZ ..ccvevieiirieriinieieteneetescee e 143

7.5 Design of Testing Plansccccocevieviineininieniiieenteeeteeeeceee e 144
Ti0 EXEICISES...eeuiiiieniiiiieieeiteteeetee ettt sttt sttt sttt ettt 144
Chapter 8 Hardware—Software Integration and Maintenancecceuee.e. 145
8.1 Goals of System INteGrationceveeriieriieriierniieiieeee et 145
8.2 System UNIfiICAtIONccueeviiiriiiiieniiieieesie ettt sttt 145
8.3 System VerifiCationccecueevieriiinienieeiienieete sttt 146
8.4 System Integration TOOILSccceeriiiriiniiiiiienieeee et 146
841 MUIMELEToviiniiriieiiiteieetereeee ettt ettt 147

8.4.2 OSCIIOSCOPE ..coevieiiiiiieiiieiteete ettt ettt ettt ettt st e b e saee e 147

8.4.3 L0ZIC ANALYZET ...cciuiiiiiiiiiiiieeieeiteste ettt s 147
8.4.3.1 Timing INStruCtiONS.......eevvieriiiiiirieeienieeeeee e 148

8.4.3.2 TimING COde ...cccuveviieiiiiiieiieiitereeeieesee et 148

8.4.4 In-Circuit EMUlator........ccccoceririiiniriieniiiinieieneeeeeee e 149

8.4.5 Software SIMUulatorS........coccecuereerieririienieienieeneeeee e 149

8.4.6 Hardware ProtOtyPes.......ccocveeeieiriierieeriienieenienieenieesieeieesieesiee e 149

8.5 Software INteZration........c.cevieeriieriienienieeiteeie ettt e 150
8.5.1 A Simple Integration StrateZyccceeveervveereeriueenieniieeneesrieeneenne 150

8.5.2 PatChiNg .c..ceiiieiiiiiiecieee et 150

8.5.3 The Probe Effectccovvviiiieiiieiiieeeeeee e 152

8.6 Postintegration Software Optimization..........c.cccceceeerervererenenenenrenrennennes 153
8.6.1 CPU Utilization EStimationccecceveeiienieneeieneeiene e 153

8.6.2 Execution Time EStimation...........cccceeerieienieninieneeiese e 154

8.6.3 Scaled NUMDETSccceruieiiiieieeieeee e 154

8.6.4 Binary Angular Measure..........cceceverienieeiienieeieeieeeeieeee e 155

8.6.5 LOOK-UpP Tables......ccecueiririririniinenenienteniestetereeeeeeeeeeeie e 155

8.6.6 Imprecise COMPULALIONcc.evverververeeeeieieieieeene ettt neereeeeeneenns 157

8.6.7 Optimizing Memory USageccccoevveeeiririreneniinenieneereneeneeeenns 157

8.7 A Software Reengineering Process Model............ccecevieiininiininnencene, 157
8.8 A Maintenance Process Model..........cccooiiiiiinieiiniiieee e 158
8.9 SOftware REUSEcoeeviiiieiieieeee e 159
8.9.1 When NOt t0 REUSE.....cocueiriiiiiiiiiieeeieeeec e 160

8.9.2 Achieving REUSEcceeciriruiriririinincneececccceceeeeee e 160
8.9.2.1 In Procedural Languages..........cccccocevuiriiiininciinneneennn. 161

8.9.2.2 In Object-Oriented Languagescccevervevrervenvenueuennene 162

8.9.2.3 Pareto’s PrinCipleccccceeervererinininineneniieiesieeeienene 162

8.10 The Second System Effect........c.covevereiiiiiineinininiiinnccecneeceeenes 162
8.11 Code and Program Maintenance..........cccceceeerueeererenrenenienienueneeneeeeneeeenens 163
812 EXCICISES..eeuveeuteuieieeuteteeitesteeite bt e te bt et e ete et e eatebesstenbeemeesaeentesbeenteeneenseeneenes 163
Chapter 9 Management of Software Projects.......c..cccceeveeverieeneniencnnencnnene. 165
9.1 Why Software Project Management?...........ccccceoeevervienerienensieneesieneeneenne 165
9.2 Software Project Management Themes........cc.ccocevervieninieniniienienicneeiene 166
9.3 General Project Management BasiCs.........c.cceverienerieninieniniienieieneeiene 166
9.3.1 What Does the Project Manager Control?c..ccoceeeveveevveneenuenne 166

9.4 Software Project Management...........cceceevuereeriinienenienienieneeieniceeesieeeene 167
9.5 Managing and Mitigating RisKScccceviriininiininiiniieneeeceee 168
9.6 Personnel Managementcocueveeviireenierienienienienteneeetenieete et 169
9.6.1 The n-Body Problem...........ccccooirviininiininiiniiienieeneeeneeeeene 170

9.6.2 Some Approaches to Leading Teamscc.cceceeverierencienienceenenneenne 171
9.6.2.1 TREOTY Xi.ooiiiiiiieiieiieieeteeeee ettt 171

9.6.2.2 TREOTY Y ettt 171

9.6.2.3 TREOTY Z .ottt 171

9.6.2.4 TREOTY W oottt 172

9.6.3 Principle-Centered Leadership........ccooceveenerienenieniinnicninienceene 173
9.6.3.1 Management by Sight......c..ccocerviiniriininniniininiiienieene 173

9.6.3.2 Management by ObJectiVesccoceevuererreireenieneenieneennens 173

9.6.4 Dealing with Difficult Peoplec..ccocerierinieneniininicnieicneeiee 174

9.7 Assessment of Project Personnel...........ccoccocceviiiininniininiininnienieienceee 174
9.7.1 SKIlIS TSN ..c.veeuteiieiiniieieeitenieete sttt sttt sttt 174

9.7.2 Recommended PractiCesccccoueeuevienieinininininenienicieeieienns 175

9.8 Tracking and Reporting Progressccooeveererienenienenienenieniceiesieeeene 177
9.8.1 Gantt Chart.......ccceviruiriiiiiiieieieieetee et 177

9.8.2 Critical Path Method..........cccccueviiiiiiiiiiiiininicccceee 178

9.8.3 Program Evaluation and Review Technique...........c.cceceveeuincnnnnnne 179

9.9 Cost Estimation Using COCOMOcccecerereririnenenenrenieneeeeeeeeeeneenes 180

9.9.1 Basic COCOMOooooiiiiiiiiieeeieee ettt 180
9.9.2 Intermediate and Detailed COCOMOcccoouvriiiieiiereeeieiieeeeeenne 182
9.9.3 COCOMO II ...ttt 183
D10 EXEICISES . .uuuuveiiiiiiieiieeeeeieteeeeeeeettee e e e eeeaee e e e s e eaareeeeeesateeessssasseeeesssssseeessanes 183
GLOSSATY ..ottt et st e e be et e e be b e enbeenaeeenrees 185
REFEIEIICES ...t e et et e e et e e enneeennees 203

’I Software Engineering:
An Overview

Nothing is more terrible than activity without insight.

Thomas Carlyle

1.1 INTRODUCTION

A 2002 study by the National Institute of Standards Technology (NIST) estimated
that software errors cost the U.S. economy $59.5 billion each year. The report noted
that software testing could reduce those costs to about $22.5 billion. Of the $59.5
billion, users paid for 64% of the costs and developers 36% (NIST, 2002). What
proportion of these findings can be attributed to software in embedded imaging
systems or support software related to those systems is unknown. Clearly, however,
detection and elimination of software errors are of great concern to users and vendors
of software for imaging applications.

A formal engineering framework is essential in the development of reliable,
maintainable, and cost-effective software systems. It is the goal of this text, therefore,
to show how an engineering framework for the specification, design, developing,
testing, maintenance, and documentation of software can ultimately reduce the cost
of software and improve its quality.

Many practicing software engineers have little or no formal education in software
engineering. While software engineering is a discipline in which practice and expe-
rience are important, it is rare that someone who has not studied software engineering
will have the skills and knowledge needed to efficiently build industrial-strength,
reliable software systems. Shortages of trained software engineers in the 1980s and
1990s led to aggressive hiring of many without formal training in software engi-
neering. This situation is commonly found in companies building imaging applica-
tions, where typically engineers were trained in image processing, electrical engi-
neering, physics, optical engineering, and so forth, but not software engineering.
While these engineers are perfectly capable of building working systems, unless a
deliberate software engineering approach is followed, the cost of development will
probably be higher than necessary, and the cost of maintaining the system will
certainly be higher than it ought to be.

2 Software Engineering for Image Processing Systems

1.2 A CASE FOR A SOFTWARE ENGINEERING
APPROACH TO BUILDING IMAGING SYSTEMS

It is important to heed best practices of software engineering when building imaging
systems. Failure to do so can lead to significant problems in the software product.
Lack of software requirements, poorly written requirements, failure to design for
test, poor design of software, and improper or insufficient testing and documentation
are all typical symptoms of poor software engineering. Managers, engineers, and
even customers often excuse these practices by citing pressures to market, high cost-
to-benefit ratio, and (unfulfilled) promises to go back and fix things later.

These oversights can be exacerbated when the prototype system is commercial-
ized, at which time it is generally cost-prohibitive to go back and correct the
problems. Poor software engineering practices early in the project can plague the
system long after it is deployed, costing time, money, and reputation. Therefore,
making an early commitment to good software engineering practice can pay huge
dividends throughout the software life cycle.

There are several thematic problems that can occur within the software life cycle
of systems:

1. Failure to document code is pervasive in industry. “My code is self-
documenting” is a familiar protest, along with “I had to work hard to
design the algorithm; therefore, others should work just as hard to under-
stand it.” The reality is that it simply is not possible to make a nontrivial
algorithm, such as those found in imaging applications, easily understand-
able to every reader of the code.

2. Certainly, code reuse is a wonderful and economical practice when fol-
lowed correctly. No one wants to rewrite a module that is thought to work
perfectly, and many persons feel unable to challenge the assumptions or
the reputations of others. When software is reused indiscriminately and
without proper testing and documentation, however, numerous problems
can occur, and these are very hard to detect.

3. It is an engineer’s nature to anticipate needs and to provide for them.
When developing software, it is often believed that more is better — there
is always a way to use these unneeded features later. Gold plating — that
is, adding unnecessary features — can lead to memory and time over-
loading problems and should be avoided.

4. Perhaps the greatest of these problems occurs because of the eagerness
to bring the software to market. Of all the symptoms of poor software
engineering, this is the one that management is most likely to condone.

5. Excess code and overengineering of algorithms is a bad engineering habit.
Engineers want things not only to work but also to be a monument of
ingenuity. Nevertheless, parsimony and elegance, without sacrificing clar-
ity, are essential requirements for the maintenance of a software system
through personnel changes over a long period of time.

6. Failure to test the software sufficiently or to test without documentation
can lead to unreliable systems. Insufficient testing can also foster latent

Software Engineering: An Overview 3

problems that will emerge later in the life of the system when sections of
the code are stressed by expert users. Failure to document testing proce-
dures or to develop a coherent test plan can make it difficult or even
impossible to test a system as new features are added later.

7. Engineering can get personal. Team members stop talking to one another
or set about outright sabotage. This is a management problem, but after
all, much of software engineering falls more rightly into the realm of
management than engineering.

Of course, these problems and their resolutions will be discussed throughout
the text.

1.3 THE ROLE OF THE SOFTWARE ENGINEER

The production of software is a problem-solving activity that is accomplished by
modeling. As a problem-solving, modeling discipline, software engineering is a
human activity that is based upon previous experience and is subject to human error.

Modeling is a translation activity. The software product concept is translated
into a requirements specification. The requirements are converted into a design. The
design is then converted into code, which is automatically translated by compilers
and assemblers, which produces machine executable code. In each of these transla-
tion steps, however, errors are likely to be introduced either by the humans involved
or by the tools they use. Thus, the software engineer must strive to identify these
likely errors and to avoid or fix them.

Software engineers should also strive to develop code that is built to be tested,
designed for reuse, and ready for inevitable change. Anticipation of problems can
only come from drawing upon a body of software practice experience that is more
than 50 years old.

Software engineers probably spend less than 10% of their time writing code.
The other 90% of their time consists of involved activities that are generally more
important than writing the code. These activities include:

Eliciting requirements
Analyzing requirements
Writing software requirements documents
Building and analyzing prototypes
Developing software designs
Writing software design documents
Researching software engineering techniques or obtaining information
about the application domain
8. Developing test strategies and test cases
9. Testing the software and recording the results
10. Isolating problems and solving them
11. Learning to use or installing and configuring new software and hardware
tools
12. Writing documentation such as user’s manuals

Nk L=

4 Software Engineering for Image Processing Systems

13. Attending meetings with colleagues, customers, and supervisors
14. Archiving software or readying it for distribution

This is only a partial list of software engineering activities. These activities are
not necessarily sequential, and they are not all-encompassing. Finally, most of these
activities can recur throughout the software life cycle and in each new minor or
major software version. Many software engineers specialize in a small subset of
these activities, for example, software testing.

1.4 THE NATURE OF SOFTWARE FOR IMAGING
SYSTEMS

An imaging software system is a multiple-input multiple-output system involving
specialized hardware and software. Often, humans are involved in making inputs,
and hence control information to the system. If a system does not provide a direct
interface to the human user, however, it is said to be embedded. For example, a
vision system used in the navigation of an autonomous vehicle is embedded.

The typical configuration for a control system featuring imaging devices, sen-
sors, and actuators is shown in Figure 1.1.

While it is possible to model the camera input as just another sensor or the
display device as simply the target for a set of control signals, it is probable that
this simplification is unacceptable in many cases. Sensor inputs and control signals
are often a single wire, differing significantly from the information that must be
exchanged with imaging devices.

But there are other compelling reasons why imaging systems are different from
other kinds of systems, and they are related to the existence of the following volatile
components:

n ,/

@ Camera Input Display Data
—_——> ——
Sensor
Sensor 2
Computer Control Signal /
I
System

Control Signal 2
———

L]
Sensor n

Control Signal n

FIGURE 1.1 A typical imaging system. (From Laplante, P. and Neill, C., A Class of Kalman
Filters for Real-Time Image Processing, paper presented at Proceedings of the Real-Time
Imaging Conference, SPIE, Santa Clara, CA, January 2003, pp. 22-29.)

Software Engineering: An Overview 5

1. Interchangeable algorithms for critical operations (e.g., compression and
decompression, filtration, enhancement, and display)

2. Rapidly changing underlying hardware (e.g., displays, cameras, and

storage)

Significant hardware and software reuse

4. Legacy and off-the-shelf software that have not been developed using
rigorous software engineering approaches

e

While these characteristics are often found in other kinds of embedded systems,
they are pervasive in imaging systems.

1.5 CASE STUDY: A VISUAL INSPECTION SYSTEM

For the purposes of illustration, this text uses a fairly detailed example of an
embedded imaging system throughout. The example is adapted from Thomas et al.
(1995) and Poling (2002) and is of an industrial automated visual inspection system
(VIS). Visual inspection is an interesting case since it represents a simple intuitive
example of an embedded system where the temporal performance is dictated by the
operating environment rather than by the computer system itself.

A typical setup is shown in Figure 1.2. The system includes an input source,
optics, lighting, a part sensor, a frame grabber, a PC platform, inspection software,
digital input and output (I/O), and a network connection and some positioning
mechanism — either a conveyer system, as shown, or an X-Y positioning table.

The input sources usually consist of one or more cameras and optical systems
that take one or more images of the part being inspected. Depending on the appli-
cation, the cameras can be standard monochrome, RS-170/CCIR, composite color
(Y/C), RGB color, nonstandard monochrome (variable scan), progressive scan, line
scan, or custom charge-coupled device (CCD) arrays.

Camera

lllumination
Source > I:'

Reject Mechanism

Products on conveyor

Direction of Travel

FIGURE 1.2 An automated VIS. (From Laplante, P.A. and Neill, C.J., J. Electron. Imaging,
12, 252-262, 2003.)

6 Software Engineering for Image Processing Systems

A frame grabber or video capture card interfaces the imaging units to a host
computer. The frame grabber takes the image data provided by the camera(s) in
either analog or digital form and converts them to an appropriate format for the host
PC. A frame grabber can also provide signals to control camera parameters such as
triggering, exposure time, and shutter speed. Frame grabbers come in various con-
figurations to support different camera types as well as different standard computer
buses such as Peripheral Component Interconnect (PCI), Industry Standard Archi-
tecture (ISA), and Universal Serial Bus (USB).

An X-Y positioning table or conveyor automates the process of acquiring images
of multiple samples. The table or conveyor moves a predetermined distance after
each image is acquired to properly position the next object or specimen in relation
to the camera. The majority of X-Y tables have rapid, smooth movement that
minimizes image distortion, although spatial positioning error can be of great con-
cern. Movement along the conveyor, placement of the product on the conveyor,
positioning of the camera, and lighting variability can all introduce image capture
error, which must be accounted for in any inspection algorithm.

For maximum efficiency, a light barrier or sensor triggers a signal when it senses
that a part is in close proximity. The image is then captured. Upon capture, the
images are preprocessed and then classified, using an appropriate feature-matching
algorithm, as “pass” or “fail” by the system. Defective products are removed from
the conveyor by the reject mechanism.

The sampling speed is critical for testing. The amount of time needed to inspect
each component or part will present significant real-time image processing concerns
such as deadline satisfaction and synchronization. Often PC-based vision systems
can inspect 20 to 25 components per second, depending on the measurements and
operations required for each part and the PC used.

The inspection system is to be designed to be adaptable to a wide range of
applications. Typical applications might include:

» Inspection of freshly picked fruit for defects such as rot or insect damage

» Inspection of light bulbs for soldering defect or glass bulb damage

» Inspection of baked cookies for breakage or over- or underdoneness

* Examination of a continuous skein of textiles for weaving defect

* Examination of bottled pasta sauce for proper portion, sealing, and label
placement

* Examination of packaged prepared vegetables for foreign matter

» Inspection of integrated circuit boards for track defects

* X-ray inspection of airline baggage for contraband or dangerous items

This is a very short list that can easily be expanded to include other applications
in many other problem domains.

The VIS is to be designed so that to adapt to the different application domains,
only a few software units need to be modified. The only potential physical system
changes involve the lighting, camera, conveyor speed, and reject mechanism. The
software needs to be designed so that users can change the hardware configurations in

Software Engineering: An Overview 7

a plug-and-play fashion; that is, the software will detect the appropriate hardware and
adapt to it. The system also needs to support different pattern recognition algorithms.

Design of such a flexible and robust system requires sound software engineering
practices, which will be illustrated in subsequent chapters.

1.6 MISCONCEPTIONS ABOUT SOFTWARE
ENGINEERING

There are many misconceptions about what software engineering is and what it is
intended to do. Often practitioners of “hard” engineering disciplines such as mechan-
ical or electrical engineering view software engineering dimly or not as an engi-
neering discipline at all. This perception could be partly because there are no
fundamental physical laws governing the practice of software engineering, as there
are in mechanical, electrical, civil, etc., engineering. More likely, however, the reason
that software engineering does not always get the respect it deserves is that it is
often not practiced as an engineering discipline and the barriers to “practicing” it
are considered to be too low. Anyone can call himself a software engineer if he
writes code, but as will be seen, he is not usually practicing software engineering.*

Some misconceptions about software engineering and their brief rebuttals follow:

1. Software system development is primarily concerned with programming.
As previously mentioned, 10% or less of the software engineer’s time is
spent writing code. Someone who spends the majority of his or her
time generating code is more aptly called a programmer. Just as wiring
a circuit designed by an electrical engineer is not engineering, writing
code designed by a software engineer is not an engineering activity.
2. Software tools and development methods can solve most or all of the
problems pertaining to software engineering.

This is a dangerous misconception. Tools, software or otherwise, are only
as good as the wielder. Bad habits and flawed reasoning can just as
easily be amplified by tools as they can be corrected. While software
engineering tools are essential and provide significant advantages, to
rely on them to remedy process or engineering deficiencies is naive.

3. Software productivity is a function of system complexity.

While it is certainly the case that system complexity can degrade produc-
tivity, there are many other factors that affect it, including stability,
engineering skill, quality of management, and availability of resources
to name a few.

4. Once software is delivered, the job is finished.

Of course, this is not true. At the very least, some form of documentation
of the end product as well as the process used needs to be written.
More likely, the software product will now enter a maintenance mode

* At this writing, one notable exception involves the requirement of professional licensure for those
practicing software engineering in New York State.

8 Software Engineering for Image Processing Systems

after delivery, in which it will now experience many recurring life
cycles as errors are detected and corrected and features are added.
5. Errors are an unavoidable side effect of software development.

While it is unreasonable to expect that all errors can be avoided (as in
every discipline involving humans), good software engineering tech-
niques can minimize the number of errors that are delivered to a
customer. The attitude that errors are inevitable can be used to excuse
sloppiness or complacency, whereas an approach to software engineer-
ing that is intended to detect every possible error, no matter how
unrealistic this goal may be, will lead to a culture that will encourage
engineering rigor and high software quality.

1.7 EXERCISES

1.1 Is software engineering really an engineering discipline? Why or why
not? If it is not, what is it?

1.2 How would you describe the software engineering environment in your
current situation? Are there documented procedures for developing
requirements specifications, design documents, code, and so forth? Is it
a free-for-all?

1.3 Consider the last software project in which you were involved. What
percentage of time do you estimate was spent in eliciting requirements,
writing the requirements specification, performing the software design,
writing the software design documentation, writing the code, testing the
code, writing end-user documentation, and all other activities?

1.4 For the activities and relative percentages you gave in response to Exercise
1.3, why were any of these zeros? Should any of these activities have
received more attention? Which activities received too much attention?

1.5 The amount of time spent in any of the software activities listed in Section
1.4 can differ, depending on the kind of system involved. Estimate the
time (in person-months*) for an imaging system that you are working on
or have worked on. If you were the project manager, would any of these
numbers have been different? Why?

* Person-month, formerly referred to as a man-month, is the equivalent time worked by one person if
he or she had worked solely on the task for a month with standard 40-h workweeks.

2 Imaging Software and
Its Properties

I often say that when you can measure what you are speaking about and express it in
numbers you know something about it; but when you cannot express it in numbers
your knowledge is a meager and unsatisfactory kind: it may be the beginning of
knowledge but you have scarcely, in your thoughts, advanced to the stage of science,
whatever the matter may be.

Lord Kelvin

2.1 CLASSIFICATION OF SOFTWARE QUALITIES

Software can be characterized by any of a number of qualities. External qualities
are those that are visible, such as usability and reliability, and are of concern to the
end user. Internal qualities are those that may not be necessarily visible to the user,
but help the developers to achieve improvement in external qualities. For example,
good requirements and design documentation might not be seen by the typical user,
but these are necessary to achieve improvement in most of the external qualities. A
specific distinction between whether a particular quality is external or internal is not
often made because these qualities are so closely tied. Moreover, the distinction is
largely a function of the software itself and the kind of user involved.

While it is helpful to describe these qualities, it is equally desirable to quantify
them. Quantification of these characteristics of software is essential in enabling users
and designers to talk succinctly about the product and for software process control
and project management.

Much of the upcoming discussion has been adapted from the excellent section
on software properties found in Tucker (1996).

2.1.1 REuABILITY

Reliability is a measure of whether a user can depend on the software. This notion
can be informally defined in a number of ways. For example, one definition might
be “a system that a user can depend on.” Other loose characterizations of a reliable
software system include:

* The system stands the test of time.
* There is an absence of known catastrophic errors, that is, errors that render
the system useless.

10 Software Engineering for Image Processing Systems

e The system recovers “gracefully” from errors.
* The software is robust.

For imaging systems, other informal characterizations of reliability might
include:

* Downtime is below a certain threshold.
* The accuracy of the system is within a certain tolerance.
¢ Real-time performance requirements are met consistently.

While all of these informal characteristics are desirable in any imaging system,
they are difficult to measure. Moreover, they are not truly measures of reliability,
but of other attributes of the software.

There is specialized literature on software reliability that defines this quality in
terms of statistical behavior, that is, the probability that the software will operate as
expected over a specified time interval. These characterizations generally take the
following approach. Let S be a software system, and let T be the time of system
failure. Then the reliability of § at time #, denoted 7(), is the probability that 7 is
greater than ¢; that is,

1) = P(T > 1) @2.1)

This is the probability that a software system will operate without failure for a
specified period of time.

Thus, a system with reliability function r(¢) = 1 will never fail. However, it is
unrealistic to have such expectations. Instead, some reasonable goal should be set,
for example, in the visual inspection system, that the failure probability be no more
than 10-° per hour. This represents a reliability function of () = (0.99999999)' with
t in hours. Note that as t — o, r(f) — 0.

Another way to characterize software reliability is in terms of a real-valued
failure function. One failure function uses an exponential distribution where the
abscissa is time and the ordinate represents the expected failure intensity at that time
(Equation 2.2).

fH=ke™ 20 (2.2)

Here the failure intensity is initially high, as would be expected in new software
as faults are detected during testing. However, the number of failures would be
expected to decrease with time, presumably as failures are uncovered and repaired
(Figure 2.1). The factor A is a system-dependent parameter.

A second failure model is given by the “bathtub curve” shown in Figure 2.2.
Brooks (1995) notes that while this curve is often used to describe the failure function
of hardware components, it might also be used to describe the number of errors
found in a certain release of a software product.

Imaging Software and Its Properties 11

Failures Detected

Time

FIGURE 2.1 An exponential model of failure represented by the failure function f(¢) = Ae™,
t > 0. A is a system-dependent parameter.

>

Failures Detected

Time
FIGURE 2.2 A software failure function represented by the bathtub curve.

The interpretation of this failure function is clear for hardware: a certain number
of product units will fail early due to manufacturing defects. Later, the failure
intensity will increase as the hardware ages and wears out. But software does not
wear out. If systems seem to fail according to the bathtub curve, then there has to
be some plausible explanation.

It is clear that a large number of errors will be found in a particular software
product early on, just as in the exponential model of failure. But why would the
failure intensity increase much later? There are at least three possible explanations.
The first is that the errors are due to the effects of patching the software for various
reasons. The second reason is that late software failures are really due to failure of
the underlying hardware. Finally, additional failures could appear because of the
increased stress on the software by expert users. That is, as users master the software
and begin to expose and strain advanced features, it is possible that certain poorly
tested functionality of the software is beginning to be used.

Often the traditional quality measures of mean time to first failure (MTFF) or
mean time between failures (MTBF) are used to stipulate reliability in the software

12 Software Engineering for Image Processing Systems

requirements specification. This approach to failure definition places great impor-
tance on the effective elicitation (gathering) and specification of functional require-
ments, because the requirements define the software failure.

2.1.2 CORRECTNESS

Software correctness is closely related to reliability, and the terms are often used
interchangeably. The main difference is that minor deviation from the requirements
is strictly considered a failure, and hence means that the software is incorrect.
However, a system may still be deemed reliable if only minor deviations from the
requirements are experienced.

Correctness is measured in terms of number of failures detected over time.

2.1.3 PERFORMANCE

Performance is a measure of some required behavior. For example, an imaging
system might be required to display a filtered image at a rate of 30 frames per
second. A photo reproduction system might be required to digitize, clean, and output
color copies at a rate of one every 2 sec.

Most imaging systems are real-time systems; that is, performance satisfaction
is based on both the correctness of the outputs and the timeliness of those outputs.
Hard real-time systems are those in which missing even a single deadline will lead
to total system failure. Firm real-time systems can tolerate a few missed deadlines,
while in soft real-time systems, missing deadlines generally leads only to perfor-
mance degradation.

Imaging systems can fall into any of these categories. For example, if the visual
inspection system is involved in scanning airline baggage for bombs, then clearly it
must not miss any deadline (e.g., it cannot allow a bag to pass through without
analyzing it). On the other hand, a system that is inspecting fresh fruit can probably
allow an occasional damaged piece to get through, but not too many, and hence is
firm real time. Finally, if the system is inspecting cookies for breakage, then missing
too many deadlines might mean that too many broken cookies get shipped to the
customer. In this case, missing deadlines leads to performance degradation (though
if the problem persists, customers will not buy the cookies anymore, which could
lead to failure of the company).

The performance of real-time imaging systems is still largely based on three
trade-off problems: performance vs. resolution, performance vs. storage, and jitter
(synchronization error). Because each problem is based on a trade-off, these are
referred to collectively as the real-time imaging dilemma (Laplante et al., 1996a).
Fundamentally, the real-time imaging dilemma is not due to lack of raw computing
power, but rather to difficulties of making performance guarantees. The challenge
then, in real-time imaging systems, is to be able to specify, calculate, and guarantee
deadlines analytically early in the software life cycle — not after the fact, when trial
and error is the only technique available.

One method of measuring performance is based on mathematical or algorithmic
complexity. Another approach involves directly timing the behavior of the completed

Imaging Software and Its Properties 13

system with logic analyzers and similar tools. Finally, a simulation of the finished
system might be built with the specific purpose of estimating performance.

2.1.4 UsaBILITY

Often referred to as ease of use, or user-friendliness, usability is a measure of how
easy the software is for humans to use. This quantity is an elusive one. Properties that
make an application user-friendly to novice users are often different from those desired
by expert users or the software designers. Use of prototyping can increase the usability
of a software system because, for example, interfaces can be built and tested by the user.

Usability is difficult to quantify. However, informal feedback can be used, as
well as user feedback from surveys, and problem reports can be used in most cases.

2.1.5 INTEROPERABILITY

This quality refers to the ability of the software system to coexist and cooperate
with other systems. For example, in imaging systems the software must be able to
communicate with various devices using standard bus structures and protocols.

A concept related to interoperability is that of an open system. An open system
is an extensible collection of independently written applications that cooperate to
function as an integrated system. Open systems differ from open source code, which
is source code that is made available to the user community for moderate improve-
ment and correction.

An open system allows the addition of new functionality by independent orga-
nizations through the use of interfaces whose characteristics are published. Any
applications developer can then take advantage of these interfaces, and thereby create
software that can communicate using the interface. Open systems allow different
applications written by different organizations to interoperate.

Interoperability can be measured in terms of compliance with open system
standards.

2.1.6 MAINTAINABILITY

Anticipation of change is a general principle that should guide the software engineer.
A software system in which changes are relatively easy to make has a high level of
maintainability. In the long run, design for change will significantly lower software
life cycle costs and lead to an enhanced reputation for the software engineer, the
software product, and the company.

Maintainability can be decomposed into two contributing properties: evolvability
and repairability. Evolvability is a measure of how easily the system can be changed
to accommodate new features or modification of existing features. Software is
repairable if it allows for the fixing of defects.

Measuring these qualities of software is not always easy and often is based on
anecdotal observation only. This means that changes and the cost of making them
are tracked over time. Collecting this data has a twofold purpose. First, the costs of
maintenance can be compared to those of similar systems for benchmarking and
project management purposes. Second, the information can provide experiential

14 Software Engineering for Image Processing Systems

learning that will help to improve the overall software production process and the
skills of the software engineers.

2.1.7 PORTABILITY

Software is portable if it can easily run in different environments. The term envi-
ronment refers to the hardware on which the system runs, operating system, or other
software with which the system is expected to interact. Because of the specialized
hardware with which imaging systems interact, special care must be taken in making
them portable.

Portability is achieved through a deliberate design strategy in which hardware-
dependent code is confined to the fewest code units possible. This strategy can be
achieved using either object-oriented or procedural programming languages and
through object-oriented or structured approaches. Both of these will be discussed
throughout the text.

Portability is difficult to measure, other than through anecdotal observation.
Person-months required to perform the port are the standard measure of this property.

2.1.8 VERIFIABILITY

A software system is verifiable if its properties, including all of those previously
introduced, can be verified easily.

One common technique for increasing verifiability is through the insertion of
software code that is intended to monitor various qualities such as performance or
correctness. Modular design, rigorous software engineering practices, and the effec-
tive use of an appropriate programming language can also contribute to verifiability.

2.1.9 SUMMARY OF SOFTWARE PROPERTIES AND ASSOCIATED
METRICS

It has been emphasized so far that measurement of the properties of software is
essential throughout the software life cycle. A summary of the software qualities
just discussed and possible ways to measure them are shown in Table 2.1.

TABLE 2.1

Software Properties and the Means for Measuring Them

Software Quality Possible Measurement Approach

Correctness Probabilistic measures, MTBF, MTFF

Interoperability Compliance with open standards

Maintainability Anecdotal observation of resources spent

Performance Algorithmic complexity analysis, direct measurement, simulation
Portability Anecdotal observation

Reliability Probabilistic measures, MTBF, MTFF, heuristic measures
Usability User feedback from surveys and problem reports

Verifiability Software monitors

Imaging Software and Its Properties 15

2.2 BASIC SOFTWARE ENGINEERING PRINCIPLES

Software engineering has been criticized for not having the same kind of underlying
rigor as other engineering disciplines. And while it may be true that there are few
formulaic principles, there are many fundamental rules that form the basis of sound
software engineering practice. The following sections describe the most general and
prevalent of these.

2.2.1 RIGOR AND FORMALITY

Because software development is a creative activity, there is an inherent tendency
toward informal ad hoc techniques in software specification, design, and coding.
But the informal approach is contrary to good software engineering practice.

Rigor in software engineering requires the use of mathematical techniques.
Formality is a higher form of rigor in which precise engineering approaches are used.

For example, imaging systems require the use of rigorous mathematical speci-
fication in the description of image acquisition, filtering, enhancement, etc. But the
existence of mathematical equations in the requirements or design does not imply
an overall formal software engineering approach. In the case of the imaging system,
formality further requires that there be an underlying algorithmic approach to the
specification, design, coding, and documentation of the software.

2.2.2 SEPARATION OF CONCERNS

Separation of concerns is a kind of divide-and-conquer strategy that software engi-
neers use. There are various ways in which separation of concerns can be achieved.
In terms of software design and coding, it is found in modularization of code and
in object-oriented design. There may be separation in time, for example, developing
a schedule for a collection of periodic computing tasks with different periods.

Yet another way of separating concerns is in dealing with qualities. For example,
it may be helpful to address the fault tolerance of a system while ignoring other
qualities. However, it must be remembered that many of the qualities of software
are interrelated, and it is generally impossible to affect one without affecting the
other, perhaps adversely.

2.2.3 MODULARITY

Some separation of concerns can be achieved in software through modular design.
Modular design involves the decomposition of software behavior in encapsulated
software units and can be achieved in either object-oriented or procedurally oriented
programming languages.

Modularity is achieved by grouping together logically related elements, such as
statements, procedures, variable declarations, object attributes, and so on, in increas-
ingly fine-grained level of detail (Figure 2.3).

The main objective in seeking modularity is to foster high cohesion and low
coupling. With respect to the code units, cohesion represents intramodule connec-
tivity and coupling represents intermodule connectivity. Coupling and cohesion can

16 Software Engineering for Image Processing Systems

’
’
s
’
> ’

FIGURE 2.3 Modular decomposition of code units. The arrows represent inputs and outputs
in the procedural paradigm. In the object-oriented paradigm they represent associations. The
boxes represent encapsulated data and procedures in the procedural paradigm. In the object-
oriented paradigm they represent classes.

be illustrated informally, as in Figure 2.4, which shows software structures with high
cohesion and low coupling and with low cohesion and high coupling. The inside
squares represent statements or data; the arcs indicate functional dependency.

Cohesion relates to the relationship of the elements of a module. High cohesion
implies that each module represents a single part of the problem solution. Therefore,
if the system ever needs modification, then the part that needs to be modified exists
in a single place, making it easier to change.

Constantine and Yourdon identified seven levels of cohesion in order of strength
(Pressman, 2000):

1. Coincidental — Parts of module are not related, but simply bundled into
a single module.

2. Logical — Parts that perform similar tasks are put together in a module.

3. Temporal — Tasks that execute within the same time span are brought
together.

4. Procedural — The elements of a module make up a single control
sequence.

Imaging Software and Its Properties 17

\

=

(b)

FIGURE 2.4 Software structures with high cohesion and low coupling (a) and low cohesion
and high coupling (b). The inside squares represent statements or data; the arcs indicate
functional dependency.

5. Communicational — All elements of a module act on the same area of a
data structure.

6. Sequential — The output of one part in a module serves as the input for
some other part.

7. Functional — Each part of the module is necessary for the execution of
a single function.

18 Software Engineering for Image Processing Systems

Coupling relates to the relationships between the modules themselves. There is
great benefit in reducing coupling so that changes made to one code unit do not
propagate to others; that is, they are hidden. This principle of information hiding,
also known as Parnas partitioning, is the cornerstone of all software design (Parnas,
1979). Low coupling limits the effects of errors in a module (lower ripple effect)
and reduces the likelihood of data integrity problems. In some cases, however, high
coupling due to control structures may be necessary. For example, in most graphical
user interfaces, control coupling is unavoidable, and indeed desirable.

Coupling has also been characterized in increasing levels as:

1. No direct coupling — All modules are completely unrelated.

2. Data — When all arguments are homogeneous data items; that is, every
argument is either a simple argument or data structure in which all ele-
ments are used by the called module.

3. Stamp — When a data structure is passed from one module to another,
but that module operates on only some of the data elements of the struc-
ture.

4. Control — One module passes an element of control to another; that is,
one module explicitly controls the logic of the other.

5. Common — If two modules both have access to the same global data.

6. Content — One module directly references the contents of another.

To further illustrate both coupling and cohesion, consider the class structure for
a widely used commercial imaging application program interface (API) package,
depicted in Figure 2.5.

The class diagram was obtained through design recovery. The class names are
not readable in the figure, but it is not the figure’s intention to identify the software.
Rather, the point is to illustrate the fact that there is a high level of coupling and
low cohesion in the structure.

This design would benefit from refactoring, that is, performing a behavior-
preserving code transformation, which would achieve higher cohesion and lower
coupling.

2.2.4 ANTICIPATION OF CHANGE

It has been mentioned that software products are subject to frequent change either
to support new hardware or software requirements or to repair defects. A high
maintainability level of the software product is one of the hallmarks of outstanding
commercial software.

Imaging engineers know that their systems are frequently subject to changes in
hardware, algorithms, and even application. Therefore, these systems must be
designed in such a way so as to facilitate changes without degrading the other
desirable properties of the software.

Anticipation of change can be achieved in the software design through appro-
priate techniques, through the adoption of an appropriate software life-cycle model
and associated methodologies, and through appropriate management practices.

19

Imaging Software and Its Properties

R

FIGURE 2.5 The class structure for the API of a widely deployed imaging package.

20 Software Engineering for Image Processing Systems

2.2.5 GENERALITY

In solving a problem, the principle of generality can be stated as the intent to look
for the more general problem that may be hidden behind it. In an obvious example,
designing the visual inspection system for a specific application is less general than
designing it to be adaptable to a wide range of applications.

Generality can be achieved through a number of approaches associated with
procedural and object-oriented paradigms. For example, in procedural languages,
Parnas’ information hiding can be used. In the object orientation, the Liskov sub-
stitution principle can be used. This approach will be discussed later.

Although generalized solutions may be more costly in terms of the problem at
hand, in the long run, the costs of a generalized solution may be worthwhile.

2.2.6 INCREMENTALITY

Incrementality involves a software approach in which progressively larger incre-
ments of the desired product are developed. Each increment provides additional
functionality, which brings the product closer to the final one. Each increment also
offers an opportunity for demonstration of the product to the customer for the
purposes of gathering requirements and refining the look and feel of the product.

2.2.7 TRACEABILITY

Traceability is concerned with the relationships between requirements, their sources,
and the system design. Regardless of the process model, documentation and code
traceability is paramount. A high level of traceability ensures that the software require-
ments flow down through the design and code, and then can be traced back up at
every stage of the process. This would ensure, for example, that a coding decision
can be traced back to a design decision to satisfy a corresponding requirement.

Traceability is particularly important in imaging systems because often design
and coding decisions are made to satisfy hardware constraints that may not be easily
associated with a requirement. Failure to provide a traceable path from such deci-
sions through the requirements can lead to difficulties in extending and maintaining
the system.

Generally, traceability can be obtained by providing links between all documen-
tation and the software code. In particular, there should be the following links:

* From requirements to stakeholders who proposed these requirements
* Between dependent requirements

* From the requirements to the design

* From the design to the relevant code segments

* From requirements to the test plan

* From the test plan to test cases

One way to achieve these links is through the use of an appropriate numbering
system throughout the documentation. For example, a requirement numbered 3.2.2.1
would be linked to a design element with a similar number (the numbers do not

Imaging Software and Its Properties 21

Software Requirements Specification Software Design Description

3. Functional Requirements 3.2.2.1 The software shall capture the image...

3.1 Calibration mode
3.2 Operational~aode
3.2.1 Initialization
3.2.2 Normal operation
3.2.2.1 Image capture

Image error correction
1 Position error reduction

3.2.2.4 Conyeyor system control ...in a manner..\blah, blah, blah...
3.2.2.5 Rejest mechanism control Ref. req. #3.2.2.

3.2.2.6 Error
3.3 Diagnostic
4. Non-functional Requirements

Code
(* Refer to 3.2.2 ofdesén document

Test Case

while a < x_coord =+ b<'y_coord {
Test Plan —+Test case 3.2.2.1.A }image[a++][b++]:grab_screen()

Svent 3571 |
3.2.2.1 Refers to requirement 3.2.2.1 Inputs:...

An exhaustive testing over the entire Expected Outputs...
input range is necessary...
. Reference
3.2.2.1 Refers to requirement 3.2.2.1 Requirements
3221

Corner case testing...

FIGURE 2.6 Linkages between software documentation and code. In this case the links are
achieved through both similarity in numbering and specific reference to the related item in
the appropriate document.

have to be the same so long as the annotation in the document provides traceability).
These linkages are depicted in Figure 2.6. Although the documents shown in the
figure have not been introduced yet, the point to be made is that the documents are
all connected through appropriate referencing and notation.

Figure 2.6 is simply a graphical representation of the traceable links. In practice,
a traceability matrix is constructed to help cross-reference documentation and code
elements (Table 2.2).

The matrix is constructed by listing the relevant software documents and the
code unit as columns, and then each software requirement in the rows.

Constructing the matrix in a spreadsheet software package allows for providing
multiple matrices sorted and cross-referenced by each column as needed. For exam-
ple, a traceability matrix sorted by test case number would be an appropriate appen-
dix to the text plan.

The traceability matrices are updated at each step in the software life cycle. For
example, the column for the code unit names (e.g., procedure names, object class)
would not be added until after the code is developed.

Finally, a way to foster traceability between code units is through the use of
data dictionaries, which are described later.

22 Software Engineering for Image Processing Systems

TABLE 2.2
A Traceability Matrix Corresponding to Figure 2.6 Sorted by
Requirement Number

Software Design

Requirement Document Reference Test Plan Code Unit Test Case
Number Number Reference Number Name Number
3.1.1.1 3.1.1.1 3.1.1.1 Simple_fun 3.1.1.A
324 324.1 3.1.1.B
3243
3.1.1.2 3.1.1.2 3.1.1.2 Kalman_filter 3.1.1.A
3.1.1.B
3.1.1.3 3.1.1.3 3.1.1.3 Under_bar 3.1.1.A
3.1.1.B
3.1.1.C

2.3 EXERCISES

2.1 For the visual inspection system, select one of the possible specific appli-
cations mentioned (for example, inspection of fruit). What might be rea-
sonable expectations for each of the software qualities discussed? Try to
answer this question qualitatively, or use one of the metrics mentioned if
you are familiar with them.

2.2 For a software system with which you are familiar, which of the software
qualities were included in the software requirements specification docu-
ment? Which ones should have been included?

2.3 Discuss the cohesiveness and coupling for an imaging system with which
you are familiar. Do you think it would be possible to decrease coupling
or increase cohesion through refactoring (behavior-preserving code trans-
formation)?

2.4 For the software system you are working on (or have worked on), examine
the traceability matrices (or equivalent) that might exist. Discuss whether
they provide sufficient traceability and how they might be improved. If
no traceability matrix exists, design one (no need to complete the entries
in the matrix, however).

2.5 Using a spreadsheet program, design a set of traceability matrices for the
visual inspection system, assuming that the column entries will be those
shown in Table 2.2. The result should be five different traceability matrices
(one per column), which are appropriately linked.

3 Software Process and Life
Cycle Models

We think in generalities, we live in detail.

Alfred North Whitehead

3.1 SOFTWARE PROCESSES AND METHODOLOGIES

A software process is a model that describes an approach to the production and
evolution of software. As with any model, a process model is an abstraction. But in
this case, the model depicts the process of translation — from system concept, to
requirements specification, to a design, to code, and then finally, via compilation
and assembly, to the stored program form. Hence, a good process model will help
to minimize the problems associated with each translation.

A software process also provides a common software development approach
both within a project and across projects. The process allows for productivity
improvements and provides for a common culture, a common language, and common
skills among organizational members. These benefits foster a high level of trace-
ability and efficient communication throughout the project.

A software methodology is not the same as a software process. A software process
is, in essence, the “what” of the software product life cycle. The process identifies
and determines the order of phases within the life cycle. It establishes phase transition
criteria and indicates what is to be done in each phase and when to stop.

On the other hand, the methodology describes the “how.” It identifies how to
perform activities for each period, how to represent the activities and products,* and
how to generate products.

3.2 SOFTWARE LIFE CYCLE MODELS

Every software process is an abstraction, but in any case, the activities of the process
need to be mapped to a life cycle model. The activities within these life cycle models
must be time independent, sequential, and nonoverlapping. There are a variety of
software life cycle models, and any of these can be applied to imaging systems.
The following sections describe some of the more widely recognized software
life cycle models. While significantly more time is focused on the activities of the
waterfall model, most of these activities also occur in the other life cycle models.

* The term artifact is sometimes used for software or a software-related product such as documentation.

23

24 Software Engineering for Image Processing Systems

Indeed, it can be argued that most other life cycle models either are refinements of
the waterfall model or contain one or more waterfall life cycles within.

3.2.1 THe WATERFALL MODEL

The terms waterfall, conventional, and linear sequential are used to describe a
sequential model of nonoverlapping and distinctive activities related to software
development. Collectively, the periods in which these activities occur are often
referred to as phases or stages. The number of phases differs between variants of
the model. While simplistic and dating back at least 30 years, the waterfall model
is still popular. One survey, for example, showed that 35% of companies still used
a waterfall model (Laplante et al., 2002e).

As an example of a waterfall model, consider a software development effort
with activity periods that occur in the following sequence:

Concept definition
Requirements specification
Design specification

Code development

Testing

Maintenance

AN

The waterfall representation of this sequence is shown in Figure 3.1. Table 3.1
summarizes the activities in each period and the main artifacts of these activities.

The next sections discuss each of these activity periods in some detail, while
the documentation is discussed in Chapter 6.

Concept ‘\
\ Requirements ‘\

\ Design —\

\ Code —~

\ Test ‘\
\ Maintain

Time

>

FIGURE 3.1 A waterfall life cycle model. The forward arcs represent time-sequential activ-
ities, and the reverse arcs represent backtracking.

Software Process and Life Cycle Models 25

TABLE 3.1
Phases of a Waterfall Software Life Cycle with Associated Activities
and Artifacts

Phase Activity Output
Concept Define project goals White paper
Requirements ~ Decide what the software must do Software requirements specification
Design Show how the software will meet the ~ Software design description
requirements
Development Build the system Program code
Test Demonstrate requirement satisfaction — Test reports
Maintenance Maintain system Change requests, reports

3.2.1.1 Software Conception

The software conception activities include determination of the software project’s
needs and overall goals. These activities are driven by management directives,
customer input, technology changes, and marketing decisions.

At the onset of the phase, no formal requirements are written, generally no
decisions about hardware or software environments are made, and budgets and
schedules cannot be set. In other words, only the features of the software product
and possibly the feasibility of testing them are discussed. Usually, no documentation
other than internal feasibility studies, white papers, or memos are generated.

Some variants of the waterfall model do not explicitly include a conception
period because the activity was either incorporated into the requirements definition
or not thought to be part of the software project at all. Nonetheless, the concept
activity does occur in every software product, even if it is implicit.

3.2.1.2 Requirements Specification

The requirements specification phase includes the main activity of writing the
software requirements specification (SRS). This document is prepared by a customer
or in conjunction with a customer through requirements elicitation, that is, the
process of determining the customer’s needs. The SRS contains exacting information
about what the software product is to do, including all behavioral aspects, expected
outputs, and performance goals and deadlines. Ideally, little or no information on
how these requirements are to be met is stipulated, but a production schedule and
budget are included.

From a testing perspective, it is during the requirements specification activity
that test requirements are determined and committed to a formal test plan. The test
plan is used as the blueprint for the creation of test cases used in the testing phase,
which is discussed later in the text.

The requirements specification phase can and often does occur in parallel with
product conception, and as mentioned before, they are often not treated as distinct.
It can be argued that the two are separate; however, the requirements generated

26 Software Engineering for Image Processing Systems

during conceptualization are not binding, whereas those determined in the require-
ments specification phase are (or should be) binding. This rather subtle difference
is important from a testing perspective because the SRS represents a binding contract,
and hence the criteria for product acceptance. Conversely, ideas generated during
system conceptualization may change, and therefore are not yet binding.

3.2.1.3 Software Design

The set of activities associated with the software design phase is characterized by
the conversion of the SRS into a software design description (SDD), also known as
a detailed design specification (DDS) or similar name. In the waterfall model,
preparation of the SDD cannot begin until the SRS is completed. Techniques for
software design are discussed in the following chapter.

The main activity of software design is to develop a coherent, well-organized
representation of the software system suitable to guide software development. In
essence, the design maps the “what” from the SRS to the “how” of the SDD.

The format of the detailed design document can be in accordance with an
accepted standard such as MIL-STD-498, Institute of Electrical and Electronics
Engineers (IEEE) Standard 830, or a proprietary format. In any case, adherence to
a strict design procedure is critical for embedded imaging systems.

Certain testing activities occur concurrently with the preparation of the SDD.
These include the development of a set of test cases based on the test plan. Techniques
for developing test cases for imaging systems are discussed later.

Often during the software design phase, problems in the SRS are identified.
These problems may include conflicts, redundancies, or requirements that cannot be
met with current technology. In imaging systems, the most typical problems are
related to deadline satisfaction.

Usually, problems such as these require changes to the SRS or the granting of
exemptions from the requirements in question. In any case, the problem resolution
shows up as a specific directive in the SDD.

3.2.1.4 Software Development

The software development phase involves the production of the software code based
on the design using best practices. In theory, this activity should only begin when
the design is complete. In practice, however, there is usually an overlap between
development and design.

Additionally, in this phase the test team can build the test cases specified in the
design phase in some automated form. This approach guarantees the efficacy of the
tests and facilitates repeat testing.

The software development phase ends when all software units have been coded,
unit tested, and integrated, and have passed the integration testing specified by the
software designers.

Management of the software development phase can be greatly improved with
version control or configuration management software, which regulates access to
the various components of the system from the software library. Version control
prevents multiple accesses to the same source code, provides mechanisms for track-

Software Process and Life Cycle Models 27

ing changes, and preserves version integrity. In the long run, it increases overall
system reliability.

Computer-aided software engineering (CASE) tools can also assist with this and
earlier phases of the software life cycle. In imaging systems, commercial tools should
be used as appropriate, provided that they incorporate temporal modeling aspects.
These problems will be discussed later.

3.2.1.5 Testing

Although ongoing testing is an implicit part of the waterfall model, the model also
includes an explicit testing phase. These testing activities (often called acceptance
testing to differentiate them from code unit testing) begin when the software devel-
opment phase ends. During the explicit testing phase, the software is confronted
with a set of test cases (module and system level) developed in parallel with the
software and documented in a software test requirements specification (STRS).
Acceptance or rejection of the software is based on whether it meets the requirements
defined in the SRS using tests and criteria set forth in the STRS.

Testing of imaging systems can be more difficult if they involve temporal
correctness and deadline satisfaction. In addition, intrusive testing can alter the
timing characteristics of the system, making even passing test results uncertain.
Finally, testing that requires real-world inputs is not easily done. For example, an
autonomous vehicle that navigates based on camera input cannot be tested with live
data in the laboratory. Testing of software will be discussed later.

The testing phase ends when either the criteria established in the STRS are
satisfied or failure to meet the criteria forces requirements modification, design
alteration, or code repair. Regardless of the outcome, one or more test reports are
prepared that summarize the conduct and results of the testing.

3.2.1.6 Software Maintenance

The software maintenance phase activities generally consist of a series of reengi-
neering processes to prolong the life of the system. Maintenance activities can be
adaptive, which results from external changes to which the system must respond;
corrective, which involves maintenance to correct errors; or perfective, which is all
other maintenance, including user enhancements, documentation changes, efficiency
improvements, and so on.

Maintenance corrections are usually handled by making a software change and
then performing regression testing. Another approach is to collect a set of changes
and then regression test them against the last set of changes. The maintenance activity
only ends when the product is no longer supported.

In some cases, the maintenance phase is not incorporated into the life cycle
model, but instead treated as a series of new software products, each with its own
waterfall life cycle.

3.2.1.7 Backtracking Transitions in the Waterfall Life Cycle

Although Figure 3.1 implies that the phases in the waterfall phases occur in forward
sequence, common sense suggests that this is not always to be expected. In fact,

28 Software Engineering for Image Processing Systems

backtracking transitions are likely to occur. For example, new features, lack of
sufficient technology, or other factors force reconsideration of the system purpose,
or redesign may result in a return to the requirements phase during design. Similarly,
a transition from the programming phase back to the design phase might occur due
to a feature that cannot be implemented or caused by an undesirable performance
result. This in turn may necessitate redesign, new requirements, or elimination of
the feature. Finally, a transition from the testing phase to the programming or design
phase may occur due to an error detected during testing. Depending on the severity
of the error, solution may require reprogramming, redesign, modification of require-
ments, or reconsideration of the system goals.

3.2.1.8 Waterfall Model Summary

The waterfall model is quite simplistic. However, Parnas and Clements (1986) have
suggested that after the project has been completed, tested, and delivered, users can
“cover their tracks” by modifying the documentation so that it appears that a delib-
erate methodology was used. Hence, when the sequence of the waterfall model
cannot be followed strictly, at least the documentation should suggest that it was
followed in that sequence.

While this kind of practice might appear disingenuous, the benefit is that a
traceable history is established between each program feature and the requirement
driving that feature. This promotes a maintainable, robust, and reliable product and,
in particular, one where decisions related to timing requirements are well docu-
mented. It does indicate, however, that perhaps the process used was a reactive one
and not part of a planned strategy.

3.2.2 'V MobEeL

The V model is a variant of the waterfall model that represents a tacit recognition that
there are testing activities that occur throughout the waterfall software life cycle model
— and not just during the software testing period. These concurrent activities, depicted
in Figure 3.2, are described alongside the activities occurring in the waterfall model.

For example, during requirements specification, the requirements are being
evaluated for testability, and a test requirements specification may be written. This
document would describe the strategy necessary for testing the requirements. Sim-
ilarly, during the design phase, a corresponding design of test cases is being per-
formed. While the software is being coded and unit tested, the test cases are devel-
oped and automated. The test life cycle converges with the software development
life cycle during acceptance testing.

The point, of course, is that testing is a full life cycle activity and that it is
important to constantly consider the testability of any software requirement (e.g.,
deadlines) and to design to allow for such testability.

3.2.3 THE SpiIRAL MODEL

The spiral model, suggested by Boehm (1988), recognizes that the waterfall model
is not a realistic representation, nor is it necessarily a healthy one. Instead, the spiral

Software Process and Life Cycle Models 29

Test
Requirements

Requirements

Design [~~~ """"""TT-T--Tooooooo-ooo- Design Tests

Development [f--------- Code Tests

Time

FIGURE 3.2 A V model for the software project life cycle. The concept phase is combined
with the requirements phase in this instance.

model augments the waterfall model with a series of strategic prototyping and risk
assessment activities throughout the life cycle (Boehm, 1988). The spiral model is
depicted in Figure 3.3.

Starting at the center of the figure, the product life cycle continues in a spiral
path from the concept and requirements phases. Prototyping and risk analysis are

Determine objectives,
alternatives, and
constraints

Evaluate alternatives
identify, resolve risks

Risk
analysis
Risk
analysis
Risk
analysis

Opera?

tional

REVIEW anulysis

Requirements plan
life-cycle plan

Concept of
Operation

Product

Detailed
design

Code

Unit test

equirement
validatio

Development
plan

Design
V&V
Acceptance test
Develop, verify

next-level product

Integration

orati
and test plan utegyation

Plan next phase

Service test

FIGURE 3.3 The spiral software model. (Redrawn from Boehm, B., IEEE Comput., 26,
61-72, 1988.)

30 Software Engineering for Image Processing Systems

used along the way to evaluate the feasibility of potential features. More prototyping
is used after a software development plan (SDP) is written, and again after the
design and tests have been developed. After that, the model behaves essentially like
the waterfall model. The spiral model is apparently not yet widely used; the
aforementioned survey indicated that about 9% of organizations used it (Laplante
et al., 2002e).

In any event, the added risk protection benefit from the extensive prototyping
can be costly, but is well worth it, particularly in embedded systems. More will be
mentioned about risk later.

3.2.4 EvoLUTIONARY MODEL

The evolutionary life cycle model promotes software development by iteratively
defining requirements for new system increments based on experience from previous
iterations. The evolutionary model is also known as evolutionary prototyping, rapid
delivery, evolutionary delivery cycle, and rapid application delivery (RAD). This
model is gaining in popularity; for example, in the previously mentioned survey,
almost 20% of respondents indicated its adoption (Laplante et al., 2002e).

In the evolutionary model, each system iteration follows the waterfall model in
that there are requirements, software design, and testing phases. After the final
evolutionary step, the system enters the maintenance phase, although it can evolve
again through the conventional flow, if necessary.

From the developer’s point of view, those requirements that are clear at the
beginning of the project drive the initial increment, but the requirements become
clearer with each increment.

The evolutionary model can be used in conjunction with imaging systems,
particularly in working with prototype or novel hardware and where sensor or
camera inputs must first come from simulators and not real images during devel-
opment. Indeed, there may be significant benefits to this approach. First, early
delivery of portions of the system can be generated, even though some of the
requirements are not finalized. Then these early releases are used as tools for
requirements elicitation, including timing requirements.

However, there are some dangers in using this approach. First, there may be
difficulties in estimating costs and schedule when the scope and requirements
are ill defined. In addition, with this methodology, the overall project completion
time may be greater than if the scope and requirements are established completely
before design. Unfortunately, time apparently gained on the front end of a project
because of early releases may be lost later because of the need for rework
resulting from evolving requirements. Indeed, care must be taken to ensure that
the evolving system architecture is both efficient and maintainable so that the
completed system does not resemble a patchwork of afterthought add-ons.
Finally, additional time must also be planned for integration and regression
testing as increments are developed and added to the system. Some of the
difficulties in using this approach in imaging systems can be mitigated, however,
if the high-level requirements and overall architecture are established before
entering an evolutionary cycle.

Software Process and Life Cycle Models 31

3.2.5 INCREMENTAL MODEL

The incremental model is characterized by a series of detailed system increments,
each increment incorporating new or improved functionality to the system. These
increments may be built serially or in parallel, depending on the nature of the
dependencies among releases and on the availability of resources.

The difference between the incremental and evolutionary models is, of course,
that the incremental model allows for parallel increments. In addition, the serial
releases of the incremental model are planned, whereas in the evolutionary model,
each sequential release is a function of the experience from the previous iteration.

There are several advantages to the incremental model. These include the ease
of understanding each increment because of the decreased functionality, use of
successive increments in requirements elicitation, early development of initial func-
tionality (which may aid in developing the real-time scheduling structure and in
debugging prototype hardware), and successive building of operational functionality
over time. The thinking is that software released in increments over time is more
likely to satisfy changing user requirements than if the system were planned as a
single overall release at the end of the same period. Finally, because the subprojects
are smaller, project management is more manageable for each increment.

However, as with the evolutionary model, there may be increased system devel-
opment costs and difficulties in developing temporal behavior and meeting timing
constraints with a partially implemented system.

There is some evidence that the incremental model is fairly widespread; the
aforementioned survey suggests that slightly more than 20% of companies are using
it (Laplante et al., 2002e).

3.2.6 FOUNTAIN MODEL

In object-oriented approaches to software development, the waterfall model may be
too restrictive. In some cases, an iterative, object-oriented model is used. The foun-
tain model, although iterative, differs from the incremental and evolutionary models
in that it emphasizes two key elements of the object-oriented approaches: reuse and
domain analysis and design.

In the fountain model, it is tacitly accepted that while some life cycle activities
cannot start before others (for example, software development before design), there
must be significant overlap and merging of activities during other phases.

The analogy is that just as in a fountain, where water rises up the middle and
either falls back to the pool below or is trapped at the intermediate level, the general
flow from analysis through design to implementation in object-oriented software
development is interlaced with iterative cycles across two (or all three) of the
requirements, design, and development phases (see Figure 3.4). The pool represents
a pool of classes.

Development of an object-oriented system is much more likely to lead to focus
on sections of the whole, known as clusters or subsystems. These subsystems are
collections of classes with high cohesion. Some of these classes can be identified
fairly early in the systems-level analysis and design, while others emerge later.

32 Software Engineering for Image Processing Systems

Requirements and
Feasibility Study

\ |

K Software Pool /

FIGURE 3.4 The fountain software model. (From Henderson-Sellers, B. and Edwards, J.M.,
Comm. of the ACM, 33, 9, 142-159, 1990. With permission.)

The stage of development of each of the classes in one subsystem proceeds at
the same rate as the other stages; yet the life cycle stage of different subsystems
within the software system being developed or modified could be very different.

More will be said on the suitability of object-oriented approaches to imaging
systems.

3.2.7 LIGHTWEIGHT METHODOLOGIES

Recently, a variety of “lightweight” programming methodologies have emerged that
emphasize rapid iteration and interaction with users. These lightweight methodolo-
gies dispense with much of the software development process documentation found
in the other life cycle models, such as large SRSs. In some application domains,
they have proven to be somewhat effective, particularly for smaller projects.
Lightweight methods are adaptive rather than predictive. This approach differs
significantly from those previously discussed models, which emphasize planning the
software in great detail over a long period and for which significant changes in the

Software Process and Life Cycle Models 33

SRS can be problematic. These lightweight methods are a response to the common
problem of constantly changing requirements that can bog down the more “ceremo-
nial” up-front design approaches, which focus heavily on documentation at the start.
They strive to be processes that adapt and thrive on change, even to the point of
changing themselves.

Lightweight methods are also people oriented rather than process oriented. This
means they explicitly make a point of trying to make development “fun.” Presumably,
this is because writing SRSs and SDDs is onerous, and the tedium should be
minimized.

There are several lightweight methodologies, which are briefly summarized:

Adaptive programming — Offers a series of frameworks to apply adaptive
principles and encourage collaboration.

Agile programming — Divided into four activities: planning, designing,
coding, and testing, all performed iteratively.

Crystal — Empowers the development team to define the development pro-
cess and refine it in subsequent iterations until it is stable.

Dynamic systems development method (DSDM) — Conceived as a method-
ology for rapid application development; relies on a set of principles that
include empowered teams, frequent deliverables, incremental development,
and integrated testing.

Extreme programming (XP) — Based on 12 practices, including pair pro-
gramming (all code developed jointly by two developers), test-first coding
(in which the test cases precede the coding), having the customer on-site,
and frequent refactoring. XP is perhaps the most prescriptive of the light-
weight methodologies.

Feature-driven development — A model-driven, short-iteration methodology
built around the feature; a unit of work that has meaning for the client and
developer and is small enough to be completed quickly.

Scrum — Based on the empirical process control model, the name is a
reference to the point in a rugby match where the opposing teams line up
in a tight and contentious formation. Scrum programming relies on self-
directed teams and dispenses with much advanced planning, task definition,
and management reporting.

It is easy to see that these methodologies are similar to evolutionary or incre-
mental software development, but with much less supporting documentation.

While there are organizations developing significant systems using one or
more of these techniques, there is not enough research yet to indicate that light-
weight methodologies are the best way to develop robust and maintainable soft-
ware. It must be emphasized that experience shows that poor documentation can
lead to maintenance difficulties in embedded systems over a long period. There-
fore, unless lightweight approaches are used as a subprocess within one of the
more traditional process methodologies, they should be used in imaging systems
development with care.

34 Software Engineering for Image Processing Systems

3.2.8 UNIFiED PrROCESS MODEL

The unified process model (UPM) uses an object-oriented approach by modeling a
family of related software processes using the unified modeling language (UML) as
a notation. Like UML, UPM is a metamodel for defining processes and their com-
ponents. Hence, any tool based on UPM would be a tool for process authoring and
customizing. The actual enactment of processes — that is, planning and executing
a project using a process described with UPM — is not within the scope of this model.

UPM was developed to support the definition of software development processes,
specifically including those processes that involve or mandate the use of UML, such
as the rational unified process, and is closely associated with the development of
systems using object-oriented techniques.

3.2.9 CAPABILITY MATURITY MODEL

The capability maturity model (CMM) for software is not a life cycle model, but
rather a system for describing the principles and practices underlying software
process maturity. CMM is intended to help software organizations improve the
maturity of their software processes in terms of an evolutionary path from ad hoc,
chaotic processes to mature, disciplined software processes. Developed by the Soft-
ware Engineering Institute at Carnegie Mellon University, the CMM is organized
into five maturity levels.

Except for level 1, each maturity level is decomposed into several key process
areas that indicate the areas upon which an organization should focus to improve
its software process. Each key process area is described in terms of the key practices
that contribute to satisfying its goals. The key practices describe the infrastructure
and activities that contribute most to the effective implementation and institutional-
ization of the key process area.

Predictability, effectiveness, and control of an organization’s software processes
are believed to improve as the organization moves up these five levels. While not
truly rigorous, there is some empirical evidence that supports this position.

3.2.9.1 CMM-1: Initial

In this level, the software process is characterized as ad hoc and chaotic. This means
that few processes are defined, and success depends on individual effort and heroics.

3.2.9.2 CMM-2: Repeatable

Here, basic project management processes are established to track cost, schedule,
and functionality. The necessary process discipline is in place to repeat earlier
successes on projects with similar applications.

The key process areas focus on the software project’s concerns related to estab-
lishing basic project management controls. They are requirements management, soft-
ware project planning, software project tracking and oversight, software subcontract
management, software quality assurance, and software configuration management.

Software Process and Life Cycle Models 35

3.2.9.3 CMM-3: Defined

At this level, the software process for both management and engineering activities
is documented, standardized, and integrated into a standard software process for the
organization. All projects use an approved, customized version of the organization’s
standard software process for developing and maintaining software.

The key process areas at this level address both project and organizational issues,
as the organization establishes an infrastructure that institutionalizes effective soft-
ware engineering and management processes across all projects. They are organi-
zation process focus, organization process definition, training program, integrated
software management, software product engineering, intergroup coordination, and
peer reviews.

3.2.9.4 CMM-4: Managed

Here, detailed measures of the software process and product quality are collected.
Both the software process and products are quantitatively understood and controlled.

The key process areas focus on establishing a quantitative understanding of both
the software process and the software work products being built. They are quanti-
tative process management and software quality management.

3.2.9.5 CMM-5: Optimizing

In the last level, continuous process improvement is enabled by quantitative feedback
from the process and from piloting innovative ideas and technologies.

The key process areas at this level cover the issues that both the organization
and the projects must address to implement continual, measurable software process
improvement. They are defect prevention, technology change management, and
process change management.

3.2.9.6 CMM-I

The capability maturity model integration (CMM-I) is intended to provide guidance
for improving an organization’s processes and its ability to manage the development,
acquisition, and maintenance of products and services. The CMM-I product suite is
composed of multiple integrated models, courses, and an assessment method.

CMM-1is a more generic version of the CMM that is suitable for other endeavors
besides software. CMM-I has three varieties: one for software and systems engi-
neering, one that includes integrated product and process development, and a variety
that includes some acquisition aspects.

3.2.10 ProT1oTYPING AND RISk

Risk factors that threaten imaging systems, in fact, any software system, come from
internal and external sources. Internal risks are related to software product, appli-
cation domain, personnel characteristics, resources available, and schedule con-
straints. External threats are related to the business environment.

36 Software Engineering for Image Processing Systems

The major internal risk factors that concern embedded system designers include:

¢ Ongoing requirements changes

* Unrealistic requirements

¢ Incorrect requirements

e Shortfalls in externally furnished components

e Legacy code problems (e.g., lack of documentation)
e Lack of appropriate tools

¢ Real-time performance shortfalls

¢ Hardware and software inadequacies

One way of identifying at least some of these risks early, and mitigating them,
is through prototyping. The spiral model makes explicit use of prototyping to mit-
igate risk, while the evolutionary and incremental models are, in a sense, based on
a series of functioning prototypes. The lightweight methodologies could be inter-
preted as nothing more than intense prototyping.

In imaging systems, use of a mock-up or prototype achieves two goals: it gives
the users a feel for how well the design approach works, and it provides an oppor-
tunity to exercise prototype hardware that may accompany the embedded system.
This approach can detect problems and identify deficiencies early in the life cycle,
where changes are more easily and cheaply made. Prototyping also increases com-
munication between those who write requirements and the developers throughout
the design process.

There are at least two drawbacks to using prototypes. First, a prototype may not
provide good information about timing characteristics and real-time performance,
and can lull the designers into a false sense of security. Clearly, the timing results
from prototypes cannot always be trusted, though this is not to say that prototypes
cannot be used to elicit some form of preliminary timing information.

Second, the pressures of bringing a product to market may lead to a temptation
to carry over portions of the prototype into the final system. To avoid this problem,
when using prototyping and prototyping environments in particular, be sure that the
intent of the prototype is not confused with a first attempt at the real system. In
fact, using “throwaway” prototypes is strongly recommended, as opposed to evo-
lutionary prototypes.

3.3 SOFTWARE STANDARDS

Standardizing organizations such as the International Standards Organization (ISO),
Association for Computing Machinery (ACM), IEEE, the U.S. Department of
Defense (DOD), and others actively promote the development, use, and improvement
of standards for software processes and inherent life cycle models. Even though
many are interrelated and mutually influenced, the array of standards available can
be confusing and even contradictory to the point of frustration.

The intent here is not to endorse any of these standards or to provide a compre-
hensive survey. Rather, a review of the most widely accepted ones is of value because
any, if used correctly, can improve the reliability and compatibility of imaging

Software Process and Life Cycle Models 37

systems and provide benchmarks for certain software life cycle practices. Much of
the following sections are adapted from the excellent text on software standards by
Wang and King (2000).

3.3.1 DOD-STD-2167A

DOD-STD-2167A was designed to produce documentation that achieves a high-
integrity description of the evolving software design for baseline control and that
serves as the foundation for life cycle management. Formal reviews are prescribed
throughout, but are sometimes just staged presentations. These audits often prove
to be of questionable value and ultimately increase the cost of the system.
However, DOD-STD-2167A provides structure and discipline into the chaotic
and complex development environment of large and mission-critical embedded
applications. In fact, because the U.S. DOD is the single largest procurer of software,
including imaging systems, the 2167A and waterfall “culture” pervade suppliers of
military systems software today, even though the standard has been superceded.

3.3.2 DOD-STD-498

DOD-STD-498 (or MIL-STD-498) is a merger of DOD-STD-2167A (or MIL-STD-
2167A), used for weapon systems, with DOD-STD-7935A, used for automated
information systems. Together, they form a single software development standard
for all of the organizations in the purview of the U.S. DOD. The purpose of
developing this standard, which was approved in 1994, was to resolve issues raised
in the use of the old standards, particularly with their incompatibility with modern
software engineering practice.

The process model adopted in MIL-STD-498 is significantly different from that
in 2167A. The former standard explicitly imposed a waterfall model, whereas 498
provides for a development model that is compatible with all of the software life
cycle models that have been discussed, except the lightweight methodologies,
because of their limited documentation.

With MIL-STD-498, the emphasis has changed from the use of SDDs and the
configuration baseline to identification and control of the software product itself.
Flexible arrangement of this standard was designed to be compatible with various life
cycle models and to be more adaptable, interactive, and amenable to modern software
architectures than 2167A’s highly structured waterfall approach to development.

MIL-STD-498 does not provide a default process, such as the waterfall, for
software development. It assumes that the developer has one selected. The standard
provides flexibility for developers to use the process that works for them, so long
as it is documented in a software development plan.

The standard activities also encourage the use of CASE tools, which can include
automated version and change control, and build support. Formal reviews have been
replaced by more frequent and informal reviews comprised of one-on-one low-keyed,
joint technical information exchanges.

Standard 498 can be related to the CMM to measure process improvement. MIL-
STD-498 made two principal advancements constant with the developer’s potential
for achieving process improvement. It elevated the level of process control and

38 Software Engineering for Image Processing Systems

removed stipulations on how developers should organize their configuration man-
agement functions.

Like its predecessor, MIL-STD-2167A, MIL-STD-498 is highly compatible with
embedded systems and is the most widely used standard in this regard.

3.3.3 1SO 9000-3

ISO Standard 9000 is a generic, worldwide standard for quality improvement. The
standard, which collectively is described in five standards, ISO 9000 through ISO 9004,
was designed to be applied in a wide variety of manufacturing environments. ISO 9001
through ISO 9004 apply to enterprise according to the scope of their activities. ISO
9004 and ISO 9000-X are documents that provide guidelines for specific applications
domains. For software development, ISO 9000-3 is the document of interest.

While ISO 9000-3 is widely adopted in Europe, an increasing number of U.S.
and Asian companies have also adopted it. Even some defense software engineering
units are switching to ISO 9000-3 from MIL-STD-498.

ISO released the 9000-3 quality guidelines in 1997 to help organizations apply
the ISO 9001 (1994) requirements to computer software. ISO 9000-3 is essentially
an expanded version of ISO 9001 with added narrative to encompass software.

The ISO standards are process-oriented, commonsense practices that help com-
panies create a quality environment. The principal areas of quality focus are:

Management responsibility

Quality system requirements
Contract review requirements
Product design requirements
Document and data control
Purchasing requirements

Customer supplied products

Product identification and traceability
Process control requirements
Inspection and testing

. Control of inspection, measuring, and test equipment
Inspection and test status

Control of nonconforming products
Corrective and preventive actions
Handling, storage, and delivery
Control of quality records

Internal quality audit requirements
Training requirements

Servicing requirements

Statistical techniques

NN R WD =

N I i i
PO R WD = OO

Focusing on many of these areas, such as inspection and testing, design control,
and product traceability (through a rational design process), increases the quality of
a software product.

Software Process and Life Cycle Models 39

4.4.1 The purpose of this standard is to promote procedures to control the
General product design and development process. These procedures must ensure
Software

that all requirements are being met. This standard encourages you to
control your software development project and make sure that it is
executed in a disciplined manner by incorporating one or more life cycle
models and well-documented procedures that insure that:

development

A. Software products meet all requirements.
B. Software development follows your:
o Quality plan

e Development plan

FIGURE 3.5 Summary of Section 4.4.1 of ISO 9000-3, Software Development and Design.

Unfortunately, the standard is very general and provides little specific process
guidance. For example, ISO 9000-3, 4.4 Software Development and Design, is shown
in Figure 3.5. While these recommendations are helpful as a checklist, they provide
very little in terms of a process that can be used.

While a number of metrics have been available to add some rigor to this
somewhat generic standard, in order to achieve certification under the ISO standard,
significant paper trails and overhead are required.

3.3.4 ISO/IEC

ISO/IEC 12207 describes five primary processes: acquisition, supply, development,
maintenance, and operation. It divides the five processes into activities, and the
activities into tasks, while placing requirements upon their execution. It also specifies
eight supporting processes (documentation, configuration management, quality
assurance, verification, validation, joint review, audit, and problem resolution) as
well as four organizational processes (management, infrastructure, improvement,
and training).

The ISO/IEC standard intends for organizations to tailor these 17 processes to
fit the scope of their particular projects by deleting all inapplicable activities; it
defines 12207 compliance as the performance of those processes, activities, and
tasks selected by tailoring.

ISO/IEC 12207 provides a structure of processes using mutually accepted ter-
minology, rather than dictating a particular life cycle model or software development
method. Since it is a relatively high-level document, 12207 does not specify the
details of how to perform the activities and tasks comprising the processes. It also
does not prescribe the name, format, or content of documentation. Therefore, orga-
nizations seeking to apply 12207 need to use additional standards or procedures that
specify those details.

40 Software Engineering for Image Processing Systems

3.4 EXERCISES

3.1 What is the relationship between the waterfall model and the others
discussed? Can it be argued that all other life cycle models are simple
variants of the waterfall model, or are they more than that?

3.2 Describe the possible phases in an 8-, 9-, and 10-phase waterfall model.

3.3 In what way can the waterfall model be analogized to the construction of
a bridge?

3.4 Isany formal model ever applied to a real-world engineering project, such
as a bridge, skyscraper, or electric circuit, faithfully and without disrup-
tion? Why should software be any different?

3.5 In what way can Boehm’s spiral model be shown to be analogous to the
process used in bridge building?

3.6 Is “faking a rational design process” (postdocumenting requirements and
design), as Parnas and Clements suggest, sufficient, practical, and advis-
able for the real world?

3.7 How could lightweight methodologies be made more suitable for indus-
trial-strength, imaging systems?

3.8 What are the benefits of adhering to a life cycle model to the following
stakeholders?

Requirements writers

Designers

Software developers

Project managers

Customers

3.9 Describe the software life cycle model that best describes imaging projects
that you are working on or have worked on. Is it one of the standard ones
or ad hoc?

3.10 Review the literature for the genesis of the XP development methodology
in the context of the Chrysler payroll system that fostered its creation. Is
this scenario unique? In what other ways could it have been resolved,
simply through a new methodology?

opo0 e

4 Software Requirements

A good workman is known by his tools.

Proverb

4.1 REQUIREMENTS ENGINEERING PROCESS

Requirements engineering is a subdiscipline of software engineering that is con-
cerned with determining the goals, functions, and constraints of software systems.
Requirements engineering also involves the relationship of these factors to precise
specifications of software behavior, and to their evolution over time and across
software families. Figure 4.1 depicts the various activities (smooth rectangles)
and documentation (rectangles) of the requirements engineering process in its
idealized form.

Ideally, the requirements engineering process begins with a feasibility study
activity, which produces a feasibility report. It is possible that the feasibility study
may lead to a decision not to continue with the development of the software product.
If the feasibility study suggests that the product should be developed, then require-
ments analysis can begin.

Requirements analysis involves defining requirements through a variety of elic-
itation techniques, including prototyping through the construction of system models.
The requirements that are defined in the definition process need to be captured in a
form that is appropriate for the requirements specification. Requirements definition
and requirements specification are activities, and their associated documents are the
by-products of the activities.

The process of software requirements specification (SRS) is the set of activities
designed to capture behavioral and nonbehavioral aspects of the system in the SRS
document. The goal of the SRS activity, and the resultant documentation, is to
provide a complete description of the system’s behavior without describing the
internal structure. This is easily said but difficult to achieve, particularly in those
systems where temporal behavior must be described.

Precise software specifications provide the basis for analyzing the requirements,
validating that they are the stakeholders’ intentions, defining what the designers have
to build, and verifying that they have done so correctly. Taken another way, the
portion of Figure 4.1 that does not deal with feasibility defines a set of activities
that involves eliciting, modeling, analyzing, communicating, agreeing on, and evolv-
ing requirements.

41

42 Software Engineering for Image Processing Systems

Feasibility

Requirements
Study Analysis

Requirements
A Definition
Feasibility

Report System Requirements
Models Specification

Definition of

Requirements
Requirements Requirements
Document < Specification

FIGURE 4.1 The requirements engineering process depicting documentation in rectangles
and activities in smooth rectangles. (Adapted from Sommerville, 1., Software Engineering,
Addison-Wesley, New York, 2000.)

4.2 TYPES OF REQUIREMENTS

The Institute of Electrical and Electronics Engineers (IEEE) Standard 830 is a widely
used standard for performing SRS and writing the corresponding document (IEEE,
1998). Standard 830 defines the following kinds of requirements:

Functional

External interfaces
Performance

Logical database

Design constraints

» Standards compliance

» Software systems attributes
6. Software system attributes
* Reliability

* Availability

* Security

* Maintainability

* Portability

Nk e =

Requirements 2 through 6 are considered to be nonfunctional.

Functional requirements include a description of all system inputs, and the
sequence of operations associated with each input set. Either through case-by-case
description or through some other general form of description (e.g., using universal
quantification), the exact sequence of operations and responses (outputs) to normal
and abnormal situations must be provided for every input possibility. Abnormal
situations might include error handling and recovery. In essence, functional require-
ments describe the complete deterministic behavior of the system. Generally, the

Software Requirements 43

functional requirements are allocated to software and hardware before requirements
analysis begins, though constant trade-off analysis may cause these to shift further
into the project life cycle.

External interface requirements are a description of all inputs and outputs to the
system, including:

e Name of item

* Description of purpose

* Source of input or destination of output
e Valid range, accuracy, and tolerance

e Units of measure

e Timing

* Relationships to other inputs and outputs
* Screen formats and organization

* Window formats and organization

e Data formats

e Command formats

Performance requirements include the static and dynamic numerical require-
ments placed on the software or on human interaction with the software as a whole.
For an imaging system, static requirements might include the number of simulta-
neous users to be supported. The dynamic requirements might include the numbers
of transactions and tasks, and the amount of data to be processed within certain time
periods for both normal and peak workload conditions.

Logical database requirements include the types of information used by various
functions such as frequency of use, accessing capabilities, data entities and their
relationships, integrity constraints, and data retention requirements.

Design constraint requirements are related to standards compliance and hardware
limitations.

Lastly, software system attribute requirements include reliability, availability,
security, maintainability, and portability.

It should be noted that the conventional nomenclature for functional vs. non-
functional requirements is unfortunate because the terms functional and nonfunc-
tional seem inappropriate for embedded software systems. A more logical taxonomy
would include a classification of behavior observable via execution and that not
observable via execution (e.g., maintainability, portability).

4.3 REQUIREMENTS USERS

A variety of stakeholders use the software requirements throughout the software life
cycle. Stakeholders include customers (these might be external customers or internal
customers such as the marketing department), managers, developers, testers, and
those who maintain the system. Each stakeholder has a different perspective on and
use for the SRS. Various stakeholders and their uses for the SRS are summarized
in Table 4.1.

44 Software Engineering for Image Processing Systems

TABLE 4.1
Software Stakeholders and Their Uses of the SRS
Stakeholder Use

Customers Specify the requirements and verify that they meet their needs; they specify
or approve changes to the requirements

Managers Use the requirements document to plan a bid for the system and to plan the
system development process

Developers Use the requirements to understand what system is to be developed

Test engineers Use the requirements to develop validation tests for the system

Maintenance engineers Use the requirements to help understand the system and the relationship
between its parts

An important consideration in eliciting requirements from stakeholders is that
they often do not know what they really want. The software engineer has to be
sensitive to the needs of the stakeholders and aware of the problems that stakeholders
can create, including:

» Expressing requirements in their own terms

* Providing conflicting requirements

* Introducing organizational and political factors, which may influence the
system requirements

* Changing requirements during the analysis process due to new stakehold-
ers who may emerge and changes to the business environment

The software engineer must monitor and control these factors throughout the
requirements engineering process.

4.4 FORMAL METHODS IN SOFTWARE
SPECIFICATION

Formal methods attempt to improve requirements formulation and expression by the
use and extension of existing mathematical approaches such as propositional logic,
predicate calculus, and set theory. This approach is attractive because it offers a
more scientific way to requirements specification.

Writing formal requirements can often lead to error discovery in the earliest
phases of the software life cycle, where they can be corrected quickly and at a low
cost. Informal specifications might not achieve this goal because they are not precise
enough to be refuted by counterexample.

By their nature, specifications for most imaging systems usually contain some
formality in the mathematical expression of the underlying imaging operations.
While this fact does not justify the claim that every imaging system specification is
fully formalized, it does lead to some optimism that imaging systems can be made
suitable for, at least, partial formalization.

Software Requirements 45

Approaches to requirements specification that are not formal are either informal
(such as flowcharting) or semiformal. The unified modeling language (UML) is a
semiformal specification approach, meaning that while it does not appear to be
mathematically based, in fact it is nearly formal because every one of its modeling
tools can be converted either completely or partially to an underlying mathematical
representation (a work group is focused now on remedying these deficiencies). In
any case, UML largely enjoys the benefits of both informal and formal techniques.

Formal methods are typically not intended to take on an all-encompassing role
in system or software development. Instead, individual techniques are designed to
optimize one or two parts of the development life cycle.

There are three general uses for formal methods:

1. Consistency checking — Where system behavioral requirements are
described using a mathematically based notation

2. Model checking — Uses state machines to verify whether a given property
is satisfied under all conditions

3. Theorem proving — In which axioms of system behavior are used to
derive a proof that a system will behave in a given way

Formal methods offer important opportunities for reusing requirements. Embed-
ded systems are often developed as families of similar products or as incremental
redesigns of existing products. For the first situation, formal methods can help
identify a consistent set of core requirements and abstractions to reduce duplicate
engineering effort. For redesigns, having formal specifications for the existing
system provides a precise reference for baseline behavior and a way to analyze
proposed changes.

Formal methods, however, are difficult to use by even the most expertly trained
persons and are sometimes error prone. For these reasons and because they are
sometimes perceived to increase early life cycle costs and delay projects, formal
methods are frequently avoided.

Possibly the biggest challenge in applying formal methods to image processing
systems is choosing an appropriate technique to match the problem. Still, to make
formal models usable by a wide spectrum of people, requirement documents should
use one or more nonmathematical notations such as natural language, structured
text, or diagrams.

4.4.1 LiMITATIONS OF FORMAL METHODS

Formal methods have two limitations that are of special interest to embedded system
developers. First, although formalism is often used in pursuit of absolute correctness
and safety, it can guarantee neither. Second, formal techniques do not yet offer good
ways to reason about alternative designs or architectures.

Correctness and safety are two of the original motivating factors driving adoption
of formal methods. Nuclear, defense, and aerospace regulators in several countries
now mandate or strongly suggest use of formal methods for safety-critical systems.
This environment has driven an emphasis on safety-oriented applications of formal

46 Software Engineering for Image Processing Systems

methods in the literature. Some researchers emphasize the correctness properties of
particular mathematical approaches, without clarifying that mathematical correct-
ness in the development process might not translate into real-world correctness in
the finished system. After all, it is only the specification that must be produced and
proven at this point, not the software product itself.

Formal software specifications must be converted to a design and, later, to a
conventional implementation language. This translation process is subject to all the
potential pitfalls of any programming effort. For this reason, testing is just as
important when using formal requirement methods as when using traditional ones.
Formal verification is also subject to many of the same limitations as traditional
testing, namely, that testing cannot prove the absence of bugs — only their presence.

Notation evolution is a slow, but ongoing process in the formal methods com-
munity. It can take many years from when a notation is created until it is adopted
in industry. Therefore, an important trend influencing this evolution is the rise of
semiformal, object-oriented analysis notations, such as the UML. There is some
disagreement, however, on whether UML should have a significant place in formal
requirements analysis.

44.2 7

Z (pronounced zed), introduced in 1982, is a formal specification language that is
based on set theory and predicate calculus. As in other algebraic approaches, the
final specification in Z is reached by a refinement process starting from the most
abstract aspects of the system. There is a mechanism for system decomposition
known as schema calculus. Using this calculus, the system specification is decom-
posed into smaller pieces called schemes, where both static and dynamic aspects of
system behavior are described.

The Z language does not have any support for defining timing constraints.
Therefore, in recent years, several extensions for time management have been pro-
posed. For example, Z has been integrated with real-time interval logic (RTIL),
which provides for an algebraic representation of temporal behavior.

There are other extensions of Z to accommodate the object-oriented approach,
which adds formalism for modularity and specification reuse. These extensions
define the system state space as a composition of the state spaces of the individual
system objects.

Most of these extensions also provide for information hiding, inheritance, poly-
morphism, and instantiation into the Z schema calculus. For example, one extension,
Object-Z, includes all the aforementioned extensions and further integrates the
concepts of temporal logic, making it suitable for real-time specification. In this
language, the object status is a sort of event history of object behavior, making the
language more operational than the early version of Z.

4.4.3 FINITE STATE MACHINES

The finite state machine (FSM), also known as the finite state automaton (FSA) or
state transition diagram (STD), is a type of mathematical model used in the speci-

Software Requirements 47

Calibration

Error

Op_op

Diagnostic Operational

op_op

FIGURE 4.2 Partial FSM showing behavior of the visual inspection system.

fication and design of a wide range of systems. Intuitively, FSMs rely on the fact
that many systems can be represented by a fixed number of unique states. The system
may change state depending on time or the occurrence of specific events — a fact
that is reflected in the automaton.

An FSM can be specified in diagrammatic, set-theoretic, and matrix representa-
tions. To illustrate them, consider the visual inspection system. Suppose it can be in
one of three modes of operation: calibration, diagnostic, or operational. The calibra-
tion mode is entered when the operator sets a signal (op_cal). Similarly, the system
returns to operational mode upon issuance of the op_op signal. The diagnostic mode
is entered if an exceptional condition or error occurs in either of the other modes.
The diagnostic mode can only be exited by operator intervention by setting the
appropriate signal. This behavior can be described by the FSM shown in Figure 4.2.

The behavior shown in Figure 4.2 can also be represented mathematically by
the 5-tuple

M={S,i,T,%,8} 4.1)

where S is a finite, nonempty set of states; i is the initial state (i is a member of S);
T is the set of terminal states (7 is a subset of S); X is an alphabet of symbols or
events used to mark transitions; and & is a transition function that describes the
next state of the machine given the current state, and a symbol from the alphabet
(an event). That is, &:SXA — §.

In the visual inspection system example, S = {calibration, diagnostic, opera-
tional}, i = calibration, T = S, and X = {op_op, op_cal, error}. The transition
function can be described by a set of triples of the form (state, signal, next_state).

48 Software Engineering for Image Processing Systems

TABLE 4.2
Transition Matrix for the FSM of the Visual
Inspection System Shown in Figure 4.7

Event
Current State op_op op_cal error
Calibration Operational Calibration Diagnostic
Diagnostic Operational Calibration Diagnostic
Operational Operational Calibration Diagnostic

Note: The internal entries are values of the next state function.

It is usually more convenient to represent the transition function with a transition
matrix, as shown in Table 4.2.

An FSM that does not depict outputs during transition is called a Moore machine.
Outputs during transition can be depicted, however, by a variation of the Moore
machine, called the Mealy machine. The Mealy machine can be described mathe-
matically by a 6-tuple,

M={s,i,T,%,T,8} (4.2)

where the first five elements of the 6-tuple are the same as those for the Moore
machine and a sixth parameter, I, represents the set of outputs. The transition
function is slightly different from before in that it describes the next state of the
machine given the current state, and a symbol from the alphabet. The transition
function is then &:SXA — SxT.

A general Mealy machine for a system with three states, three inputs, and three
outputs such as the visual inspection system (VIS) is shown in Figure 4.3.

The transition matrix for the FSM in Figure 4.3 is shown in Table 4.3.

FSMs are easy to develop, and code can be easily generated using tables to
represent the transitions between states. They are also unambiguous, as they can be
represented with a formal mathematical description. In addition, concurrency can
be depicted by using multiple machines.

Finally, because mathematical techniques for reducing the number of states exist,
programs based on FSMs can be formally optimized. A rich theory surrounding
FSMs can be exploited in the development of system specifications.

On the other hand, the major disadvantage of FSMs is that the internal aspects,
or “insideness,” of modules cannot be depicted. That is, there is no way to indicate
how functions can be broken down into subfunctions. In addition, intertask commu-
nication for multiple FSMs is difficult to depict. Finally, depending on the system
and alphabet used, the number of states can grow very large. Both of these problems,
however, can be overcome through the use of statecharts.

Software Requirements 49

e,/o; €,/0, e,/0,

e3/03.

FIGURE 4.3 A generic Mealy machine for a three-state system with events e,, e,, and e; and
outputs 0,, 0,, and 05.

TABLE 4.3
Transition Matrix for FSM in Figure 4.3
S S, S3
e, S/S, S/S, S//S,
e $,/0, $,/0, $,/0,
e S,/0, $,/0, S4/0,

4.4.4 STATECHARTS

Statecharts combine FSMs with data flow diagrams (DFDs) and a feature called
broadcast communication in a way that can depict synchronous and asynchronous
operations. Statecharts can be described succinctly as statecharts = FSM + depth +
orthogonality + broadcast communication (Figure 4.4). Depth represents levels of
detail, orthogonality represents separate tasks, and broadcast communication is a
method for allowing different orthogonal processes to react to the same event. The
statechart resembles an FSM where each state may contain its own FSM describing
its behavior. The various components of the statechart are depicted as follows:

1. The FSM is represented in the usual way, with capital letters or descriptive
phrases used to label the states.

2. Depth is represented by the insideness of states.

3. Broadcast communications are represented by labeled arrows, in the same
way as FSMs.

4. Orthogonality is represented by dashed lines separating states.

50 Software Engineering for Image Processing Systems

X | xly | x(ep,e€) | X(ep-ep)ly

R

FIGURE 4.4 Statechart format where A and B are states, x is an event that causes the
transition marked by the arrow, y is an optional event triggered by x, and e, ... e, are conditions
qualifying the event.

5. Symbols a, b, ..., z represent events that trigger transitions, in the same
way that transitions are represented in FSMs.

6. Small letters within parentheses represent conditions that must be true for
the transitions to occur.

A significant feature of statecharts is the encouragement of top-down design of
a module. For example, for any module (represented like a state in an FSM),
increasing detail is depicted as states internal to it. In Figure 4.5, the system is
composed of states A and B. Each of these in turn can be decomposed into states
Al and A2 and B1 and B2, respectively, which might represent program modules.
Those states can also be decomposed, and so forth. To the software designer, each
nested substate within a state represents a procedure within a procedure.

Orthogonality depicts concurrency in the system for processes that run in iso-
lation, called AND states. Orthogonality is represented by dividing the orthogonal
components by dashed lines. For example, if state Y consists of AND components

e/f

FIGURE 4.5 A statechart depicting insideness.

Software Requirements 51

FIGURE 4.6 Statechart depicting a chain reaction.

A and D, Y is called the orthogonal product of A and D. If Y is entered from the
outside (without any additional information), then states A and D are entered simul-
taneously. A commonwealth between the AND states can be achieved through global
memory, whereas synchronization can be achieved through a unique feature of
statecharts called broadcast communication.

Broadcast communication is depicted by the transition of orthogonal states based
on the same event. For example, if an imaging system switches from standby to ready
mode, an event indicated by an interrupt can cause a state change in several processes.

Another unique aspect of broadcast communication is the concept of the chain
reaction; that is, events can trigger other events. The implementation follows from
the fact that statecharts can be viewed as an extension of Mealy machines, and output
events can be attached to the triggering event. In contrast with the Mealy machine,
however, the output is not seen by the outside world; instead, it affects the behavior
of an orthogonal component.

For example, in Figure 4.6 suppose there exists a transition labeled e/f, and if
event e occurs, then event f is immediately activated. Event f could, in turn, trigger
a transaction such as f/g. The length of a chain reaction is the number of transitions
triggered by the first event. Chain reactions are assumed to occur instantaneously.
In this system, a chain reaction of length 2 will occur when the e/f transition occurs.

Statecharts are well-suited for representing embedded systems because they can
easily depict concurrency while preserving modularity. In addition, the concept of
broadcast communication allows for easy intertask synchronization and communication.

In short, the statechart improves upon embedded FSMs. Finally, commercial
products allow an engineer to graphically design embedded systems using state-
charts, perform detailed simulation analysis, and generate Ada, C or C** code.
Furthermore, statecharts can be used in conjunction with both structured and object-
oriented analysis.

4.4.5 Petri NETS

Petri nets are another formal method used to specify the operations to be performed
in a multiprocessing or multitasking environment. While they have a rigorous foun-

52 Software Engineering for Image Processing Systems

T
P, |_| P,
{0
Before Firing
T,
(o)
u After Firing
FIGURE 4.7 Petri nets firing rule.
TABLE 4.4
Firing Table for Petri Net Shown
in Figure 4.7
P, P,
Before firing 1 0
After firing 0 1

dation, they can also be described graphically. A series of circular bubbles called places
are used to represent data stores or processes. Rectangular boxes are used to represent
transitions or operations. The processes and transitions are labeled with a data count
and transition function, respectively, and are connected by unidirectional arcs.

The initial graph is labeled with markings given by m,, which represent the
initial data count in the process. Net markings are the result of the firing of transitions.
A transition, ¢, fires if has as many inputs as required for output.

In Petri nets, the graph topology does not change over time; only the markings
or contents of the places do. The system advances as transitions fire.

To illustrate the notion of firing, consider the Petri nets given in Figure 4.7, with
the associated firing table given in Table 4.4.

For a somewhat more significant example, consider the Petri net in Figure 4.8.
Reading from left to right and top to bottom indicates the stages of firings in the
net. Table 4.5 depicts the firing table for the Petri net in Figure 4.8.

Petri nets can be used to model systems and to analyze timing constraints and
race conditions. Certain Petri net subnetworks can model familiar flowchart con-
structs. Figure 4.9 illustrates these analogies.

Petri nets are excellent for representing multiprocessing and multiprogramming
systems, especially where the functions are simple. Because they are mathematical
in nature, techniques for optimization and formal program proving can be employed.
But Petri nets can be overkill if the system is too simple. Similarly, if the system is
highly complex, timing can be become obscured.

Software Requirements 53

my

my

FIGURE 4.8 A slightly more complex Petri net.

TABLE 4.5
Firing Table for Petri Net in
Figure 4.8
P [Ps Ps
m, 1 1 2 0
m, 0 0 3 1
m, 0 0 2 2
m, 0 0 1 3
m, 0 0 0 4

The Petri net is a powerful analysis and modeling tool that can be used for
deadlock and race condition identification.

The model described herein is just one of a variety of available models. For
example, there are timed Petri nets, which enable synchronization of firings; colored
Petri nets, which allow for labeled data to propagate through the net; and even timed-
colored Petri nets, which embody both features.

4.5 SPECIFICATION OF IMAGING SYSTEMS: A SURVEY
OF CURRENT PRACTICES

There appears to be no dominant approach for specification of imaging applications.
Existing surveys of requirements specification do not address the use of these
approaches in imaging applications. In general, it seems that imaging engineers tend
to use one or a combination of the following approaches in writing software spec-
ifications for imaging applications:

54 Software Engineering for Image Processing Systems

(a)

True

ERlES
P

(d)

T (Stop Looping)

Y 7\
[) <
Keep
Looping? \%
True Y
F <)

I

(©)

FIGURE 4.9 Flowchart equivalence: (a) sequence, (b) conditional branch, (c) while loop.

* Top-down process decomposition or structured analysis

* Object-based or object-oriented approaches

e Program description languages (PDLs) or pseudo-code

* High-level functional specifications that are not further decomposed

* Ad hoc techniques, including simple natural language and mathematical
descriptions, which are always included in virtually every system speci-
fication

In order to illustrate this, examples excerpted from the literature are given. Much
of this discussion has been adapted from Laplante and Neill (2003b).

Software Requirements 55

» Block Matching

Satisfying
Threshold

Block Matching

T T

Low-Pass Filtering
and Subsampling

Low-Pass Filtering
and Subsampling

Low-Pass Filtering
and Subsampling

Low-Pass Filtering
and Subsampling

Frame n

Frame n—1

Motion Field

FIGURE 4.10 Block diagram for a three-level threshold multiresolution block matching.
(From Shi, Y.Q. and Sun, H., Image and Video Compression for Multimedia Engineering,
CRC Press, Boca Raton FL, 2000.)

4.5.1 MULTIRESOLUTION BLOCK-MATCHING SYSTEM SPECIFICATION
UsING A BLock DIAGRAM AND FLOWCHART

The example shown in Figure 4.10 from Shi and Sun (2000) indicates the use of
flowcharts in the operational specification for a multiresolution block-matching
algorithm such as those used in motion estimation. In such a system, an image is
partitioned into a set of nonoverlapped, equally spaced, fixed-size, small rectangular
blocks. Then displacement vectors for these blocks are estimated by finding their
best-matched counterparts in the previous frame. In this manner, motion estimation
is significantly easier than that for arbitrarily shaped blocks.

A procedural description of the block-matching component denoted in Figure
4.10 is then depicted using a flowchart, as shown in Figure 4.11.

No further specification is given for the technique, and it is expected that an
“ordinary” imaging engineer would be able to implement a design and build the
systems using this level of specificity. There is no consideration for the overall
software architecture, the data structures and their relationships, or the timing con-
straints that must be met. While this technique is suitable for the specification of
individual tasks or algorithms, it is not scalable for large systems.

56 Software Engineering for Image Processing Systems

Initialization with an Intermediate
Level in the Multigrid

v

Block Matching

Is the Preset
Accuracy Criterion
Satisfied?

Does the Block
Size Reach a Preset
Minimum?

Splitting the Block
(Binary or Quaternary)

> Completion of Matching for the
Block

FIGURE 4.11 Flowchart of multigrid block matching. (From Shi, Y.Q. and Sun, H., Image
and Video Compression for Multimedia Engineering, CRC Press, Boca Raton FL, 2000.)

4.5.2 CoLLisioN TesTING oF GRAPHICAL OBjects USING
Pseubo-Cobe

Pseudo-code and PDLs are specification techniques with similar problems of scal-
ability. An example of a pseudo-code specification is shown in Figure 4.12, which
depicts the collision testing between graphical objects frequently used in video
games, taken from Moller and Haines (1999).

This type of specification is again sufficient for individual tasks or algorithms,
but only at late stages of design where the majority of decisions have been made
because the pseudo-code representation is so close to code that it will likely be
regarded as the final design version of system behavior, rather than a description of
system expectation.

4.5.3 FUNCTIONAL REPRESENTATION OF MACHINE VISION SYSTEM
USING A STRUCTURED APPROACH

Rajeswari and Rodd (1999) apply a functional description, similar to a context
diagram used in structured design, to describe a machine vision system for inspecting
flaws in an integrated circuit wire bond. The functional description is given in Figure
4.13. Further decomposition is given using their Q-model, which is a novel technique
for the specification of temporal properties of systems similar to Petri nets.

Software Requirements 57

FindFirstHitCD (A, B)
returns ({ TRUE, FALSE});
if (not overlap (Agy, Bpy) return FALSE;
else if (isLeaf(A))
if (isLeaf(B))
for each triangle pair T, € A and T3 € B
if (overlap(T,, Tp)) return TRUE:
else
for each child Cz € B,
FindFirstHitCD(A, Cp)

O © 9 N A NN —

else
for each child C,€ A,
FindFirstHitCD(C,4, B)
return FALSE:

—_ e =
N = O

FIGURE 4.12 Hierarchical collision testing algorithm. (Redrawn from Moéller, T. and Haines,
E., Real-Time Rendering, A. K. Peters, Natick, MA, 1999.)

Wire
Image
Inspection

Pbond
Image
Inspection

IC Under
Inspection [
Lbond

\A
Image

Acquisition

Lbond
Image
Inspection

FIGURE 4.13 Functional representation of machine vision system for inspecting integrated
circuit wire bonds. (From Rajeswari, M. and Rodd, M.G., Real-Time Imaging, 5, 409—421,
1999. With permission from Elsevier.)

This represents a significant advance over the previous examples, since there is
a segregation of perspectives in the overall specification: data flow is indicated in
one diagram, and timing and control information in another. The use of structured
approaches has its own drawbacks, however, which will be discussed later with
reference to a case study.

4.5.4 MArkov RANDOM FiELDS IMAGE RECONSTRUCTION USING
OBJECT-ORIENTED DESIGN

The final example found in the literature is the use of object-oriented techniques. It
is important to note that there is a distinction between object-oriented design and

58 Software Engineering for Image Processing Systems

LU_Solver System Solver Control (SW)
(Data Flow attr.) (Data Flow attr.)
(Address Ports) | ———<C>{ (Address Ports) f---- control, events __ Inew_image()
parameters, etc. loaded()
solve() go() written()
wscan() - - - { ready() detected()
wescan() ! — break()
readx() . L AAARARAEREREEAEEAA A system_solved()
[DI 1 T=1 I [! . . N
F_Field G_Field
Edge Detector
Image Field
(Data Flow attr.) written() Load-image()
(Address Ports) Pixel_in
Pixel_out
detect-edge() X,Y : Address
Read-Pixel() Cell: Memory
Write_Pixel() - -
goenh() erte_P!er()
ready() Read_Pixel()

FIGURE 4.14 Class diagram of the image reconstruction system model. (From Mariatos,
E.P., Birbas, M.K., Birbas, A.N., and Petrellis, N., in Proceedings of the Seventh IEEE
International Workshop on Rapid System Prototyping, June 19-21, 1996, IEEE Computer
Society Press, Los Alamitos, CA, pp. 90-95. With permission.)

specification and object-based image processing techniques. The latter is a technique
used in image processing for identifying visual objects in a scene based on certain
features. This is clearly different from the former, which is a software engineering
approach that is interested in modeling systems as communities of entities that
encapsulate state and behavior.

Mariatos et al. (1996) proposed an object-oriented design for an image recon-
struction system used to reconstruct images damaged by transmission errors or lossy
compression. The system applies edge-preserving smoothing transforms on an input
image. The outputs are then a surface field (the transformed image) and a disconti-
nuity field (the edge information).

It can be seen from the class model in Figure 4.14 that rather than the system
being decomposed into constituent processes — a characteristic present in all the
previous examples — the model is formed by representing the entities involved
(F_Field is the surface field, for example).

This aspect of object-oriented analysis and design is studied in detail below.

4.6 CASE STUDY

The previous survey of requirements specification techniques indicates that there is
certainly no standard way to write requirements for imaging systems. Moreover,

Software Requirements 59

most of the techniques that are used are informal or even ad hoc. It can be concluded,
then, that much of what is going on in the engineering of imaging systems lacks
software engineering rigor. Because of this lack of rigor, many systems are probably
costing more than they should to build and maintain.

The lack of a de facto standard technique for specification and design further
raises the question of whether any technique is more appropriate than another for
the modeling of an imaging system. While both structured and object-oriented
techniques are appropriate for specification and design of imaging systems, in fact
the semiformal UML is a very desirable way to develop object-oriented SRSs in
this regard.

Nevertheless, either the structured or object-oriented approach can be used. To
show how this might be done, the visual inspection system example is used in the
specification of an imaging system using both an object-oriented technique and a
non-object-oriented counterpoint, structured analysis and structured design (SASD).

4.6.1 STRUCTURED ANALYSIS AND DESIGN

Methods for SASD have evolved over almost 30 years and are widely used in image
processing applications — probably because the techniques are closely associated
with the programming languages with which they co-evolved (Fortran and C) and
in which many image processing applications are written. Structured methods appear
in many forms, but the de facto standard is Yourdon’s modern structured analysis
(Yourdon, 1991).

Yourdon’s modern structured analysis uses three viewpoints to describe a system:
an environmental model, a behavioral model, and an implementation model. The
elements of each model are shown in Figure 4.15.

The environmental model embodies the analysis aspect of SASD and consists
of a context diagram and an event list. The purpose of the environmental model is
to model the system at a high level of abstraction.

The behavioral model embodies the design aspect of SASD as a series of DFDs,
entity relationship diagrams (ERDs), process specifications, STDs, and a data dic-
tionary. Using various combinations of these tools, the designer models the pro-
cesses, functions, and flows of the system in detail.

Finally, in the implementation model, the developer uses a selection of structure
charts, natural language, and pseudo-code to describe the system to a level that can
be readily translated to code.

4.6.2 STRUCTURED ANALYSIS

Structured analysis (SA) is a way to try to overcome the problems of classical
analysis using graphical tools and a top-down, functional decomposition method to
define system requirements. SA deals only with aspects of analysis that can be
structured — the functional specifications and the user interface.

SA is used to model a system’s context (where inputs come from and where
outputs go), processes (what functions the system performs, how the functions
interact, how inputs are transformed to outputs), and content (the data the system
needs to perform its functions).

60 Software Engineering for Image Processing Systems

Context Diagram
Event List Environmental
Natural Language Model
DFD/CFD
ER Diagram .

o Behavioral
Data Dictionary
P-SPEC, C-SPEC Model
STD/FSM

Natural Language

Structure Charts

P-SPEC Implementation

Model

Temporal Logic

Natural Language

FIGURE 4.15 Elements of structured analysis and design. (From Laplante, P.A. and Neill,
C.J., in Real-Time Imaging VI, vol. 4666, January 2002, SPIE Press, Bellingham, WA, 2002,
pp. 55-64.)

SA seeks to overcome the problems inherent in analysis through:

e Maintainability of the target document

* Use of an effective method of partitioning

* Use of graphics

* Building of a logical model of the system for the user before implemen-
tation

* Reduction of ambiguity and redundancy

The target document for SA is called the structured specification. It consists of
a system context diagram, an integrated set of DFDs showing the decomposition
and interconnectivity of components, and an event list to represent the set of events
that drive the system.

To illustrate the SA technique, consider the visual inspection system previously
introduced in its operational mode (calibration and diagnostic modes are ignored
for simplicity). The following discussion is largely adapted from Laplante and
Neill (2003b).

Figure 4.16 depicts the context diagram. Here, the visual inspection system is
shown with the other constituent system parts — camera, product detector, pro-
duction conveyor controller system, and reject mechanism. Solid arcs indicate the
flow of data between system components. In the example, the only data flow
involves the transmission of the captured image to the visual inspection system.

Software Requirements 61

camera image reject » reject
mechanism
Visual
Inspection - accept
System
new_product_event / .
v
conveyor
detector = f
controller

FIGURE 4.16 Context diagram for visual inspection system. (From Laplante, P.A. and Neill,
C.J., in Real-Time Imaging VI, vol. 4666, January 2002, SPIE Press, Bellingham, WA, 2002,
pp. 55-64.)

The dashed lines represent the flow of control information. This facility is one of
the extensions needed for dealing with real-time systems, which is discussed in
Hatley and Pirbhai (1987).

In the example, the event list consists of the “new_product_event,” which indi-
cates the detection of the next image on the line “accept,” which indicates that the
product has passed inspection and causes a signal to be sent to the conveyor con-
troller, or “reject,” which causes a signal to be sent that directs the conveyor to move
the product into a rejected product bin. The rejection mechanism automatically
causes the next product item to be moved along by the conveyor controller.

It should be reiterated that this context diagram is not complete owing to the
omission of the calibration and diagnostic modes. While the intent here is not to
provide a complete system design, and so there are some omissions, a point to be
made is that missing functionality is more easily identified during the requirements
elicitation process if some form of graphical aid, such as the context diagram, is
available. In the case of object-oriented analysis, a use case diagram will be helpful.

4.7 OBJECT-ORIENTED ANALYSIS

As an alternative to the SA approach to developing software requirements for the
visual inspection system, consider using an object-oriented approach. There are
various “flavors” of object orientation, each using their own tool sets. In the approach
developed here, the system specification begins with the representation of externally
accessible functionality as use cases.

Use cases are an essential artifact in object-oriented analysis (OOA) design and
are described graphically by any of several techniques. The use case diagram can
be considered analogous to the context diagram in SA in that it represents the
interactions of the software system with its external environment.

62 Software Engineering for Image Processing Systems

VIS
Product
Classification

Camera .

Reject
Defective Mechanism
Product
Product Image
Sensor Engineer

FIGURE 4.17 Use case diagram of visual inspection system. (From Laplante, P.A. and Neill,
C.J., in Real-Time Imaging VI, vol. 4666, January 2002, SPIE Press, Bellingham, WA, 2002,
pp. 55-64.)

Use cases are represented graphically as ellipses, as can be seen in Figure 4.17.

However, each use case is a document that describes scenarios of operation of
the system under consideration as well as pre- and postconditions, and exceptions.
In an iterative development life cycle, these use cases will become increasingly
refined and detailed as the analysis and design work flows progress. Interaction
diagrams are then created to describe the behaviors defined by each use case. In the
first iteration, these diagrams depict the system as a black box, but once domain
modeling has been completed, the black box is transformed into a collaboration of
objects, as will be seen later.

4.8 OBJECT-ORIENTED VS. STRUCTURED ANALYSIS

The above observations beg the question of whether OOA is more suitable than SA
for the visual inspection system in particular and for image processing applications
in general. SA and OOA are often compared and contrasted, and indeed, they are
similar in some ways. This should be no surprise as both have their roots in the
work of Parnas (1972, 1979) and his successors. Table 4.6 provides a side-by-side
comparison of the methodologies.

Both structured and OOA are full life-cycle methodologies and use some similar
tools and techniques. However, there are major differences. SA describes the system
from a functional perspective and separates data flows from the functions that
transform them, while OOA describes the system from the perspective of encapsu-
lated entities that possess both function and form.

Additionally, OOA models include inheritance, while SA does not. Although
SA has a definite hierarchical structure, this is a hierarchy of composition rather

Software Requirements

63

TABLE 4.6

A Comparison of SA and OOA

System components
Data processes
Control processes
Data stores

SA

Functions
Separated through internal
decomposition

OOA

Objects
Encapsulated within objects

Characteristics Hierarchical structure Inheritance
Classifications of functions Classification of objects
Encapsulation of knowledge within ~ Encapsulation of knowledge within
functions objects
Data
Actions Events

FIGURE 4.18 A project’s applicability to either object-oriented or structured analysis accord-
ing to system focus. (From Laplante, P.A. and Neill, C.J., in Real-Time Imaging VI, vol. 4666,
January 2002, SPIE Press, Bellingham, WA, 2002, pp. 55-64.)

than heredity. This shortcoming leads to difficulties in maintaining and extending
both the specification and design, such as in the case of changes in the visual
inspection system example.

The purpose of this discussion is not to dismiss SA, or even to conclude that it
is better than OOA in all cases. An overriding indicator of suitability of OOA vs.
SA to image processing is the nature of the application. To see this, consider the
vertices of the triangle in Figure 4.18 representing three distinct viewpoints of a
system: data, actions, and events.

Events represent stimuli and responses such as measurements in process control
systems, as in the case study. Actions are rules that are followed in complex algo-
rithms, such as binarize, threshold, and classify. The majority of early computer
systems were focused on one, or at most two, of these vertices. For example, early,
non-real-time image processing systems were data and action intensive but did not
encounter much in the way of stimuli and response.

Image processing is data intensive and would seem well suited to SA. But often
the image itself contains control information (e.g., reject, accept), which is not well
suited to SA. Moreover, while it is true that image processing is data intensive and
an image has high information content, this is not the same as the data intensity
found in, say, a database management system. It is likely that image processing is

64 Software Engineering for Image Processing Systems

as much event or activity based as it is data based, which makes it quite suitable for
object-oriented techniques.

The evidence and case study point out that requirements specification can be
done in image processing systems using both structured and object-oriented
approaches.

4.8.1 RECOMMENDATIONS ON SPECIFICATION APPROACH FOR
IMAGING SYSTEMS

The preceding discussions illustrate some of the challenges (in fact, one might
consider them habits) encountered by engineers specifying imaging systems:

* Mixing of operational and descriptive specifications

e Combining low-level hardware functionality and high-level systems and
software functionality in the same functional level

* Omission of timing information

It is risky to prescribe a preferred technique because it is well known that there
is no silver bullet when it comes to software specification and design, and each
system should be considered on its own merits. Nevertheless, regardless of approach,
imaging system modeling should incorporate the following best practices:

* Use consistent modeling approaches and techniques throughout the spec-
ification, for example, a top-down decomposition, structured or object-
oriented approach.

» Separate operational specification from descriptive behavior.

* Use consistent levels of abstraction within models and conformance
between levels of refinement across models.

e Model nonfunctional requirements as a part of the specification models
— in particular timing properties.

* Omit hardware and software assignment in the specification (another
aspect of design rather than specification).

4.9 ORGANIZING THE REQUIREMENTS DOCUMENT

There are many ways to organize the SRS, but IEEE Standard 830-1998 provides
a template of what an SRS should look like and is IEEE’s recommended practice
for SRSs.

The SRS is described as a “binding contract among designers, programmers,
customers, and testers,” and it encompasses different design views or paradigms for
system design. The recommended design views include some combination of decom-
position, dependency, interface, and detail descriptions. Together with boilerplate
front matter, these form a standard template for SRSs, depicted in Figure 4.19.

Sections 1 and 2 are self-evident; they provide front matter and introductory material
for the SRS. The remainder of the SRS is devoted to the four description sections.

Software Requirements 65

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions and Acronyms
1.4 References
1.5 Overview
2. Overall Description
2.1 Product Perspective
2.2 Product Functions
2.3 User Characteristics
2.4 Constraints
2.5 Assumptions and Dependencies
3. Specific Requirements
Appendices
Index

FIGURE 4.19 Table of contents outline for an SRS in IEEE Standard 830-1998 format.

3. Functional Requirements

3.1 Calibration Mode

3.2 Operational Mode

3.2.1 Initialization

3.2.2 Normal Operation

3.2.2.1 Image Capture

3.2.2.2 Image Error Correction
3.2.2.2.1 Position Error Reduction
3.2.2.2.2 Noise Error Reduction
3.2.2.3 Captured Image Analysis
3.2.2.4 Conveyor System Control
3.2.2.5 Reject Mechanism Control
3.2.2.6 Error Handling

3.3 Diagnostic Mode

4. Non-Functional Requirements

FIGURE 4.20 Some specific requirements for the visual inspection system in IEEE 830
format.

An outline of some specific requirements, or work breakdown structure (WBS),
for the visual inspection system in IEEE Standard 830 format is given in Figure
4.20. The section headings can be decomposed further using a technique such as SA.

IEEE Standard 830 provides for several alternative means to represent the
requirements specifications, aside from a function perspective. In particular, the
software requirements can be organized by:

* Functional mode (e.g., operational, diagnostic, calibration)
» User class (e.g., operator, diagnostic)

* Object

» Feature (what the system provides to the user)

66 Software Engineering for Image Processing Systems

e Stimulus (e.g., sensors 1, 2, and so forth)
* Functional hierarchy (as shown in Figure 4.20)
¢ Mixed (combining two or more of the above)

4.9.1 WRITING GOoOD REQUIREMENTS

Whatever approach is used in organizing the SRS, IEEE Standard 830 describes the
characteristics of good requirements. That is, good requirements must be:

e Correct — They must correctly describe the system behavior.

¢ Unambiguous — The requirements must be clear, not subject to different
interpretations.

¢ Complete — There must be no missing requirements. Ordinarily, the note
“TBD” (to be defined later) is unacceptable in a requirements document.
IEEE 830 sets out some exceptions to this rule.

¢ Consistent — One requirement must not contradict another.

* Ranked for importance and stability — Not every requirement is as critical
as another. By ranking the requirements, designers will find guidance in
making trade-off decisions.

* Verifiable — A requirement that cannot be verified is a requirement that
cannot be shown to have been met.

* Modifiable — The requirements need to be written in such a way as to
be easy to change. In many ways this approach is similar to the information
hiding principle.

¢ Traceable — The benefits of traceability have been mentioned at length.
The requirements provide the starting point for the traceability chain.
Numbering the requirements in hierarchical fashion can aid in this regard.

To meet these criteria and to write clear requirements documentation, there are
several best practices that the requirements engineer can follow:

e Invent and use a standard format and use it for all requirements.
* Use language in a consistent way.

* Use shall for mandatory requirements.

* Use should for desirable requirements.

* Use text highlighting to identify key parts of the requirement.

* Avoid the use of technical language unless it is warranted.

To illustrate, consider the following bad requirements:

“The systems shall be completely reliable.”
“The system shall be modular.”

“The system shall be maintainable.”

“The system will be fast.”

“Errors shall be less than 99%.”

Nk L=

Software Requirements 67

These requirements are bad for a number of reasons. None are verifiable, for exam-
ple, how is reliability supposed to be measured. Even number 5 is vague. What does
less than 99% mean?

Now consider the following requirements:

1. “Response times for all level 1 actions will be less than 100 msec.”

2. “The cyclomatic complexity of each module shall be in the range of 10
to 40.”

3. “Ninety-five percent of the transactions shall be processed in less than

1 sec.”
4. “An operator shall not have to wait for the transaction to complete.”
5. “MTBF shall be 100 h of continuous operation.”

These requirements are better versions of the preceding ones. Each is measurable
because each makes some attempt to quantify the qualities that are desired. For
example, cyclomatic complexity is a measure of structure, MTBF is a measure of
the mean time between failures, and processing time is a measure of speed. Although
improved, these requirements could stand some refinement based on the context of
requirements specification as a whole.

4.10 REQUIREMENTS VALIDATION AND REVIEW

Verification of the software product means ensuring that the software is conforming
to the SRS. Verification is akin to asking the question “Am I building the software
right?” in that it requires satisfaction of requirements.

Requirements validation, on the other hand, is tantamount to asking the question
“Am I building the right software?” Too often, software engineers deliver a system
that conforms to the SRS only to discover that it is not what the customer really wanted.

Performing requirements validation involves checking the following:

e Validity — Does the system provide the functions that best support the
customer’s needs?

* Consistency — Are there any requirements conflicts?

* Completeness — Are all functions required by the customer included?

e Realism — Can the requirements be implemented given the available
budget and technology?

* Verifiability — Can the requirements be checked?

There are a number of ways of checking an SRS for conformance to the IEEE
Standard 830 best practices and for validity. These approaches include:

1. Requirements reviews
2. Systematic manual analysis of the requirements
3. Prototyping

68 Software Engineering for Image Processing Systems

Using an executable model of the system to check requirements
Test case generation

Developing tests for requirements to check testability

Automated consistency analysis

Checking the consistency of a structured requirements description

® NNk

Of these, automated checking is the most desirable and the least likely because
of the context sensitivity of natural languages and the impossibility of verifying such
things as requirements completeness. However, simple tools can been developed to
perform simple spelling and grammar checking (which is obviously undesirable but
also can indicate ambiguity and incompleteness), flag key words that may be ambig-
uous (e.g., fast, reliable), and identify missing requirements (e.g., search for the
phrase “to be determined”) and overly complex sentences (which can indicate
unclear requirements).

4.11 SOME SURPRISES ABOUT CURRENT SOFTWARE
SPECIFICATION PRACTICES

In Chapter 3, a 2002 survey of almost 200 software practitioners in a wide range of
applications areas was mentioned. In that survey, several interesting notions about
SRS practices were uncovered (Laplante et al, 2002e). While it is inappropriate to
impute these findings exclusively to imaging systems, it is not unlikely that they
apply. Some of the more surprising findings are discussed below.

4.11.1 Surerise 1

Object-oriented specification techniques have been not been significantly adopted
by industry. Only 26% reported using object-oriented techniques. About the same
percentage used structured techniques. Only 7% use formal methods and notations.
Thirty-one percent responded that they used no software methodology at all.

4.11.2 SuURPRISE 2

When formal methods are used, there is a perceived penalty in reduced ease of use
in the end product. Only 70% of respondents who used formal representations agreed
with the statement that “the capabilities of the finished product fitted well with
customer or user needs,” compared to 79% that indicated informal and 77% that
indicated semiformal. Similar results were found for the statement “end users found
the finished product easy to use”: 62%, formal; 70%, informal; and 73%, semiformal.

4.11.3 SuRPRISE 3

While there is a belief that not enough requirements engineering is occurring, this
does not seem to negatively affect customer perceptions of the end product. Fifty-
two percent of respondents did not think that their company did enough requirements

Software Requirements 69

engineering; 29% thought that enough was being done. Fifty-nine percent indicated
that they are performing requirements inspections; 32% are not using them; and 9%
did not know. Of those respondents who felt that they did enough requirements
engineering, 84% thought that the product fit the customer’s needs and 73% thought
that the product was easy to use. Of those who felt that their company did not do
enough requirements engineering, 79% thought the product fit the customer’s needs
and 70% thought the product was easy to use.

4.11.4 Surprise 4

Using object-oriented methods is perceived to lead to systems that are easier to use
and more fitting of customer needs than structured methods. Of those that used
OO0A, 78% felt that the capabilities of the finished product fit well with customer
needs. This compares to 74% for users of structured methods — only a 5% differ-
ence. For perceived end-product usability, 76% of the OOA practitioners felt that
the end users found the product easy to use, but only 61% of the SA practitioners
held that opinion.

4.12 EXERCISES

4.1 What are the problems and ramifications of translating a requirement from
one modeling technique (e.g., FSMs) to another (e.g., Petri nets)?

4.2 Who should write, analyze, and critique SRSs?

4.3 Under what circumstances and when should SRSs be changed?

4.4 Use statecharts instead of FSMs to represent the visual inspection system
as it is described in the examples. Do the same using Petri nets.

4.5 Redraw the use case diagram for the visual inspection system in Figure
4.16 to include the calibration and diagnostic modes.

4.6 For a system with which you are familiar, find three good requirements
and three bad requirements in the SRS. Rewrite the bad requirements so
that they comply with IEEE Standard 830.

5 Software System
Design

Experience is a dear teacher, but the fool will learn from no other.

Benjamin Franklin

5.1 THE DESIGN ACTIVITY

The design activity is involved in identifying the components of the software design
and their interfaces from the software requirements specification (SRS). The prin-
ciple artifact of this activity is the software design description (SDD).

During the design period in particular, the engineer must design the software
architecture, which involves the following tasks:

e Performing hardware and software trade-off analysis

* Designing interfaces to external components (hardware, software, and user
interfaces)

* Designing interfaces between components

* Making the determination between centralized or distributed processing
schemes

¢ Determining concurrency of execution

* Designing control strategies

* Determining data storage, maintenance, and allocation strategy

* Designing databases, structures, and handling routines

e Designing the startup and shutdown processing

* Designing algorithms and functional processing

* Designing error processing and error message handling

¢ Conducting performance analyses

e Specifying physical location of components and data

* Designing any test software identified in test planning

¢ Creating documentation for the system, including (if applicable):
* Computer system operator’s manual
* Software user’s manual
* Software programmer’s manual

e Conducting internal reviews

* Developing the detailed design for the components identified in the soft-
ware architecture

* Developing the test cases and procedures to be used in the formal accep-
tance testing

71

72 Software Engineering for Image Processing Systems

e Documenting the software architecture in the form of the SDD
* Presenting the detail design information at a formal design review

This intimidating set of tasks is further complicated because many of them must
occur simultaneously or be iterated several times. There is no algorithm, per se, for
conducting these tasks. Instead, it takes many years of practice, experience, learning
from the experience of others, and good judgment to guide the software engineer
through this maze of tasks.

Two methodologies, process- or procedural-oriented design and object-oriented
design (OOD), are related to structured analysis and object-oriented analysis, respec-
tively, and can be used to begin performing the design activities from the SRS
produced by either structured analysis or structured design (SD). Each methodology
seeks to arrive at a model containing small, detailed components.

Much of this chapter is based on a series of papers that first studied the nature
of software specification and design in imaging systems (Laplante and Neill, 2002a,
2003b; Laplante et al., 2002c, 2002e; Neill and Laplante, 2002b, 2003a).

5.2 PROCEDURAL-ORIENTED DESIGN

Procedural-oriented design methodologies, such as SD, involve top-down or bottom-
up approaches centered on procedural languages such as C and Fortran. The most
common of these approaches utilizes design decomposition via Parnas partitioning.

5.2.1 PARNAS PARTITIONING

Software partitioning into software units with low coupling and high cohesion can
be achieved through the principle of information hiding. In this technique, a list of
difficult design decisions or things that are likely to change is prepared. Modules
are then designated to “hide” the eventual implementation of each design decision
or feature from the rest of the system. Thus, only the function of the module is
visible to other modules, not the method of implementation. Changes in these
modules are therefore not likely to affect the rest of the system.

This form of functional decomposition is based on the notion that some aspects
of a system are fundamental, whereas other are arbitrary and likely to change.
Moreover, it is those arbitrary things, which are likely to change, that contain
“information.” Arbitrary facts are hard to remember and usually require lengthier
descriptions; therefore, they are the sources of complexity.

The following steps can be used to implement a design that embodies information
hiding:

Begin by characterizing the likely changes.

Estimate the probabilities of each type of change.

Organize the software to confine likely changes to a small amount of code.
Provide an “abstract interface” that abstracts from the differences.
Implement “objects”; that is, abstract data types and modules that hide
changeable data structures.

Nk L=

Software System Design 73

Window Images
1
Box
Circle
Line
\ Line
Pixel, Vector, /

Turtle, etc.

FIGURE 5.1 Parnas partitioning of graphics-rendering software.

These steps reduce coupling and increase module cohesion. Parnas also indicated
that although module design is easy to describe in textbooks, it is difficult to achieve.
He suggested that extensive practice and examples are needed to illustrate the point
correctly (Parnas, 1979).

As an example, consider a portion of the display function of the visual inspection
system shown in hierarchical form in Figure 5.1. It consists of graphics that must
be displayed (for example, a representation of the conveyor system, units moving
along it, sensor data, and so forth) that are essentially composed from circles and
boxes. Different objects can also reside in different display windows. The imple-
mentation of circles and boxes is based on the composition of line-drawing calls.
Thus, line drawing is the most basic hardware-dependent function. Whether the
hardware is based on pixel, vector, turtle, or another type of graphics does not matter;
only the line-drawing routine needs to be changed. Hence, the hardware dependen-
cies have been isolated to a single code unit.

Parnas partitioning “hides” the implementation details of software features, design
decisions, low-level drivers, etc., in order to limit the scope of impact of future changes
or corrections. By partitioning things likely to change, only that module need be
touched when a change is required, without the need to modify unaffected code. This
technique is particularly applicable and useful in embedded systems; since they are
so directly tied to hardware, it is important to partition and localize each implemen-
tation detail with a particular hardware interface. This allows easier future modifica-
tion due to hardware interface changes and reduces the amount of code affected.

If in designing the software modules, increasing level of detail is deferred until
later, subordinate code units, then the software approach is top-down. On the other
hand, if the design detail is dealt with first and then increasing levels of abstraction
are used to encapsulate those details, the approach is bottom-up.

For example, in Figure 5.1 it would be possible to design the software by first
describing the characteristics of the various components of the system and the

74 Software Engineering for Image Processing Systems

functions that are to be performed on them, such as opening, closing, and sizing
windows. Then the window functionality could be decomposed into its constituent
parts, such as boxes and text. Still further, these could be decomposed; for example,
all boxes consist of lines, and so on. The top-down refinement continues until the
lowest level of detail needed for code development has been reached.

Alternatively, it is possible to begin by encapsulating the details of the most
volatile part of the system, the hardware implementation of a single line or pixel,
into a single code unit. Then working upward, increasing levels of abstraction are
created until the system requirements are satisfied. This is a bottom-up approach
to design.

In the object-oriented paradigm, Parnas partitioning is often referred to as pro-
tected variation.

5.2.2 STRUCTURED DESIGN

SD is the companion methodology to structured analysis. It is a systematic approach
concerned with the specification of the software architecture and involves a number
of techniques, strategies, and tools. Further, it provides a step-by-step design process
intended to improve software quality, reduce risk of failure, and increase reliability,
flexibility, maintainability, and effectiveness.

The data flow diagrams (DFDs) partition system functions and document that
partitioning inside the specification.

5.2.2.1 Transitioning from Structured Analysis to
Structured Design

Structured analysis is related to SD in the same way that a requirements represen-
tation is related to the software architecture; that is, the former is functional and flat,
and the latter is modular and hierarchical. Data structure diagrams give information
about logical relationships in complex data structures.

The transition mechanisms from structured analysis to SD are manual and
involve significant analysis and trade-offs of alternative approaches. Normally, SD
proceeds from structured analysis in the following manner. Once the context diagram
is drawn, a set of DFDs is developed. The first DFD, the level O diagram, shows the
highest level of system abstraction. Decomposing processes to lower and lower levels
until they are ready for detailed design renders new DFDs with successive levels of
increasing detail. This decomposition process is called leveling.

Typically, DFD boxes represent terminators that are labeled with a noun phrase
that describes the system, agent, or device from which data enter or to which data
exit. Each process, depicted by a circle, is labeled as a verb phrase describing the
operation to be performed on the data, although it may be labeled with the name of
a system or operation that manipulates the data. Solid arcs are used to connect
terminators to processes and between processes to indicate the flow of data through
the system. Each arc is labeled with a noun phrase that describes the data. Dashed
arcs are discussed later. Parallel lines indicate data stores, which are labeled by a
noun phrase naming the file, database, or repository where the system stores data.

Software System Design 75

Context Diagram

@ DFD Level 0
x’d\‘

f
o)

P_Spec 3.2
Result: data_in;
Z: data_out;

FIGURE 5.2 Context diagram evolution from level 0 DFD to level 1 DFD and, finally, to a
P-SPEC, which is suitable for coding. (From Laplante, P.A. and Neill, C.J., J. Electron.
Imaging, 12, 252-262, 2003.)

Each DFD should have between three and nine processes only. The descriptions
for the lowest level, or primitive, processes are called process specifications (P-
SPECs) and are expressed in either structured English, pseudo-code, decision tables,
or decision trees and are used to describe the logic and policy of the program
(Figure 5.2).

Returning to the visual inspection system example, Figure 5.3 shows the level
0 DFD. Here the details of the system are given at a high level. First, the system

Level 0

new_product_event

raw_binary_image raw_binary_image

\ confirm_event

reject

accept Ty

FIGURE 5.3 The level 0 DFD for the visual inspection system; the dashed arcs represent
control flows, which are described later. (From Laplante, P.A. and Neill, C.J., J. Electron.
Imaging, 12, 252-262, 2003.)

76 Software Engineering for Image Processing Systems

raw_binary_image

Threshold
3.1

thresholded image

binarize

3.2 frame

FIGURE 5.4 The level 1 DFD for process 3, preprocessing, of the visual inspection system.
(From Laplante, P.A. and Neill, C.J., J. Electron. Imaging, 12, 252-262, 2003.)

reacts to the arrival of a new product by confirming that the image data are available.
Next, the system captures the image by buffering the raw data from the capture
device to a file. Preprocessing of the raw data is performed to produce an image
frame to be used for classification and generation of the appropriate control signals
to the conveyor system.

Proceeding to the next level provides more detail for processes 1 to 4. Process
1 is essentially an interrupt service routine assigned to a photodiode detector that
senses when a new product for inspection reaches the designated point on the
conveyer. Process 2 is a buffering routine whose characteristics depend on the
specifications of the camera. Hence, without knowing these details, it is not possible
to go deeper into the design.

Figure 5.4 depicts the level 1 DFD for process 3. Notice how the internal
processes 3.1 and 3.2 are labeled to denote that they are a finer degree of detail of
process 3 shown in the level O diagram. Successive levels of detail will follow a
similar numbering system (e.g., 3.1.1, 3.1.2). This convention provides for simple
traceability from specification through design and on to the code. Proceeding with
the design example, Figure 5.5 shows the level 1 DFD for process 4.

In addition to the DFDs, SD uses a data dictionary to document and control
interfaces. Entity relationship diagrams are frequently used to define the relationship
between the components of the system — much as in the object-oriented paradigm.
The data dictionary documents each interface flow in the DFD. Data structure
diagrams are also used to describe information about logical relationships in complex
data structures. The entity relationship model (which is optional) and data dictionary
for the visual inspection system are not shown, for brevity’s sake.

5.2.2.2 Data Dictionaries

A data dictionary is a repository of data about data that describes every data entity
in the system. The data dictionary is an essential component of the SD. The data

Software System Design 77

frame

Edge
Detection

Rejection
Control

edge accept_reje
grammar
model

4.1

4.3 reject

Syntactic T
Pattern

Recognition accept

datalog

FIGURE 5.5 The level 1 DFD for process 4, classification, of the visual inspection system.
(From Laplante, P.A. and Neill, C.J., J. Electron. Imaging, 12, 252-262, 2003.)

dictionary includes entries for data flows, control flows, data stores, data elements,
and control elements. Each entry is identified by name, range, rate, units, etc. The
dictionary is organized alphabetically for ease of use.

There is no standard format, but every design element should have an entry in
the data dictionary. Most CASE tools provide the data dictionary feature. For exam-
ple, each entry might be organized to contain the following information:

Entry type (data flow, data store, terminator, process)
Name

Alias

Description

Found in

In particular, for the visual inspection system, one entry might look like:

Type: Data flow

Name: Binarized image

Alias: Image

Description: The raw binary image after it has been subjected to thresholding

Found in:

The missing information for the “Found in” module will be added as the code
is developed. In this way, data dictionaries help provide substantial traceability
between code elements.

5.2.2.3 Problems with SASD in Imaging Applications

There are several apparent problems in using structured analysis and structured
design (SASD) to model the visual inspection system, including difficulty in mod-

78 Software Engineering for Image Processing Systems

eling time and events. For example, what if the visual inspection system captures a
new image in parallel with preprocessing of the last image capture?* Concurrency
is not easily depicted in this form of SASD.

Another problem arises in the context diagram. Control flows are not easily
translated directly into code, such as reject and accept, because they are hardware
dependent. In addition, the control flows do not really make sense since there is no
connectivity between portions of them, a condition known as floating.

Details of the detector and camera hardware also need to be known for further
modeling of process 1. What happens if the hardware changes? What if a different
strategy for classification in process 2 is needed? In the case of process 3 (prepro-
cessing), what if the algorithm or even the sensitivity levels change because of the
installation of new hardware? In each case, the changes would need to propagate
into the level 1 DFD for each process, any subsequent levels, and, ultimately, into
the code.

Clearly, making and tracking any of these changes is fraught with danger.
Moreover, any change means that significant amounts of code would need to be
rewritten, recompiled, and properly linked with the unchanged code to make the
system work. None of these problems arise when using the object-oriented paradigm.

5.2.2.4 Real-Time Extensions of SASD

It is well known that the standard SASD methodology is not well equipped for
dealing with time, as it is a data-oriented and not a control-oriented approach. In
order to address this shortcoming, Hatley and Pirbhai (1987) extended the SASD
method by allowing for the addition of control flow analysis. To do this, the following
artifacts were added to the standard approach: arcs made of dashed lines to indicate
the flow of control information, and solid bars indicating “stored” control commands
(control stores), which are left unlabeled (Hatley and Pirbhai, 1987).

Additional tools, such as Mealy finite state machines, are used to represent the
encapsulated behavior and process activations. The addition of the new control flows
and control stores allows for the creation of a diagram containing only these
elements, called a control flow diagram (CFD). These CFDs can be decomposed
into control specifications (C-SPECs), which can then be described by a finite state
machine. The relationship between the control and process models is shown in
Figure 5.6.

Although the Hatley—Pirbhai extensions suggest that the CFD and C-SPECs
stand alone, the CFD by itself makes little sense (see Figure 5.7). Hence, the CFD
and DFD are generally combined, as shown in Figure 5.5.

5.2.3 DEsIGN IN PROCEDURAL FORM USING FINITE
STATE MACHINES

One of the advantages of using finite state machines in the SRS and later in the
software design is that they are easily converted to code and test cases. Again

* This scenario would be desirable if the reject mechanism were further down the inspection line and
the conveyor system were running at a high rate.

Software System Design

Process Model

Data Inputs > ——— Data Outputs
DFDs

___________ - .»

P-SPECs | | _____________ ;

Process !

Activations 3

| Data
Control Model i Conditions
fffffffffff -~ CSPECs !
‘,,,,,,,,,,,,,,,J
Control Outputs @---------------- --1 CFDs |#¢f------mmmmmmmmoes Control Inputs

FIGURE 5.6 The relationship between the control and process models.

Level 0 CFD

new_product_event

¥
@ *, confirm_event

accept

e

reject

FIGURE 5.7 A CFD for level 0 of the visual inspection system.

79

consider the visual inspection system. The tabular representation of the state tran-
sition function (Table 4.2), which describes the system’s high-level behavior, can
be easily transformed into a design using the Pascal-like pseudo-code shown in

Figure 5.8.

Each procedure associated with the three operational modes (operational, diag-
nostic, and calibration) will be structured code that can be viewed as executing in
one of any number of process states at an instant in time. This functionality can be
described by the pseudo-code shown in Figure 5.9.

80 Software Engineering for Image Processing Systems

typedef states: (state1,...,staten); {n is# of states}
alphabet: (inputt,...,inputn);
table_row: array [1..n] of states;
procedure move_forward; {advances FSM one state}
var
state: states;
input: alphabet;
table: array [1..m] of table_row; {m is the size of the alphabet}
begin
repeat
get(input);{read one token from input stream}
state: =table[ord(input)] [state]; {next state}
execute_process (state);
until input = EOF;
end;

FIGURE 5.8 Pascal-like pseudo-code that can implement the system behavior of the visual
inspection system depicted in Table 4.2.

Procedure execute_process (state: states);
begin
case state of
state 1: process 1; {execute process 1}
state 2: process 2; {execute process 2}

staten: processn; {execute process n}
end

FIGURE 5.9 FSM code for executing a single operational process of the visual inspection
system. Each process can exist in multiple states, allowing for partitioning of the code into
appropriate modules.

The pseudo-codes shown in Figure 5.8 and Figure 5.9 can easily be coded in
any procedural language.

5.3 OBJECT-ORIENTED DESIGN

Object-oriented programming languages are those characterized by data abstraction,
inheritance, and polymorphism. Data abstraction has been previously defined. Inher-
itance allows the software engineer to define new objects in terms of previously
defined objects so that the new objects “inherit” properties. Function polymorphism
allows the programmer to define operations that behave differently depending on
the type of object involved. For example, a filter operation would act differently
depending on the type of image and filtering needed. How the filter operation is
applied is implemented at run time.

Object-oriented languages provide a natural environment for information hiding,
through encapsulation. The state (or data) and behavior (or methods) of objects are

Software System Design 81

encapsulated and accessed only via a published interface or private methods. For
example, in image processing systems, one may wish to define a class of type pixel
with characteristics (attributes) describing its position, color, brightness, and so on,
and operations that can be applied to a pixel, such as add, activate, deactivate, and
so on. The engineer may then wish to define objects of type image as a collection
of pixels with other attributes, and so on. In some cases, expression of system
functionality is easier to do in an object-oriented manner.

OOD is an approach to systems design that views the system components as
objects and data processes, control processes, and data stores that are encapsulated
within objects. Early forays into OOD were led by attempts to reuse some of the
better features of conventional methodologies, such as the DFDs and entity relation-
ship models, by reinterpreting them in the context of object-oriented languages. This
can be seen in the unified modeling language (UML).

Over the last several years the object-oriented framework has gained significant
acceptance into the software engineering community.

5.3.1 BENEFITS OF OBJECT ORIENTATION

The previous section has highlighted some considerations concerning the appropri-
ateness of the object-oriented paradigm to various application areas. There are,
however, some additional benefits to using object-oriented analysis and design. When
considering the benefits of object-oriented approaches to image processing applica-
tions, it is easy to get wrapped up in the ideas of combining data and behavior into
an encapsulated entity that better approximates the “things” in our problem domain,
and to consider this closeness between reality and the modeling domain to be the
central benefit of using objects. While this can be considered an advantage, the
purported intuitiveness of the approach is, in fact, something of a fortuitous side
effect. The real advantages of applying object-oriented paradigms are the future
extensibility and reuse that can be attained and the relative ease of future changes.

Software systems are subject to near-continuous change: requirements change,
merge, emerge, and mutate; target languages, platforms, and architectures change;
and, most significantly, the way the software is employed in practice changes. This
flexibility places considerable burden on the software design: How can systems that
must support such widespread change be built without compromising quality? There
are four basic principles of object-oriented engineering that can answer this question,
and they have been recognized as supporting reuse.

5.3.1.1 Open—Closed Principle

First recorded by Meyer (1998), the open—closed principle (OCP) states that classes
should be open to extension, but closed to modification. That is, it should be possible
to extend the behavior of a class in response to new or changing requirements, but
modification to the source code is not allowed. While these expectations may seem at
odds, the key is abstraction. In OOD, a superclass can be created that is fixed, but can
represent unbounded variation by subclassing. This is evident in the above case study
in the classification strategies, where subclasses for each of the various classification
algorithms are created, which inherit their interface from an abstract superclass. This

82 Software Engineering for Image Processing Systems

aspect is clearly superior to structured approaches and top-down design in, for example,
changes in classification strategies, which would require new function parameter lists
and wholesale recompilation of any modules calling that code in the SD.

5.3.1.2 Once and Only Once

While once and only once (OAOO) is certainly not a new idea, Beck (1999) put a
name to the principle that any aspect of a software system — be it an algorithm, a
set of constants, documentation, or logic — should exist in only one place. This
isolates future changes and makes the system easier to comprehend and maintain,
and, through the low coupling and high cohesion that the principle instills, increases
the reuse potential of these aspects. The encapsulation of state and behavior in
objects, and the ability to inherit properties between classes, allows for the rigorous
application of these ideas in an object-oriented system, but is difficult to implement
in structured techniques.

5.3.1.3 Dependency Inversion Principle

The dependency inversion principle (DIP) states that high-level modules should not
depend upon low-level modules. Both should depend upon abstractions. Restated,
abstractions should not depend upon details, but details should depend upon abstrac-
tions. Martin (1996) introduced this idea as an extension to OCP with reference to
the proliferation of dependencies that exist between high- and low-level modules.
For example, in a structured decomposition approach, the high-level procedures
reference the lower-level procedures, but changes often occur at the lowest levels.
This infers that high-level modules or procedures that should be unaffected by such
detailed modifications may be affected due to these dependencies. Again, consider
the case where the camera characteristics change and, even though perhaps only one
routine needs to be rewritten, the calling module(s) need to be modified and recom-
piled as well. A preferable situation is to invert these dependencies, such as is evident
in the Liskov substitution principle (LSP). This principle is at work in the decorator
pattern, which is used in the object-oriented case study for the image preprocessing.
The intent here is to allow dynamic changes in the preprocessing scheme, which is
achieved by ensuring that all image processing objects conform to the same interface,
and are therefore interchangeable.

5.3.1.4 Liskov Substitution Principle

Liskov (1988) expressed the principle of substitutivity of subclasses for their base
classes as:

What is wanted here is something like the following substitution property: If for each
object o, of type S there is an object 0, of type T such that for all programs P defined
in terms of T, the behavior of P is unchanged when o, is substituted for o, then S is a
subtype of T.

This principle has led to the concept of type inheritance and is the basis of
polymorphism in object-oriented systems, where instances of derived classes can be

Software System Design 83

substituted for each other provided they fulfill the obligations of a common super-
class. Again, the strategies and decorators introduced in the object-oriented case
study implement this type of conformance and substitutability such that any new
variations that are desired need merely conform to the supertypes, yet no existing
code need be modified.

5.3.2 DESIGN PATTERNS

Developing software is hard, and developing reusable software is even harder.
Designs should be specific to the current problem, but general enough to address
future problems and requirements. Experienced designers know not to solve every
problem from first principles, but to reuse solutions encountered previously. They
find recurring patterns and use them as a basis for new designs. This is simply an
embodiment of the principle of generality.

While object-oriented systems can be designed to be as rigid and resistant to
extension and modification as in any other paradigm, OOD has the ability to include
distinct design elements that can cater to future changes and extensions. These design
patterns were first introduced to the mainstream of software engineering practice by
Gamma et al. (1994). The Gamma, Helm, Johnson, and Vlissides patterns, or more
commonly, the “gang of four” (GoF) patterns, are based on the four key design
principles that have just been discussed.

The formal definition of a pattern is not consistent in the literature. Simply, a
pattern is a named problem—solution pair that can be applied in new contexts, with
advice on how to apply it in novel situations.

Patterns can be distinguished as three types: architectural patterns, design pat-
terns, and idioms. An architectural pattern occurs across subsystems; a design pattern
occurs within a subsystem but is independent of the language. An idiom is a low-
level pattern that is language specific.

In general, a pattern consists of four essential elements: a name, such as strategy,
bridge, facade, and so on; the problem to be solved; the solution to the problem:;
and the consequences of the solution.

More specifically, the problem describes when to apply the pattern in terms of
specific design problems, such as how to represent algorithms as objects. The
problem may describe class structures that are symptomatic of an inflexible design.
Finally, the problem section may include conditions that must be met before it makes
sense to apply the pattern.

The solution describes the elements that make up the design, though it does not
describe a particular concrete design or implementation. Rather, the solution provides
how a general arrangement of objects and classes solves the problem.

There are several sets of patterns, known as pattern languages, but perhaps the
most famous is the GoF, popularized in a well-known text (Gamma et al., 1994). It
describes 23 patterns, each organized by being either creational, behavioral, or
structural in its intent (Table 5.1).

Table 5.1 is provided for illustration only and is not intended to be a detailed
description. Instead, a few of these will be introduced later in the context of the
ongoing case study.

84 Software Engineering for Image Processing Systems

TABLE 5.1
Set of Design Patterns Popularized by the GoF
Creational Behavioral Structural
Abstract factory Chain of responsibility Adapter
Builder Command Bridge
Factory method Interpreter Composite
Prototype Iterator Decorator
Singleton Mediator Facade
Memento Flyweight
Observer Proxy
State
Strategy
Template method
Visitor

5.3.3 OBJecT-ORIENTED DESIGN USING UNIFIED
MODELING LANGUAGE

The UML is widely accepted as the de facto standard language for the specification
and design of software-intensive systems using an object-oriented approach. By
bringing together the “best of breed” in specification techniques, the UML has
become a family of languages (diagram types), and users can choose which members
of the family are suitable for their domain.

The UML is a graphical language based upon the premise that any system can
be composed of communities of interacting entities and that various aspects of those
entities, and their communication, can be described using the set of nine diagrams:
use case, sequence, collaboration, statechart, activity, class, object, component, and
deployment. Of these, five render behavioral views (use case, sequence, collabora-
tion, statechart, and activity), while the remaining diagrams are concerned with
architectural or static aspects.

With respect to imaging systems, it is these behavioral models that are of interest.
The use case diagrams document the dialog between external actors and the system
under development. Sequence and collaboration diagrams describe interactions
between objects. Activity diagrams illustrate the flow of control between objects and
statecharts and represent the internal dynamics of active objects. The principle
artifacts generated when using the UML and their relationships are shown in Figure
5.10.

While not aimed specifically at embedded system design, some notion of time
has been included in the UML through the use of sequence diagrams.

5.3.4 MobeLING TIME ExpLICITLY

It is clear from the description above that the UML in its current form does not
provide sufficient facilities for the specification and analysis of real-time systems.

Software System Design 85

Concepts, attributes,
and associations

Application
Modeling

Use-Case Model

System / State changes in domain
) objects, attributes, and
i > X System associations
. R < . R
Requirements| [=) 1) bor =)
R
use use system system
cases case sequence operation Software classes in domain
diagrams diagrams contracts layer of design from concepts
in domain model
Design Model
Design [
0]

FIGURE 5.10 The UML and its role in specification and design. (Adapted from Larman, C.,
Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and
the Unified Process, 2nd ed., Prentice Hall, New York, 2002.)

It is also stated, however, that the UML is a family of languages, and there is no
compelling reason for not adding to the family if a suitable language is found.
Unfortunately, the majority of appropriate candidates are formal methods — spec-
ification languages with a sound mathematical basis — and these are traditionally
shunned by the user community. An approach intended to overcome this is generated
from annotated UML specifications via the Q-model. Much of the discussion that
follows has been adapted from Neill and Laplante (2003a).

The Q-model was originally developed by Quirk and Gilbert (1977) at the U.K.
Atomic Energy Research Establishment and was intended as a formal method for
the description of temporal characteristics of complex real-time systems. The method
was advanced by Motus and Rodd (1994), and a series of prototype tools were
developed to support model simulation and verification. The Q-model is based upon
the concept that a real-time computer system is composed of a set of loosely coupled,
repeatedly activated terminating processes. The couplings, termed channels, define
the synchronization properties of the interprocess communication, as well as the
time selectivity of data transfer between processes. The resultant model can then be
checked for completeness, noncontradiction, and correctness, as well as for timeli-
ness, liveness, and constraint conformance.

The crucial aspect of the Q-model that makes it suitable for the specification
and design of real-time systems is the ability to specify and subsequently verify and
validate the temporal characteristics of the proposed system. To achieve this, a
number of process parameters must be defined (illustrated graphically in Figure
5.11, where P, and P, represent two processes):

86 Software Engineering for Image Processing Systems

Py
P,
| -
»
< T > —>iTy € time
e
Tx
< T,

FIGURE 5.11 Temporal parameters of individual processes. (From Neill, C.J. and Laplante,
P.A., Specification of real-time imaging systems using UML, Real-Time Imaging, 9, 2,
125-137, 2003. With permission from Elsevier.)

* Process time set — The set of all start times for a process. This set can
be expressed by both extension and comprehension, or can be linked to
an external event or to the time set of another process.

* Process start period (t,) — Every process that does not have its time set
defined by another process (has no synchronous or sequential channel
inputs) must have a start period defined.

* Process execution time (t,) — Every process must have an interval defined
that describes the best- and worst-case execution times.

e Data consumption time (T;) — An interval can be defined for any process
that consumes data that describes an interval that must elapse before data
is consumed by that process. Again, this parameter is defined by minimum
and maximum values.

* Equivalence interval (t,) —This is defined as the time interval during
which all occurring events can be considered to have occurred simulta-
neously. A side effect of this is that the equivalence interval defines the
time that must elapse before a process can be reactivated.

In addition, there are two further parameters that apply to groups of processes
called synchronous clusters, illustrated in Figure 5.12. A synchronous cluster is
formed when two or more processes are linked with synchronous channels such that
they all activate at the same instant. This simultaneous activation is physically
impossible, however, so the two parameters are defined to specify the interval during
which all of the cluster processes will activate.

* Null channel delay (§) — This represents the time necessary to detect the
synchronizing event and then activate the processes (as this would likely
be a broadcast mechanism).

* Simultaneity interval (t,) — This is the interval, following the null channel
delay, within which all the synchronized processes will be activated.

Software System Design

P,

P;

time

< 3
<€ > <€ >

&

87

FIGURE 5.12 Temporal parameters of synchronous clusters. (From Neill, C.J. and Laplante,
P.A., Specification of real-time imaging systems using UML, Real-Time Imaging, 9, 2,
125-137, 2003. With permission from Elsevier.)

Once the Q-models have been constructed and the parameters specified, formal
analysis can be performed for verification and simulations can be run for validation.
There are three levels to the analysis of a Q-model specification. These are
checks on:

1. Individual P-SPECs — This is the simplest level of analysis and is con-

cerned only with the time parameters for each process. This includes
checking that every process has a defined time set or a pointer to a time
set via a channel, that the elements of the time set are well ordered, that
a valid channel function has been specified, and that the other parameters
have been set (execution time, equivalence interval, data consumption
time, etc.).

Process pair interaction — All communication within a Q-model is via
channels. Several types of channels have been defined, and each of these
types imposes different rules on the interprocess communication. For each
group of synchronously activated processes (synchronous clusters), the
null channel delay and simultaneity interval must be determined (from
the dynamic properties of the environment). The analysis then verifies
that dependencies and channel functions do not violate rules concerning
processes waiting for input data or having their process time sets altered.
For groups of sequentially activated processes, the analysis is more com-
plicated, since the consumer process time set is generated by the producer
process and one consumer process could conceivably have many producer
processes. In this situation, the equivalence interval determines whether
the consumer process can be activated (successive activations of the pro-
cess will be inhibited until the interval has elapsed). For asynchronously
connected processes, the pair-wise analysis is only interested in the esti-
mation of delays that occur during communication.

88 Software Engineering for Image Processing Systems

3. Process group behavior — This is the most complex level of analysis
performed on the Q-model. It is here that information deadlocks (“circu-
lar” message-waiting conditions) are checked for in sequential chains and
synchronous loops, message transfer paths are analyzed, and the time
required for data to pass through each path is calculated to verify the time
constraints imposed upon the designed system by the environment.

This is only a brief overview of the analysis capabilities of the Q-model; it is
provided to highlight the usefulness of the approach. A thorough treatment is given
in Motus and Rodd (1994).

5.3.5 VisuaL INsPEcTION SYsTEM CASE STuDY

Given the utility of a formal method such as the Q-model, the obvious next question
is “Why use the UML, or any other less formal modeling language?” There are
many answers to this question, ranging from the need for uniform communication
standards (and the predominance of the UML in that arena) to the lack of appreci-
ation and willingness of practitioners to adopt rigorous representations (in practical
terms, very few software development professionals possess the appropriate math-
ematical skills).

To overcome these issues, and yet still maintain rigor, an approach is needed to
transform the behavioral UML models into Q-model structures. This transformation
diminishes the exposure of the Q-model to the user and allows for an essentially
standard object-oriented development process. Hence, the system specification
begins with the representation of the externally accessible functionality as use cases.

However, each use case is a document that describes scenarios of operation of
the system under consideration, as well as pre- and postconditions and exceptions.
In the specification of an embedded system, this is also where overall time con-
straints, sampling rates, and deadlines are specified.

As stated above, the domain model is created based upon the use cases, and
through further exploration of system behavior via the interaction diagrams, the
domain model evolves systematically into the design class diagram. The construction
of the domain model is therefore analogous to the analysis stage in SASD, described
earlier. In domain modeling, the central objective is to represent the real-world
entities involved in the domain as concepts in the domain model. This is a key aspect
of object-oriented systems and is seen as a significant advantage of the paradigm
since the resultant model is “closer” to reality than it is in alternative modeling
approaches, including SASD. Part of the design class diagram that results from
evolution of the domain model is shown in Figure 5.13.

The design class diagram is used to show the static structural view of the system
by describing the classes of objects that will comprise the software solution. As can
be seen in Figure 5.13, the system is composed of image capture elements (Cam-
eraProxy, FrameGrabber) and image classification elements (Classifier, ImagePro-
cessor, decorators, and strategies). The decorators and strategies are aspects of the
design introduced by applying well-known design patterns from Gamma et al.
(1994). The principle aim of these patterns is to allow for dynamic (i.e., run time)

Software System Design 89

«actor» «actor»

Camera ProductSensor _ «nterface»
+classify()
CameraProxy FrameGrabber,
grab() nextProduct()
ProcessDecorator|
Classifier
>—
classify()
classify() preProcess()
Feature Image
ClassifyStrategy| 'SegmentDecorator FilterDecorator
comparelmage() preProcess() breProcess()

N-FeatureComparison

3DModelComparison| [2DModelComparison

comparelmage() comparelmage() comparelmage()
featureExtract()

FIGURE 5.13 Partial design class diagram of the visual inspection system. (From Laplante,
P.A. and Neill, C.1., J. Electron. Imaging, 12, 252-262, 2003.)

changes to the preprocessing and classification schemes. This is achieved by abstract-
ing invariant behavior into supertypes (ImageProcessor, ProcessDecorator, and Clas-
sifyStrategy) and allowing subtypes to implement variant behavior (N-FeatureCom-
parison, FilterDecorator).

It can be argued that this generality is speculative, and therefore overcomplicates
the design, but the intent of this work is to build a framework for image processing
systems where this generality is critical for reuse. This also highlights a key advan-
tage with object-oriented analysis and design: the reuse potential. In SASD devel-
opment, it can be very difficult to extend the functionality of the complete system
because of the degree and direction of dependencies that are created between high-
and low-level modules. That is, high-level modules call lower-level modules as a
consequence of the top-down decomposition approach. When changes need to be
made at these lower levels, the more abstract elements must also be modified due
to these dependencies. In object-oriented systems, this dependency hierarchy is
normally inverted.

For example, the N-FeatureComparison classification strategy could involve
syntactic pattern recognition, correlation measures, or morphological approaches,
which all depend on the internal representation of the image. By subclassing N-
FeatureComparison, this extension can be accommodated without modifying any
existing code or affecting any other requirements. In the top-down SD fostered by
SASD, this is not always the case; in fact, it is likely that every module in the system
that used the feature comparison module would need to be rewritten.

90 Software Engineering for Image Processing Systems

Behavioral aspects of the design can be represented by a number of different
diagrams in the UML. Perhaps the most popular choice is to use sequence diagrams.
The sequence diagram shown in Figure 5.14 represents the ordering of messages
between objects in the system in response to the arrival of the next product on the
conveyor. It is clear that the nextProduct message is generated from the external
sensor, which triggers the FrameGrabber. The image created by the output from the
camera (via the CameraProxy) is preprocessed using one of the decorators (Filter-
Decorator) and then classified using a classification strategy (N-FeatureComparison).
The result of the classification is then sent to the RejectController, which will log
the result and trigger the rejection mechanism if required.

It is evident from these diagrams that no timing information is included beyond
the logical timing (ordering) of the messages in the sequence diagram. This is
insufficient for real-time systems, as stated earlier. Not only are we unable to prove
the correctness of the temporal specification, but also we have neglected to represent
a critical aspect of the domain in our model. To remedy this situation, we generate
the additional formal model: the Q-model. This is generated from the UML models
of the system (with additional information regarding timing properties and con-
straints).

The Q-model generated from the sequence diagram in Figure 5.14 is shown in
Figure 5.15. The transformation rules applied are basically a mapping of activations
to Q-model processes and messages to Q-model channels. The descriptions of the
processes and channels in this Q-model are presented in Table 5.2 and Table 5.3,
respectively, and are representative of typical timing information for automated
visual inspection systems.

Initially all channels are selected as sequential (the source process triggers the
target process upon completion), except for k2, which is sequential null, indicating
that no data are transferred. The alternatives are synchronous (where the time sets
of the producer and consumer processes are identical) and asynchronous (the pro-
ducer and consumer processes have independent time sets — data are transferred,
but there is no triggering of activation). The channel functions indicate the range of
data generations that are consumed by the process (allowing for time-selective
communication if necessary), but here all are set to the most recent generation only.
During simulation, the channel types and functions can be altered to examine the
effect of parallelizing aspects of the design.

Each Q-model process can then be decomposed into a separate Q-model, such
as the one shown in Figure 5.16 for process P6, the comparelmage process. In this
case, elements of the Q-model structure are transformed from the ClassifyStrategy
hierarchy, but individual algorithmic differences must be constructed directly. The
fragment shown in Figure 5.16 is the Q-model of the N-FeatureComparison object.
The bubbles represent processing tasks, and the directed arcs represent the channels
that connect and coordinate the tasks.

Once the Q-model representation is complete, the model can be analyzed as
described earlier. Typical timeline diagrams that are generated during simulation are
shown in Figure 5.17 and Figure 5.18. It is clear from Figure 5.17 that if the process
P4-P6 chain was on a separate processor, the arrival rate could increase to every 20
msec.

91

Software System Design

("€00T ‘T92-TST “T1 “Swrvuy uo12a)q r (D ‘[N pue "v'd ‘@yue[de wor]) ‘uonesyissed 1onpoid ased asn Jo weiSerp aouenbag $1°S JYNDI4

_; (unseu

()Ayissepo

———————ee = === — =

|
I
i
()sseboigaid A' | |
i " | ! !
I | (Aussep ! !
| “A f I I
| | osmnc | |
“ “ _1 ! !
[| | ()qesb “ ()1onpoidixau “
JoljIsserg Iorerods@iany sbew| AXold elewe) | |JeqoeiHewelsy HM%M Jafjonuodsley

AbBajesjsAjisse|n W Jossaooidabeuw| nﬁ

92 Software Engineering for Image Processing Systems

FIGURE 5.15 Q-model of product classification. (From Neill, C.J. and Laplante, P.A., Spec-
ification of real-time imaging systems using UML, Real-Time Imaging, 9, 2, 125-137, 2003.
With permission from Elsevier.)

TABLE 5.2

Description of Product Classification Q-Model

Process Name Ty (msec) T, Ty T,
PO Null process (sense event) 33 0 0 31
P1 nextProduct() — 1-2 0 1
P2 grab() — 5-7 1
P3 new() — 4-5 34 4
P4 classify().preProcess() — 6-8 34 4
P5 _classify() — 1-2 0 1
P6 comparelmage() — 7-10 34 4

Source: Adapted from Neill, C.J. and Laplante, P.A., Real-Time Imaging,
9, 2, 125-137, 2003.

TABLE 5.3
Channel Descriptions for Product Classification Q-Model
Channel Type Function

kO Sequential [0,0]
k1 Sequential [0,0]
k2 Sequential null —
k3 Sequential [0,0]
k4 Sequential [0,0]
k5 Sequential [0,0]
k6 Sequential [0,0]
k7 Sequential [0,0]
k8 Sequential [0,0]
k9 Sequential [0,0]

Source: Adapted from Neill, C.J. and Laplante, P.A., Real-Time Imaging, 9, 2,
125-137, 2003.

Software System Design 93

k9
P7

FIGURE 5.16 Q-model of comparelmage for N-FeatureComparison classification strategy.
(From Neill, C.J. and Laplante, P.A., Specification of real-time imaging systems using UML,
Real-Time Imaging, 9, 2, 125-137, 2003. With permission from Elsevier.)

v '

PO

P1

o 1? _q JL 11_

P5
P6

5 10 15 20 25 30 35 Time (msec)

FIGURE 5.17 Simulation timeline for product classification Q-model. (From Neill, C.J. and
Laplante, P.A., Specification of real-time imaging systems using UML, Real-Time Imaging,
9, 2, 125-137, 2003. With permission from Elsevier.)

In the case of Figure 5.18, the comparelmage process is triggered by the arrival
of a preprocessed image, which is then subject to two concurrent feature extraction
and feature-matching chains, the results of which are aggregated in process P7. Since
the temporal properties of each process are defined, the simulation can highlight the
minimum and maximum arrival rates based upon the available resources.

5.4 HARDWARE CONSIDERATIONS IN IMAGING
SYSTEM DESIGN

Understanding the underlying hardware of the imaging system during design helps
one to use hardware and software resources more efficiently. Although the role of

94 Software Engineering for Image Processing Systems

v v

P61 L

P62 _l

|
!]

P65

P7

»
>

5 10 15 Time (msec)

FIGURE 5.18 Simulation timeline for N-FeatureComparison process (n = 2). (From Neill,
C.J. and Laplante, P.A., Specification of real-time imaging systems using UML, Real-Time
Imaging, 9, 2, 125-137, 2003. With permission from Elsevier.)

programming languages is to isolate the programmer from the underlying hardware,
those who have implemented practical embedded systems realize that this expecta-
tion is probably unrealistic — if not during design, certainly during development.
While it is impossible to provide a complete review of hardware issues, a brief
review with respect to software engineering issues is appropriate.

5.4.1 PROCESSORS

Most imaging systems are based on a microprocessor, but others involve mainframe
or minicomputers, while still others are based in the microcontroller. A microcon-
troller is a computer system that is programmable via microinstructions. Because
the complex macroinstruction decoding process is not supported, program execution
tends to be very fast.

The basic architecture of a computer consists of a central processing unit (CPU),
memory, and input and output devices connected by a bus. One at a time, the
computer continuously fetches binary encoded instructions from memory and exe-
cutes them. Computers that satisfy this basic description — stored program, serial
fetch, and execution — are generically called von Neumann computers. The limiting
factor in this type or architecture is the serial nature of the bus; that is, at any instant
in time only one instruction or one datum can be on the bus. For data-intensive
applications such as image processing, this limitation can be significant.

Other architectural features such as the instruction set and addressing modes can
affect overall performance. The more complex the instruction set, the fewer the
instructions needed to achieve a particular function, but the longer each individual
instruction will take. For example, in reduced instruction set (RISC) architectures,
short, simple instructions prevail and thus are ideal for high-performance applications.

Some computer configurations include a second specialized CPU, called a copro-
cessor, to perform certain operations such as digital signal processing (DSP) instruc-

Software System Design 95

tions. DSP coprocessors improve real-time performance because they extend the
instruction set to support faster, specialized instructions. These devices typically are
used to extend the instruction set, and not for multiprocessing. The main processor
loads certain registers with data for the coprocessor, issues an instruction starting
the coprocessor, and then suspends itself until the coprocessor finishes. Usually, this
involves two handshaking signals between the main processor and coprocessor. For
example, consider a typical microprocessor and associated coprocessor. Suppose
there are two signals between them. When the main processor wishes to use the
coprocessor, it loads global variables with the operands and sends a signal to the
coprocessor. Then the main processor suspends itself. When the coprocessor finishes
the operation, it places the result in another global variable, issues a signal to awaken
the main processor, and suspends itself. The main processor then resumes its
fetch—execute cycle.

5.4.2 NON-vON NEUMANN ARCHITECTURES

The limitations of the serial bus structure in most computer systems and the data-
intensive needs of imaging applications have led to the use of a variety of non-von
Neumann-style architectures in image processing systems. A brief description of
these special computing environments in the context of software engineering is
valuable, because the design must be such that it exploits the advantages of the
underlying hardware. In other words, while the architecture is often selected to fit
the application, the application must be designed to fit the architecture.

To describe these non-von Neumann or parallel architectures, a generally
accepted taxonomy is that of Flynn (1966). The classification is based on the notion
of two streams of information flow to a processor: instructions and data. These two
streams can be either single or multiple, giving four classes of machines:

Single instruction single data (SISD)
Single instruction multiple data (SIMD)
Multiple instruction single data (MISD)
Multiple instruction multiple data (MIMD)

Sl o e

Table 5.4 shows the four primary classes and some of the architectures that fit
in those classes. Most of these architectures will be briefly discussed.

5.4.2.1 Single Instruction Single Data

The SISD architectures encompass standard serial von Neumann architecture com-
puters. In a sense, the SISD category is the base metric for Flynn’s taxonomy.

5.4.2.2 Single Instruction Multiple Data

The SIMD computers are essentially array processors. This type of parallel computer
architecture has n-processors, each executing the same instruction, but on different
data streams. Often each element in the array can only communicate with its nearest
neighbor. Computer architectures that are usually classified as SIMD are the systolic

96 Software Engineering for Image Processing Systems

TABLE 5.4
Flynn’s Classification Scheme for Parallel Computer
Architectures
Single Data Stream Multiple Data Stream
Single Instruction Stream von Neumann processors Systolic processors
RISC ‘Wave-front processors
Multiple Instruction Stream Pipelined architectures Data flow processors
VLIW processors Transputers
Grid computers
Multiprocessors

and wave-front array computers. In both types of processor, each processing element
executes the same (and only) instruction, but on different data. Hence these archi-
tectures are SIMD.

SIMD machines are widely used for such imaging computation as matrix arith-
metic and convolution.

5.4.2.3 Multiple Instruction Single Data

The MISD computer architecture lends itself naturally to those computations
requiring an input to be subjected to several operations, each receiving the input
in its original form. These applications include classification problems and digital
signal processing. MISD architectures include pipelined and very long instruction
word architectures (VLIW).

In pipelined architectures, more than one instruction can be processed simulta-
neously (one for each level of pipeline). Similarly, VLIW computers tend to be
implemented with microinstructions that have very long bit-lengths (and hence more
capability). Thus, rather than breaking down macroinstructions into numerous micro-
instructions, several (nonconflicting) macroinstructions can be combined into several
microinstructions.

5.4.2.4 Multiple Instruction Multiple Data

MIMD computers involve large numbers of processors capable of executing more
than one instruction on more than one datum at any instant. Except for networks of
distributed multiprocessors working on the same problem (grid computing), these
are “exotic” architectures. MIMD computers include data flow computers, grid
computers, networks of heterogeneous processors, and transputers.

5.4.3 INTERRUPT HANDLING

Hardware interrupts generated externally, such as by the camera in the visual
inspection system (VIS), indicate events to the CPU. Interrupts can be caused by

Software System Design 97

e
| ﬁ Interrupt Return

Interrupt Progeam Location
Signal > Counter
\

iy —

Interrupt Handler
Location

CPU Memory

FIGURE 5.19 The interrupt handling process in a single interrupt system.

internal or external events. Internal events, sometimes called traps, include divide-
by-zero errors, overflow conditions, and the interrupt to signal the DSP.

Upon receipt of the interrupt signal, the processor completes the instruction that
is currently being executed. Next, the contents of the program counter are saved to
a designated memory location, called the interrupt return location. The contents of
a memory location, called the interrupt handler location, are loaded into the program
counter. Execution then proceeds with the special code stored at this location, called
the interrupt handler. This process is outlined in Figure 5.19.

Nearly every processor is equipped to handle more than one interrupt in a
prioritized fashion.

5.4.4 MEMORY

Memory access times have a profound effect on performance and should influence
the choice of instruction modes used — both when coding assembly language and
through the careful selection of high-order language constructs.

While the software engineer is often involved in the overall hardware or software
function allocation, and even in the hardware design, her real concern is in those
characteristics that are visible to the developer and that affect performance. The
most important performance characteristic of memory is access time, the interval
between when a datum is requested from memory and when it arrives in the pro-
cessor. The access time depends on the memory type and technology, the memory
layout, and other factors. Other important design considerations are volatility (data
are lost when power is removed), power requirements, density, and cost.

A summary of four important classifications of memory, their characteristics,
and some possible applications in imaging systems is given in Table 5.5.

5.4.5 INpuT AND OuUTPUT

Input and output (I/O) of data to a computer system are accomplished through one
of three different methods: programmed I/O, memory-mapped I/O, or direct memory

98

Software Engineering for Image Processing Systems

TABLE 5.5

Summary of Memory Device Characteristics

Memory Type

Static random access
memory (SRAM)

Dynamic random
access memory
(DRAM)

Flash (code storage
type)

Flash (data storage
type)

Main Characteristics

Volatile
Small cell size
Slower than fast SRAM

Volatile
Large cell size
Fast or low power

Nonvolatile

Large cell size

Fast random access

Slow block read/write
access

Nonvolatile

Small cell size

Slow random access

Fast block read/write

access

Suitability

Systems with a
relatively large
amount of memory,
where memory cost is
critical

Systems with a
relatively small
amount of memory,
where memory
performance or low
power are critical

Data that must be
retained when power
is turned off

Data that must be
retained when power
is turned off and is
necessary for
application software
and user data

Applications

Main memory;
graphics and
peripheral subsystems

Cache memory (fast
SRAM); high-speed
networking systems
(fast SRAM);
handheld devices
(low-power SRAM)

Code storage for PC
built-in operating
system (BIOS)

Data storage in digital
cameras

address (DMA). Each method has advantages and disadvantages with respect to
performance, cost, and ease of implementation in imaging systems.
In programmed I/O, special instructions in the CPU instruction set are used to

transfer data to and from the CPU. An IN instruction will transfer data from a specified
I/O device into a specified CPU register. An OUT instruction will output from a
register to some I/O device. Normally, the identity of the operative CPU register is
embedded in the instruction code. Both the IN and OUT instructions require the
efforts of the CPU and thus cost time that could impact real-time performance.

Memory-mapped I/O provides a data transfer mechanism that is convenient
because it does not require the use of special CPU I/O instructions, and it has an
additional advantage: the CPU and other devices can share memory. In memory-
mapped I/O, certain designated locations of memory appear as virtual I/O ports.

In DMA, access to the computer’s memory is given to other devices in the
system without CPU intervention. That is, information is deposited directly into
main memory by the external device. Here, the cooperation of a device called a
DMA controller is required. Because CPU participation is not required, data transfer
is fast.

Because of its speed, DMA is the best method for input and output for moving
large blocks of data, for example, from a frame grabber to main memory. In this

Software System Design 99

case, it is helpful to have the device also issue an interrupt when a frame of data
has been transferred in order to signal the main program to process it.

5.5 FAULT-TOLERANT DESIGN

Fault tolerance is the tendency to function in the presence of hardware or software
failures. In embedded systems, fault tolerance includes design choices that transform
hard real-time deadlines into soft ones. These are often encountered in interrupt-
driven systems, which can provide for detecting and reacting to a missed deadline.
Fault tolerance designed to increase reliability in embedded systems can be
classified as either spatial or temporal. Spatial fault tolerance includes methods
involving redundant hardware or software, whereas temporal fault tolerance involves
techniques that allow for tolerating missed deadlines. Of the two, temporal fault
tolerance is the more difficult to achieve because it requires careful algorithms
design. We discuss variations of both techniques in the next several sections.

5.5.1 SpaTiaL FAULT TOLERANCE

The reliability of most hardware can be increased by using some form of spatial
fault tolerance with redundant hardware. In one common scheme, two or more pairs
of redundant hardware devices provide inputs to the system. Each device compares
its output to that of its companion. If the results are unequal, the pair declares itself
in error and the outputs are ignored. An alternative is to use a third device to
determine which of the other two is correct. In either case, the penalty is increased
cost, space, and power requirements.

Voting schemes can also be used in software to increase algorithm robustness.
Often information is processed from more than one course and reduced to some sort
of best estimate of the actual value. For example, an aircraft’s position can be
determined via information from satellite positioning systems, inertial navigation
data, and ground information. A composite of these readings is made using either
simple averaging or a Kalman filter.

5.5.2 UsING A KALMAN FILTER IN THE CASE STUDY SYSTEM

For example, in our VIS the camera is known to be subject to noise. This discussion,
excerpted from Laplante and Neill (2003c), is used to illustrate an object-oriented
fault-tolerant design approach for an important component of the VIS: image capture.

The Kalman filter is used to estimate the state variables of a multivariable
feedback control system subject to stochastic disturbances caused by noisy mea-
surements of input variables. The Kalman filtering algorithm works by combining
the information regarding the system dynamics with probabilistic information
regarding the noise. The filter is very powerful in that it supports estimations of past,
present, and even future states and, in particular, can do so even when the precise
nature of the noise is unknown.

The Kalman filter estimates a process using a form of feedback control — the
filter estimates the process state at some time and then obtains feedback in the form

100 Software Engineering for Image Processing Systems

Noise Model

= l '/
@ Camera Input | Kalman Display data .
Filter

!

Image Control Signals

Analysis

Computer
System

FIGURE 5.20 Kalman filter for image processing. (From Laplante, P. and Neill, C., A Class
of Kalman Filters for Real-Time Image Processing, paper presented at Proceedings of the
Real-Time Imaging Conference, SPIE, Santa Clara, CA, January 2003, pp. 22-29.)

of noisy measurements (Figure 5.20). There are two kinds of equations for the
Kalman filter: time update equations and measurement update equations. The time
update equations project forward in time the current state and error covariance
estimates to obtain the a priori estimates for the next time step. The measurement
update equations are responsible for the feedback in that they incorporate a new
measurement into the a priori estimate to obtain an improved estimate.

The basic problem to be considered in imaging applications is dealing with the
degradation of image sequences due to noise introduced during the image acquisi-
tion process.

The image is captured by one or more cameras and processed for display or for
further algorithmic analysis and processing. The objective is to construct a filter that
will reduce the noise and, in particular, remain insensitive to a sudden spike error
that can easily fool other types of filters, such as mean square error.

The representation of an image in a Kalman filter can be either pixel-wise or
block-wise. The advantage of the latter approach is that interpixel statistical char-
acteristics can be taken into account, however, at significant computational cost.
The former approach offers the advantage that it is faster, and we follow that
construction.

Let x, represent a particular pixel found in frame k (taken at time k) of the
image (see Figure 5.21). The ideal noise-free pixel value is given by s,, which is
assumed to be a first-order autoregressive (AR) model. This is a model that is
generally used to represent the behavior of pixels in video signals. The process
model is

Sy =as, +n, ;.1

k+1

Software System Design 101

Frame 1

X

[[/]]]]

[f 4 J]][[/
NNNNNN Frame K

1T 7

'....'/IIII'I'..
FFFH N7

77 ’V/”//?’/? ////

/////

X

FIGURE 5.21 A series of images captured from a camera. Each pixel represents a time series
in frame k. (From Laplante, P. and Neill, C., A Class of Kalman Filters for Real-Time Image
Processing, paper presented at Proceedings of the Real-Time Imaging Conference, SPIE,
Santa Clara, CA, January 2003, pp. 22-29.)

where a is a constant that depends on the signal statistics and n, is the process
noise, which is assumed to be white Gaussian with a zero mean and a variance of
Gi. While it might be desirable to assume that the noise is Poisson distributed,
making the assumption that the noise is Gaussian simplifies the design. Ultimately,
however, it will be desirable to construct the class of filters in such a way as to be
extensible to different noise sources.

The measured signal is given by

X, =5, +v, 5.2)

where v, is the independent additive zero mean Gaussian white noise with a
variance of Gf.

It is implicitly assumed that the noise and signal are stationary random processes
that are fully determined by their second-order statistics. This is an approximation
that can be safely used.

The Kalman filter output is represented by y,, which is the estimate of the signal
at time k. The variance of the estimation error variance is defined by

o} = (v, -s.)] (5.3)

The Kalman filter gain is K. The algorithm is as follows: let y , =0, 6>, =07,
and k =0. Then the following iterative process, given in C++-like pseudo-code, is
as follows:

102 Software Engineering for Image Processing Systems

for i =0;i<k; i++)
{

a2(52i— 1 +Gi

K = ;
! a202i71+(5i+(53
v, =Kx, +a[1 - Ki]yH ;
2 _ 2 2 2.
G, =a [I—Kl.]GH +0,;
i++;

}

This algorithm is applied to each pixel and each time instant i to provide the filtered
image output for display or image analysis purposes.

An OOD of a Kalman filter is presented in Figure 5.22. The design is annotated
to indicate the GoF patterns used. The motivation for the design was to produce a
filter that could be extended for multiple applications, supporting a number of variant
algorithms and noise models. The filter must accept n-inputs, and the configuration
chosen was based upon the “pipes and filters” architectural style, supporting both
pull and push modes.

The central class in the model is the KalmanMediator; this is both a concrete
factory responsible for the creation of instances of the KalmanFilter, InputStream, and
OutputStream classes, and a mediator class that coordinates communication between
those classes so that they can remain uncoupled, and therefore immune to changes in
one another. It is this mediation role that allows for both push and pull mode operations;
without a mediator, every instance of the KalmanFilter, InputStream, and Output-
Stream classes would have to know the mode that the other instances were using.

The design also makes use of interface and implementation independence in the
form of the bridge and strategy GoF patterns. The KalmanFilter contains a Noise-
Model and a FilterImp instance, each of which are abstract superclasses defined
concretely for variant types of noise and filter algorithms, respectively. These
instances are therefore interchangeable, allowing for a number of different applica-
tions without modification to the existing software system (the OCP). In addition,
other subclasses of NoiseModel and FilterImp can be defined for future uses.

5.5.3 CHECKPOINTS

Another way to increase fault tolerance is to use checkpoints. In this scheme,
intermediate results are written to memory at fixed locations in code for diagnostic
purposes (Figure 5.23). These locations, called checkpoints, can be used during
system operation and system verification. If the checkpoints are used only during
testing, then this code is known as a test probe. Test probes can introduce subtle
timing errors, which are discussed later.

5.5.4 REecovery BLocks

Fault tolerance can be further increased by using checkpoints in conjunction with
predetermined reset points in software. These reset points mark recovery blocks in

103

Software System Design

(‘67— "dd ‘ooz Arenuer ‘v ‘eIe[) viURS ‘IS ‘90UaIojuo)) SuiSewl] oW -[edy 2y} JO sSuIpaadold 18 pajuasaid 1oded ‘Surssaoolg
oSew] QW] -[eay J0J SINL] UBWIEY] JO SSB[D V D ‘[[ION pue d ‘@uejde] wol) “Sursseooid afewr 10J 10)[y uewey| € 10J uSIsop ssepo vy ¢Z's JANDIH

|epojasioNuossiod

|apoesioNueissner)

AbBajengalaiouo) Abajens _

V2

1apojasioN
Abojens
_ [T 1 /_\ 90uBIaIAPaPIAIQISPIOISIIS
Jojeipapjuewiey| weassindino lweansinduy Ja)iquewiey sousIeHIQIENUSD
> !
K1010B481810U0Q 4y 19npo.d 4V a0 :Aberens
uonoelsqy :ebpug
1
\/ K1
papuaix3jpajelsy|
dwipsayiy
10je1pay|
«doeBjuI» anbesjj0) Joyuswaldw| :8bpug
Aiojoeioensqy anBesjoD oreIPsIn papuaix3
JISLETENY

aja40s1qleaur]

pajuaasun

104 Software Engineering for Image Processing Systems

Data Needed
by Code
DataNeeded | Code | Unitn+l | Code Data Needed
by Code Unit n Unit n+1 by Code
Unit n Unit n+2
Debug Debug
Information Information
for Code for Code
Unit n Unit n+1
FIGURE 5.23 Checkpoint implementation.
jmm e Restart ___________
I
I
: Data Needed :
Data Needed! by Code ;Fest l%alz L _: Data Needed
by Code __y Unit n+1 > Ij?;rtln ode by .COde
Unitn Proceed Unit n+2
Code Code
Unitn Unit n+1

FIGURE 5.24 Recovery block implementation.

the software. At the end of each recovery block, the checkpoints are tested for
reasonableness. If the results are not reasonable, then processing resumes at the
beginning of that recovery block or some previous one (see Figure 5.24).

The point, of course, is that some hardware device (or another process that is
independent of the one in question) has provided faulty inputs to the block. By
repeating the processing in the block, with presumably valid data, the error will not
be repeated.

In the process block model, each recovery block represents a redundant parallel
process to the block being tested. Unfortunately, although this strategy increases
system reliability, it can have a severe impact on performance because of the over-
head added by the checkpoint and repetition of the processing in a block.

5.5.5 SortwARre Brack BoOxes

The software black box is related to checkpoints and is used in certain mission-
critical systems to recover data to prevent future disasters. The objective of a software
black box is to recreate the sequence of events that led to the software failure for
the purpose of identifying the faulty code. The software black box recorder is
essentially a checkpoint that stores behavioral data during program execution, while
attempting to minimize perturbation in recording this information.

The execution of program functionalities results in the sequence of module
transitions where the system can be described as modules and their interaction. When

Software System Design 105

software is running, it passes from one module to the next, passing the control of
execution to it. Passing from one module to the next is considered transition. Call
graphs can be developed from these transitions using an N X N matrix, where N
represents the number of modules in a system.

When each module is called, each transition is recorded by incrementing that
element in a transition frequency matrix. From this, a transition probability matrix
can be derived that records the likeliness that a transition will occur. The transition
frequency and transition probability matrices indicate the number of observed
transitions and the probability that the sequence is missing in this data, respec-
tively.

Recovery begins after the system has failed and the software black box has been
recovered. The software black box decoder generates possible functional scenarios,
quantifies the normality of data, and allows further analysis. The data used to
generate functional scenarios are from the recorder and the mapping between the
modules and functionalities. The generation process attempts to map the modules
in the transition or modular sequence to functionalities, which allows for the isolation
of the likely cause of the failure.

5.5.6 N-VERSION PROGRAMMING

In any system, a state can be entered where the system is rendered ineffective or
locks up. This is usually due to some untested flow of control in the software for
which there is no escape.

In order to reduce the likelihood of this sort of catastrophic error, redundant
processors are added to the system. These processors are coded to the same speci-
fications but by different programming teams. It is therefore highly unlikely that
more than one of the systems can lock up under the same circumstances. Since each
of the systems usually resets a watchdog timer, it quickly becomes obvious when
one of them is locked up, because it fails to reset its timer. The other processors in
the system can then ignore this processor, and the overall system continues to
function. This technique is called n-version programming.

The redundant processors can use a voting scheme to decide on outputs, or,
more likely, there are two processors: master and slave. The master processor is on-
line and produces the actual outputs to the system under control, whereas the slave
processor shadows the master off-line. If the slave detects that the master has become
hung up, it then goes on-line.

5.5.6.1 Built-In Test Software

Built-in test software can enhance fault tolerance by providing ongoing diagnostics
of the underlying hardware for processing by the software. Built-in test is especially
important in embedded systems. For example, if an I/O channel is functioning
incorrectly as determined by its on-board circuitry, the software may be able to shut
off the channel and redirect the I/O.

Although built-in testing is an important part of embedded systems, it adds
significantly to the worst-case time-loading analysis.

106 Software Engineering for Image Processing Systems

5.5.6.2 CPU Testing

It is probably more important that the health of the CPU be checked than any other
component of the system. A set of carefully constructed tests can be performed to
test the efficacy of its instruction set in all addressing modes. Such a test suite will
be time-consuming and thus should be relegated to background processing. Interrupts
should also be disabled during each subtest to protect the data being used.

5.5.6.3 Memory Testing

All types of memory, including nonvolatile memory, can be corrupted via electro-
static discharge, power surging, vibration, or other means. This damage can manifest
itself either as a permutation of data stored in memory cells or as permanent damage
to the cell itself. Damage to the contents of memory is called soft error, whereas
damage to the cell itself is called hard error. All memory should be tested both at
initialization and during normal processing, if possible.

The contents of ROM are often checked by comparing a known checksum. The
known checksum, which is usually a simple binary addition of all program-code
memory locations, is computed at link time and stored in a specific location in ROM.
The new checksum can be recomputed in a slow cycle or background processing,
and compared against the original checksum. Any deviation can be reported as a
memory error. Checksums are not a very desirable form of error checking because
errors to an even number of locations can result in error cancellation. For example,
an error to bit 12 of two different memory locations may cancel out in the overall
checksum, resulting in no error being detected. In addition, although an error may
be reported, the location of the error in memory is unknown.

A reliable method for checking ROM uses a cyclic redundancy code (CRC).
The CRC treats the contents of memory as a stream of bits and each of these bits
as the binary coefficient long binary polynomial. A second binary polynomial of
much lower order (for example, 16 is the usual standard), called the generator
polynomial, is divided (modulo-2) into the message, producing a quotient and a
remainder. Before dividing, the message polynomial is appended with a O bit for
every term. In addition to checking memory, the CRC can be employed to perform
nonvisual validation of screens by comparing a CRC of the actual output with the
CRC of the desired output.

Because of the dynamic nature of RAM, checksums and CRCs are not viable.
One way of protecting against errors to memory is to equip it with extra bits used
to implement a Hamming code. Depending on the number of extra bits, known as
the syndrome, errors to one or more bits can be detected and corrected. Such coding
schemes can be used to protect ROM as well.

This device significantly reduces the number of soft errors, which will be
removed upon rewriting to the cell, and hard errors, which are caused by stuck bits
or permanent physical damage to the memory. The disadvantages of error detection
and correction are that as additional memory is needed for the scheme (6 bits for
every 16 bits — a 37% increase), additional power is required. An access time

Software System Design 107

penalty of about 50 nsec per access is incurred if an error correction is made. Finally,
multiple bit errors cannot be corrected.

In the absence of error detecting and correcting hardware, basic techniques can
be used to test the integrity of RAM memory. These tests are usually run upon
initialization, but they can also be implemented in slow cycles if interrupts are
appropriately disabled.

For example, suppose a computer system has 8-bit data and address buses to
write to 8-bit memory locations. We wish to exercise the address and data buses as
well as the memory cells. This is accomplished by writing and then reading back
certain bit patterns to every memory location. Traditionally, the following hexadec-
imal bit patterns are used: AA, 00, 55, FF. The bit patterns are selected so that any
cross talk between wires can be detected. Bus wires are not always laid out consec-
utively, however, so that other cross-talk situations can arise. For instance, the above
bit patterns do not check for coupling between odd-numbered wires. The following
test set does: AA, 00, 55, FF, OF, 33. This test set, however, does not isolate the
problem to the offending wire (bit). For complete coverage of 8 bits, 28 (7 + 6 + 5
+4 + 3 + 2+ 1) bits are needed in combinations of 2 bits at a time. Since there are
8-bit words, four of these combinations can be tested per test. Thus, the following
8-bit patterns are needed: AA, 00, 55, FF, OF, 33, CC.

In general, for n-bit data and address buses writing to n-bit memory, where 7 is
a power of 2, a total of n(n — 1)/2 patterns of 2 are needed, which can be implemented
in n — 1 patterns of n bits each.

5.5.6.4 Other Devices

Devices such as analog to digital (A/D) converters, digital to analog (D/A) converters,
bus multiplexers, I/O cards, frame grabbers, cameras, and the like, need to be tested
continually, or their self-testing needs to be monitored. Many of these devices have
built-in watchdog timer circuitry to indicate that the device is still on-line. The
software can check for watchdog timer overflows and either reset the device or
indicate failure.

In addition, the test software can rely on the individual built-in tests of the
devices in the system. Typically, these devices will send a status word via DMA to
indicate their health. The software should check this status word and indicate failures
as required.

5.6 EXERCISES

5.1 Why is it that there is no one, universally accepted strategy for software
design modeling?

5.2 How would you handle the situation in which the SRS contains numerous,
if not excess, design specifications?

5.3 Who should write the design specification?

5.4 What are the differences between object-oriented modeling and using DFDs?

108 Software Engineering for Image Processing Systems

5.5 Why is it that the code, even though it is a model of behavior, is insufficient
in serving as either a software requirements document or a software design
document?

5.6 What are the pitfalls of n-version programming?

5.7 Why is it important that the code be traceable to the software design
specification and, in turn, to the SRS? What happens, or should happen,
if it is not?

5.8 Redraw the visual inspection system context diagram in Figure 4.15 to
take into account the calibration and diagnostic modes.

6 The Software Production
Process

The art of progress is to preserve order amid change and to preserve change amid order.

Alfred North Whitehead

6.1 PROGRAMMING LANGUAGES

A programming language represents the nexus of design and structure. Hence,
because the actual “build” of software depends on tools to compile, generate, link,
and create binary objects, “coding” should take relatively little time if the design is
solid. Nevertheless, coding (or programming) is more craft-like than mass produc-
tion, and as with any craft, the best practitioners are known for the quality of their
tools and their skill with them.

The main tool in the software production process is the programming language.
Imaging systems have been built with a wide range of programming languages,
including various dialects of:

e C

e C++

e Java

¢ Fortran
e Ada

e Assembly language
e Visual BASIC
e BASIC

Each programming language offers its own strengths and weaknesses with respect
to imaging systems.

There are several programming language features that stand out in procedural
languages that are desirable for use in embedded imaging systems, particularly:

e Versatile parameter passing mechanisms
* Dynamic memory allocation facilities

e Strong typing

e Abstract data typing

* Exception handling

e Modularity

109

110 Software Engineering for Image Processing Systems

These language features help promote the desirable properties of software and best
engineering practices.

6.1.1 PARAMETER PASSING TECHNIQUES

There are several methods of parameter passing, including the use of parameter lists
and global variables. While each of these techniques has preferred uses, each has a
different performance impact.

6.1.2 CALL-BY-VALUE AND CALL-BY-REFERENCE

The two base parameter passing methods are call-by-value and call-by-reference.*
In call-by-value parameter passing, the value of the actual parameter in the subroutine
or function call is copied into the procedure’s formal parameter. Since the procedure
manipulates the formal parameter, the actual parameter is not altered. This technique
is useful when either a test is being performed or the output is a function of the
input parameters. For example, in an edge detection algorithm, an image is passed
to the procedure and some description of the location of the edges is returned, but
the image itself need not be changed. When parameters are passed using call-by-
value, they are copied onto a run-time stack, at considerable execution time cost.
For example, large image arrays must be passed pixel by pixel.

In call-by-reference, or call-by-address, the address of the parameter is passed
by the calling routine to the called procedure so that it can be altered there. Execution
of a procedure using call-by-reference can take longer than one using call-by-value,
since in call-by-reference, indirect mode instructions are needed for any calculations
involving the variables passed. However, in the case of passing images between
procedures, it is more desirable to use call-by-reference, since passing a pointer to
an image is more efficient than passing the image pixel-wise.

Parameter lists are likely to promote modular design because the interfaces
between the modules are clearly defined. Clearly defined interfaces can reduce the
potential of untraceable corruption of data by procedures using global access.
However, both call-by-value and call-by-reference parameter passing techniques
can impact performance when the lists are long, since interrupts are frequently
disabled during parameter passing to preserve the time correlation of the data passed.
Moreover, call-by-reference can introduce subtle function side effects that depend
on the compiler.

6.1.3 GLOBAL VARIABLES

Global variables are variables that are within the scope of all modules of the software
system. This usually means that references to these variables can be made in direct
mode, and thus are faster than references to variables passed via parameter lists. For

* There are three other historical parameter passing mechanisms: call-by-constant, which was removed
almost immediately from the Pascal language; call-by-value-result, which is used in Ada; and call-by-
name, which was a mechanism peculiar to Algol-60.

The Software Production Process 111

example, in many image processing applications, global arrays are defined to rep-
resent images; hence, costly parameter passing can be avoided.

Global variables introduce no timing problems but are dangerous because ref-
erence to them may be made by an unauthorized code, thus introducing subtle bugs.
For this and other reasons, unwarranted use of global variables is to be avoided.
Global parameter passing is only recommended when timing warrants and its use
must be clearly documented.

The decision to use one method of parameter passing or the other represents
a trade-off between good software engineering practice and performance needs.
For example, often timing constraints force the use of global parameter passing
in instances when parameter lists would have been preferred for clarity and
maintainability.

6.1.4 RECURSION

Most programming languages provide recursion in that a procedure can call itself.
Recursion is widely used in image processing, for example, in implementing self-
referential algorithms and data structures such as the Hadamard matrices, fractal
compression, segmentation via divide-and-conquer methods, quad trees, and thinning.

While recursion is elegant and is often necessary in imaging algorithms, its
adverse impact on performance must be considered. Procedure calls require the
allocation of storage on one or more stacks for the passing of parameters and for
storage of local variables. The execution time needed for the allocation and deallo-
cation, and for the storage of those parameters and local variables, can be costly. In
addition, recursion necessitates the use of a large number of expensive memory
direct and register indirect instructions. Finally, the use of recursion often makes it
impossible to determine the size of run-time memory requirements. Thus, iterative
techniques such as while and for loops must be used if performance prediction is
crucial or in those languages that do not support recursion.

6.1.5 DyNAMIC MEMORY ALLOCATION

The ability to dynamically allocate memory is important in the construction and
maintenance of many data structures needed in an imaging system. While dynamic
allocation can be time-consuming, it is usually necessary, especially when creating
intermediate images needed in most algorithms. Linked lists, trees, heaps, and other
dynamic data structures can benefit from the clarity and economy introduced by
dynamic allocation. Furthermore, in cases where just a pointer is used to pass a data
structure, the overhead for dynamic allocation can be quite reasonable. When writing
imaging code, however, care should be taken to ensure that the compiler will pass
pointers to large data structures and not the data structure itself.

Languages that do not allow dynamic allocation of memory require data struc-
tures of fixed size. While this may be faster, flexibility is sacrificed and memory
requirements must be predetermined.

Languages such as C, Pascal, Ada, and Modula-2 have dynamic allocation
facilities, while most versions of Fortran, for example, do not.

112 Software Engineering for Image Processing Systems

6.1.6 TyrING

Typed languages require that each variable and constant be of a specific type (e.g.,
pixel, Boolean, and integer) and that each be declared as such before use. Languages
that provide specialized types for imaging applications are rare. Generally, high-level
languages provide integer and floating-point types, along with Boolean, character, and
string types. In some cases, abstract data types are supported. These allow program-
mers to define their own type (such as pixel) along with the associated operations.
Use of abstract data types, however, will incur an execution time penalty, as compli-
cated internal representations are often needed to support the abstraction. Strongly
typed languages prohibit the mixing of different types in operations and assignments,
and thus force the programmer to be precise about the way data are to be handled.
Precise typing can prevent corruption of data through unwanted or unnecessary type
conversion. Hence, strongly typed languages are desirable for imaging.

Some languages are typed, but do not prohibit mixing of types in arithmetic
operations. Since these languages generally perform mixed calculations using the
type that has the highest storage complexity, they must promote all variables to that
type. For example, in C, the following code fragment illustrates automatic promotion
and demotion of variable types:

int x,vy;

float k,1,m;

j = x*k + m;

Here the variable x will be promoted to a float (real) type, and then multiplication
and addition will take place in floating point. Afterward, the result will be truncated
and stored in j. The performance impact is that hidden promotion and more time-
consuming arithmetic instructions can be generated, with no additional accuracy. In
addition, accuracy can be lost due to the truncation, or worse, an integer overflow
can occur if the floating-point value is larger than the allowable integer value.
Programs written in languages that are weakly typed need to be scrutinized for such
effects. Some C compilers will catch type mismatches in function parameters. This
can prevent unwanted type conversions.

6.1.7 ExceptrioN HANDLING

Certain languages provide facilities for dealing with errors or other anomalous
conditions that arise during program execution. These conditions include the obvi-
ous, such as floating-point overflow, square root of a negative, divide by zero, and
image-related ones such as boundary violation, wraparound, and pixel overflow. The
ability to define and handle exceptional conditions in the high-level language aids
in the construction of interrupt handlers and other code used for real-time event
processing. Moreover, poor handling of exceptions can degrade performance. For

The Software Production Process 113

example, floating-point overflow errors can propagate bad data through an algorithm
and instigate time-consuming error recovery routines.

Of all the languages widely used in imaging applications, Ada has the most
explicit exception handling facility, although Java also has excellent exception han-
dling using the “try, throw, catch, finally” approach used by many mainstream object-
oriented languages. ANSI-C also provides some exception handling capability
through the use of signals.

Finally, exception handling can often be implemented in languages such as C,
Pascal, and Modula-2 as a user-definable library when permitted by the compiler.

6.1.8 MODULARITY

Procedural languages that are amenable to the principle of information hiding tend
to make it easy to construct subprograms. While C and Fortran both have mechanisms
for this (procedures and subroutines), other languages such as Ada (which can be
considered either procedural or object oriented) tend to foster more modular design
because of the requirement to have clearly defined inputs and outputs in the module
parameter lists.

In Ada the notion of a package embodies the concept of Parnas information
hiding exquisitely. The Ada package consists of a specification and declarations that
include its public or visible interface and its invisible or private parts. In addition,
the package body, which has further externally invisible components, contains the
working code of the package. Packages are separately compliable entities, which
further enhances their application as black boxes. In Fortran there is the notion of
a SUBROUTINE and separate compilation of source files. These language features
can be used to achieve modularity and design abstract data types. The C language
also provides for separately compiled modules and other features that promote a
rigorous top-down design approach that should lead to a good modular design.

While modular software is desirable, there is a price to pay in the overhead
associated with procedure calls and parameter passing. This adverse effect should
be considered when sizing modules.

Object-oriented languages provide a natural environment for information hiding,
For example, in image processing systems, it might be useful to define a class of
type pixel, with attributes describing its position, color, and brightness; and opera-
tions that can be applied to a pixel, such as add, activate, deactivate, and so on. It
might also be desirable to define objects of type image as a collection of pixels with
other attributes of width, height, and so on. In some cases, expression of system
functionality is easier to do in an object-oriented manner.

Object-oriented techniques can increase programmer efficiency, reliability, and
the potential for reuse. Generally, there is an execution time penalty in object-
oriented languages. This is due in part to late binding (resolution of memory locations
at run time rather than at compile time) necessitated by function polymorphism and
inheritance. Late binding can often present a significant delay. Another problem
results from the collection garbage generated by these types of languages. One
possible way to reduce these penalties is not to define too many classes and to define
only classes that contain coarse detail and high-level functionality.

114 Software Engineering for Image Processing Systems

6.1.9 BRIEF SURVEY OF LANGUAGES

For purposes of illustrating the aforementioned language properties, it is helpful to
review some of the more widely used languages in imaging systems. The languages
are presented in alphabetical order, and their pros and cons with respect to their use
in imaging applications are discussed.

It is noteworthy that functional languages, such as LISP and ML, have been
omitted from the discussions. This is not because they are useless in the context of
imaging applications, but simply because they are rare in their use in this setting.
The discussion also omits object-oriented scripting languages, which have become
popular for writing tools, and test harnesses such as Python and Ruby, simply because
they are not appropriate for embedded targets.

6.1.9.1 Ada 95

Ada was originally intended to be the mandatory language for all U.S. Department
of Defense projects. The first version, which became standardized in 1983, had
significant problems. The programming language community had long been aware
of the problems with the first release of the Ada standard and, practically since the
first delivery of an Ada 83 compiler, had sought to resolve them, which resulted in
a new version. The new language, now called Ada 95, was the first internationally
standardized object-oriented programming language. However, Ada’s original intent
has been consistently undermined by numerous exceptions that were granted, and
it seems inevitable that Ada is not destined to fulfill its original intent.

Ada was designed specifically for embedded real-time systems, but systems builders
have typically found the language to be too bulky and inefficient. Moreover, significant
problems were found when trying to implement multitasking using the limited tools
supplied by the language, such as the roundly criticized rendezvous mechanism.

Three pragmas were introduced in Ada 95 to resolve some of the uncertainty in
scheduling, resource contention, and synchronization:

1. One controls how tasks are dispatched.

2. Another controls the interaction between task scheduling.

3. The last controls the queuing policy of task or resource entry queues.
First-in-first-out and priority queuing policies are available.

Other expansions to the language were intended to make Ada 95 an object-
oriented language. These include:

e Tagged types
* Packages
* Protected units

Proper use of these constructs allows for the construction of objects that exhibit the
three characteristics of object-oriented languages (abstract data typing, inheritance,
and polymorphism).

The Software Production Process 115

However, as mentioned, Ada has never lived up to its promise of universality.
Nevertheless, even though the number of available Ada developers continues to
dwindle, the language is staging somewhat of a mini-comeback, particularly because
of the availability of open-source versions of Ada for Linux (Linux is an open-source
derivative of the Unix operating system).

6.1.9.2 Assembly Language

Though lacking most of the features discussed for the high-level languages, assembly
language does have certain advantages in that it provides more direct control of the
computer hardware. Unfortunately, because of its unstructured and limited abstrac-
tion properties, and because it varies widely from machine to machine, coding in
assembly language is usually difficult to learn, tedious, and error prone. The resulting
code is also unportable.

Until just a few years ago, most assembly language programmers could generate
code that was more efficient than the code generated by a compiler. But with
improvements in optimizing compilers, only the very best assembly language pro-
grammers can generate code that is faster and more compact than those of the best
compilers. Thus, the need to write assembly code exists only in cases where the
compiler does not support certain macroinstructions or when the timing constraints
are so tight that hand-tuning is needed to produce optimal code. In any case, a system
will likely find that 99% of the code will be written in the high-order language,
while the rest is written in assembly language.

In cases where complex prologues and epilogues are needed to prepare an assem-
bly language program, often a shell of the program is written in the high-order language
and compiled to an assembly file, which is then massaged to obtain the desired effect.
Some languages such as Ada and versions of Pascal provide a pragma pseudo-op,
which allows for assembly code to be placed in-line with the high-order language code.

Assembly language programming should be limited to use in very tight timing
situations or in controlling hardware features that are not supported by the compiler.
In general, however, it should be discouraged.

6.1.9.3 C

The C programming language, invented around 1971, is a good language for low-
level programming. The reason for this is that it is descended from the language
BCPL (whose successor, C’s parent, was B), which supported only one type —
machine word. Consequently, C supported machine-related objects like characters,
bytes, bits, and addresses, which could be handled directly in high-level language.
These entities can be manipulated to control interrupt controllers, CPU registers,
and other hardware needed by a real-time system. C is also often used as a high-
level cross-platform assembly language.

C provides special variable types such as register, volatile, static, and constant,
which allows for control of code generation at the high-order language level. For
example, declaring a variable as a register type indicates that it will be used frequently.
This encourages the compiler to place such a declared variable in a register, which

116 Software Engineering for Image Processing Systems

often results in smaller and faster programs. C supports call-by-value only, but call-
by-reference can be implemented by passing the pointer to anything as a value.

Variables declared as type volatile are not optimized by the compiler. This is
useful in handling memory-mapped input and output (I/O) and other instances where
the code should not be optimized.

The C language provides for exception handling through the use of signals, and
two other mechanisms, setjmp and longjmp, are provided to allow a procedure to
return quickly from a deep level of nesting, a useful feature in procedures requiring
an abort. The setjmp procedure call, which is really a macro (but often implemented
as a function), saves environment information that can be used by a subsequent
longjmp library function call. The longjmp call restores the program to the state at
the time of the last setjmp call. Suppose a procedure process is called to perform
some processing and error checking. If an error is detected, a longjmp is performed
that changes the flow of execution directly to the first statement after the setjmp.

Overall, however, the C language is good for embedded programming because
it provides for structure and flexibility without complex language restrictions.

6.1.9.4 C++

C++ is a hybrid object-oriented programming language that was originally imple-
mented as a macroextension of C. Today, C++ stands by itself as a separately compiled
language, although strictly speaking, C++ compilers should accept standard C code.

C++ exhibits all three characteristics of an object-oriented language. It promotes
better software engineering practice through encapsulation and better abstraction
mechanisms than C.

Significantly, more embedded systems are being constructed in C++ and many
practitioners are asking, “Should I implement the system in C or C++?” My answer
to them is always “it depends.” Choosing C in lieu of C++ in embedded imaging
applications is, roughly speaking, a trade-off between a “lean and mean” C program
that will be faster and easier to predict, but harder to maintain, and a C++ program
that will be slower and less predictable, but potentially easier to maintain.

C++ still allows for low-level control (without falling back to C features); for
example, it can use in-line methods rather than a run-time call. This kind of imple-
mentation is not completely abstract or completely low level, but is acceptable in
embedded environments.

However, there is some tendency to take existing C code and objectify it by
wrapping the procedural code into objects with little regard for the best practices of
object orientation. This kind of approach is to be avoided because it has the potential
to incorporate all of the disadvantages of C++ and none of the benefits.

6.1.9.5 Fortran

The Fortran* language is the oldest high-order language extant (developed circa
1955). Because in its earlier versions Fortran lacked recursion and dynamic alloca-

* Although Fortran is an acronym for Formula Translator, it is often written as Fortran because the word
has entered the mainstream in the same way that the acronyms laser and sonar have.

The Software Production Process 117

Program is Instructions
to Interpreter

Il

Interpreter
\\ Model of a
Machine
Computer

FIGURE 6.1 The Java interpreter as a model of a virtual machine.

tion facilities, embedded systems written in this language typically included a large
portion of assembly language code to handle interrupts and scheduling, and com-
munication with external devices was through the use of memory-mapped I/O, direct
memory addressing, and I/O instructions. Later versions of the language included
such features as reentrant code, but even today, an embedded Fortran system requires
some assembly language code to accompany it.

Fortran was developed in an era when efficient code was essential to optimizing
performance in small, slow machines. As a result, the language constructs were
selected for efficiency, and early Fortran code generators were unusually so.

To its detriment, Fortran is weakly typed, but because of the subroutine construct
and the if-then-else construct, it can be used to design highly structured code. Fortran
has no built-in exception handling or abstract data types. Fortran is still used to write
many imaging applications.

6.1.9.6 Java

Java is an interpreted language; that is, the code compiles into machine-independent
code that runs in a managed execution environment. This environment is a virtual
machine (Figure 6.1) that executes “object” code instructions as a series of program
directives. The advantage of this arrangement is that the Java code can run on any
device that implements the virtual machine. This “write once, run anywhere” phi-
losophy has important applications in embedded and portable computing, as well
as in Web-based computing.

Java is in some ways not just a language, but an environment through its virtual
machine. There are some native-code Java compilers, however, that allow Java to
run directly “on the bare metal”; that is, the compilers convert Java directly to
assembly code or object code.

Java is an object-oriented language that looks very much like C++. Like C, Java
supports call-by-value, but the value is the reference to an object, which is in essence
call-by-reference for all objects. Primitives are passed-by-value.

Some features of Java that are different than C++ and are of interest in imaging
applications are:

118 Software Engineering for Image Processing Systems

e There are no global functions or constants — everything belongs to a class.

e Arrays and strings have built-in bounds checking.

e All values are initialized and use special defaults if none are given.

* All classes in Java ultimately inherit from the object class.

* Java does not support multiple inheritance (although it can be simulated
with the “implements” construct).

* Java does not support the GOTO statement; however, it supports labeled
breaks.

» Java does not support automatic type conversions (except where guaran-
teed safe).

e Types are all references to objects, except the primitive types.

One of the best-known problems with Java involves its garbage collection utility.
Garbage is memory that has been allocated but is unusable because of the loss of a
pointer to it, for example, through the destruction of an object. The allocated memory
must be reclaimed through garbage collection.

Garbage collection algorithms generally have unpredictable performance
(although average performance may be known). The loss of determinism results
from the unknown amount of garbage, the tagging time of the nondeterministic data
structures, and the fact that many incremental garbage collectors require that every
memory allocation or deallocation from the heap be willing to service a page-fault
trap handler.

6.2 WRITING AND TESTING CODE

A compiler translates a program from high-level source code language into relocat-
able machine instructions. Usually this process is broken into a series of phases.
The overall process is illustrated in Figure 6.2. Once the program has been processed
by the linker, it is ready for execution.

First, the high-level language program is translated into a symbolic machine
code form called assembly language. Next, a separate program called an assembler
is used to translate the symbolic assembly language into relocatable machine code
or object code. At some stage in the compilation process, optimization of the code
may take place. Finally, the relocatable code output from the compiler is made
absolute, and all external references are resolved, by a program called a linker, or
linking loader.

Object Code, or

Intermediate form Executable
Source Code —)f Compiler | gch a5 Assembly —| Linker/Loader| ——> ¢, 4e
Language

FIGURE 6.2 The compilation and linking processes.

The Software Production Process 119

Source_> Preprocessor »| Tokenizer Parser —> Code —>{ Optimizer _>Ob,]ect
Code Generator Code

FIGURE 6.3 Phases of compilation provided by a typical compiler, such as Unix/Linux C.

6.2.1 Exampre: THE UNix/Linux C COMPILER

To further illustrate the process of compiling, linking, and some of the issues in
source code unit testing and debugging, consider the widely used Unix-based C
compiler. This compiler is also found in many Linux implementations.

The Unix C compiler cc provides a utility that controls the compilation and
linking processes. In particular, in Unix System V version 3 (SVR3), the cc program
provides for the following phases of compilation:

e Preprocessing

¢ Compilation

e Optimization

e Assembly

e Linking and loading

These phases are illustrated in Figure 6.3 and summarized in Table 6.1.

The preprocessing phase of the compiler, performed by the program cpp, takes
care of such things as converting symbolic values into actual values and evaluating
and expanding code macros. The compilation of the program, that is, the translation
of the program from C language to assembly language, is performed by the program
ccom. Optimization of the code is performed by the program ¢2, and assembly or
translation of the assembly language code into machine codes is taken care of by
as. Finally, the object modules are linked together, all external references (for
example, library routines) are resolved, and the program (or an image of it) is loaded
into memory by the program ld. The executable program is now ready to run.

TABLE 6.1

Phases of Compilation and
Their Associated Program for
the Unix C Compiler

Phase Program
Preprocessing cpp
Compilation ccom
Optimization c2
Assembly as

Linking and loading 1d

120 Software Engineering for Image Processing Systems

The fact that many of these phases can be bypassed or run alone is an important
feature that will help in program debugging and optimization.

6.2.2 HANDLING COMPILER ERRORS

It is beyond the scope of this text to discuss the many program warnings and errors
that the user can encounter in the course of compiling and linking programs. A
discussion of this is best left to the reference book of the language in question.

However, one technique that can help is to redirect errors to a file. When a
program with syntax errors is compiled, errors may be displayed to the screen too
fast to read. These errors can be redirected to a file that can be looked at leisurely.
This technique is called redirecting standard error.

6.2.3 SoMe DeBUGGING Tips: UNIT-LEVEL TESTING

Programs can be affected by syntactic or logic errors. Syntactic or syntax errors arise
from the failure to satisfy the rules of the language. A valid compiler will always
detect syntax errors, although the way that it reports the error can often be misleading.

For example, in a C program a missing } may not be detected until many lines
after it should have appeared. Some compilers only report “syntax error,” rather
than, for example, “missing }.”

In logic errors, the code adheres to the rules of the language, but the algorithm
that is specified is somehow wrong. Logic errors are more difficult to diagnose
because the compiler cannot detect them; however, a few basic rules may help find
and eliminate logic errors:

e Document the program carefully. Ideally, each nontrivial line of code
should include a comment. In the course of commenting, this may detect
or prevent logical errors.

e Where a symbolic debugging is available, use steps, traces, break points,
skips, and so on, to isolate the logic error (discussed later).

¢ In the case of a command line environment (such as Unix/Linux), use
print statements to output intermediate results at checkpoints in the code.
This may help detect logic errors.

e In case of an error, comment out portions of the code until the program
compiles and runs. Add in the commented out code, one feature at a time,
checking to see that the program still compiles and runs. When the pro-
gram either does not compile or runs incorrectly, the last code you added
is involved in the logic error.

Finding and eliminating logic errors are more art than science, and the software
engineer develops these skills only with time and practice. In many cases, code
audits or walk-throughs can be quite helpful; they are discussed later.

6.2.4 EXTENDED SYNTAX AND SEMANTIC CHECKING

While it is impossible to provide automatic logic validation, and the compiler can
only check for syntactical correctness, many programming environments provide

The Software Production Process 121

tools that are helpful in eliminating logical errors. For example, two tools are
associated with Unix and Linux.

One of these is called lint. As its name implies, lint is a nitpicker that does
checking beyond that of an ordinary compiler. For example, C compilers are often
not very particular about certain inconsistencies, such as parameter mismatches,
declared variables that are not used, and type checking; however, lint is particular,
often preventing or diagnosing very difficult bugs.

Another Unix tool, the C beautifier, or cb, is simply used to transform a sloppy-
looking program into a readable one. It does not change the program code. Instead,
cb just adds plenty of tabs, line feeds, and spaces where needed to make things look
nice. This is very helpful in finding badly matched or missing curly braces, erroneous
if-then-else and case statements, and incorrectly terminated functions. As with lint,
¢b is run by typing “cb” and a file name at the command prompt.

6.2.5 SymoLic DEBUGGING

Source-level debuggers are software programs that provide the ability to step through
code at either a macroassembly or high-order language level. They are extremely
useful in module-level testing. They are less useful in system-level debugging
because the run-time aspect of the system is necessarily disabled or affected.

Debuggers can be obtained as part of compiler support packages or in conjunc-
tion with sophisticated logic analyzers. For example, sdb is a generic name for the
symbolic debugger associated with Unix and Linux. It allows the engineer to single-
step through source language code and view the results of each step.

In order to use the symbolic debugger, the source code must be compiled with
the appropriate option set. This has the effect of including a special run-time code
that interacts with the debugger. Once the code has been compiled for debugging,
it can be executed normally.

For example, in the Unix/Linux environment, the program can be started nor-
mally from the sdb debugger at any point by typing certain commands at the
command prompt. However, it is more useful to single-step through the source code.
Lines of code are displayed and executed one at a time by using the “s” (for step)
command. If the statement is an output statement, it will output to the screen
accordingly. If the statement is an input statement, it will await user input. All other
statements execute normally.

At any point in the single-stepping process, individual variables can be set or
examined. There are many other features of sdb, such as break-point setting. In
more sophisticated operating environments, a graphical user interface (GUI) is also
provided, but essentially, these tools provide the same functionality.

Very often when debugging a new program, the Unix operating system will abort
execution and indicate that a core dump has occurred. This is a signal that some
fault has occurred. A core dump creates a rather large file named core, which many
programs simply remove before proceeding with the debugging. But core contains
some valuable debugging information, especially when used in conjunction with
sdb. For example, core contains the last line of the program that was executed and
the contents of the function call stack at the time of the catastrophe. The sdb can

122 Software Engineering for Image Processing Systems

be used to single-step up to the point of the core dump to identify its cause. Later
on, you may learn to use break points to quickly come up to this line of code.

When removing code during debugging, it is inadvisable to use conditional
branching. Conditional branching affects timing and can introduce subtle timing
problems. Conditional compilation is more useful in these instances. In conditional
compilation, selected code is included only if a compiler directive is set and does
not affect timing in the production system.

6.2.6 Test-FirsT CODING

Test-first coding is a code production approach in which the test cases for the code
are written, by the software engineer who will eventually write the code, before the
code is written. The advantage of this approach is that it forces the software engineer
to think about the code in a very different way that involves focusing on “breaking
down” the software. Software engineers who use this technique report that while it
is sometimes difficult to change their way of thinking, once the test cases have been
written, it is actually easier to write the code, and debugging becomes much easier
because the unit-level test cases have already been written.

6.2.7 KNow THE COMPILER

Understanding the mapping between high-order language input and assembly lan-
guage output for a particular compiler is essential in generating code that is optimal
in either execution time or memory requirements. The easiest and most reliable way
to learn about any compiler is to run a series of tests on specific language constructs.

For example, in many C and Pascal compilers the case statement is efficient
only if more than three cases are to be compared — otherwise nested if statements
should be used. Sometimes the code generated for a case statement can be quite
convoluted, for example, a jump through a register, offset by the table value. This
can be time-consuming.

It has already been mentioned that procedure calls are costly in terms of passing
of parameters via the stack. The software engineer should determine whether the
compiler passes the parameters by byte or by word.

Other language constructs that may need to be considered include:

* Use of while loops vs. for loops or do-while loops

e When to “unroll” loops, that is, to replace the looping construct with
repetitive code (thus saving the loop overhead as well as providing the
compiler with the opportunity to use faster, direct or single indirect mode
instructions)

e Comparison of variable types and their uses (for example, when to use
short integer in C vs. Boolean, when to use single precision vs. double
precision floating point, and so forth)

* Use of in-line expansion of code via macros vs. procedure calls

This by no means is an exhaustive list.

The Software Production Process 123

While good compilers should provide optimization of the assembly language
code output in order to make the decisions listed above, it is important to discover
what that optimization is doing to produce the resultant code. For example, compiler
output can be affected by optimization for speed, memory and register usage, jumps,
and so on, which can lead to inefficient code, timing problems, or critical regions.
Thus, embedded systems engineers must be masters of their compilers. That is, at
all times the engineer must know what assembly language code will be output for
a given high-order language statement. A full understanding of each compiler can
only be accomplished by developing a set of test cases to exercise it. The conclusions
suggested by these tests can be included in the set of coding standards to foster
improved use of the language and, ultimately, improved system performance.

6.3 CODING STANDARDS

Coding standards are different from language standards. A language standard, for
example, ANSI C, embodies the syntactic rules of the language. A program violating
those rules will be rejected by the compiler. Conversely, a coding standard is a set
of stylistic conventions. Violating the conventions will not lead to compiler rejection.
In another sense, compliance with language standards is mandatory, while compli-
ance with coding standards is voluntary.

Adhering to language standards fosters portability across different compilers,
and hence hardware environments. Complying with coding standards will not foster
portability, but rather, in many cases, readability and maintainability. Some even
contend that the use of coding standards can increase reliability. Coding standards
may also be used to foster improved performance by encouraging or mandating the
use of language constructs that are known to generate more efficient code. Many
agile methodologies embrace coding standards, for example, extreme programming.

Coding standards involve standardizing some or all of the following elements
of programming language use:

» Standard or boilerplate header format.

* Frequency, length, and style of comments.

* Naming of classes, methods, procedures, variable names, data, file names,
and so forth.

* Formatting of program source code, including use of white space and
indentation.

* Size limitations on code units, including maximum and minimum lines
of code, number of methods, and so forth.

* Rules about the choice of language construct to be used; for example,
when to use case statements instead of nested if-then-else statements.
Determination of these rules was discussed in the previous section.

While it is unclear if conforming to these rules fosters improvement in reliability,
for example, clearly close adherence can make programs easier to read and under-
stand and likely more reusable and maintainable.

124 Software Engineering for Image Processing Systems

There are many different standards for coding that are language independent,
or language specific. Coding standards can be team-wide, company-wide, or user-
group specific (for example, the Gnu software group has standards for C and C++),
or customers can require conformance to specific standards that they own. Still other
standards have become public domain.

One example is the Hungarian notation standard, named in honor of Charles
Simonyi, who is credited with first promulgating its use. Hungarian notation is a
public domain standard intended to be used with object-oriented languages, partic-
ularly C++. The standard uses a complex naming scheme to embed type information
about the objects, methods, attributes, and variables in the name. Because the
standard essentially provides a set of rules about naming variables, it can be and
has been used with other languages such as Ada, Java, and even C.

One problem with standards such as the Hungarian notation is that they can
promote very mangled variable names, in that they direct focus on how to name in
Hungarian rather than a meaningful name of the variable for its use in code. In other
words, the desire to conform to the standard becomes the end, not a particularly
meaningful variable name.

Another problem is that the very strength of coding standard can be its own
undoing. For example, in Hungarian notation what if the type information embedded
in the object name is, in fact, wrong? There is no way for a compiler to check this.
There are commercial rules wizards, reminiscent of lint, that can be tuned to enforce
the coding standards, but they must be programmed to work in conjunction with
the compiler.

Finally, adoption of coding standards is not recommended mid-project. It is
much easier to start conforming than to be required to change existing code to
comply.

The decision to use coding standards is an organizational one that requires
significant forethought and debate.

6.4 REVIEWS AND AUDITS

Joint application design (JAD) is a requirements engineering process whereby highly
structured group meetings or mini-retreats involving system users, system owners,
and analysts occur in a single room for an extended period of time — 4 to 8 hrs per
day, anywhere from one day to a couple weeks — to focus on requirements devel-
opment. JAD-like techniques are becoming increasingly common in systems plan-
ning and systems analysis to obtain group consensus on problems, objectives, and
requirements.

Similar kinds of immersive retreats can be used for reviews and audits of code
and other software artifacts. These reviews and audits can be used for:

* Eliciting requirements and for the software requirements specification
e Design and software design description

e Code

e Tests and test plan

* User’s manuals

The Software Production Process 125

And there can be multiple reviews for each.
Planning for a review or audit session involves three steps:

1. Selecting participants
2. Preparing the agenda
3. Selecting a location

Reviews and audits may include some or all of the following participants:

* Sponsors (for example, senior management)

e Team leader (facilitator, independent)

* Users and managers who have ownership of requirements and business
rules

e Scribe(s)

* Engineering staff

The sponsor, analysts, and managers select a leader. The leader may be in-house
or contracted. One or more scribes (recorders), normally selected from the engineer-
ing staff, are selected from the development team(s). The analyst and managers must
select individuals from the user community; they should be knowledgeable about
their business area and able to articulate it.

Before planning a session, the analyst and sponsor must determine the scope of
the project and set the high-level requirements and expectations of each session. The
session leader must also ensure that the sponsor is willing to commit people, time,
and other resources to the effort. The code or documentation must also be sent to
all participants well in advance of the meeting so that they have sufficient time to
review them, make comments, and prepare to ask questions.

The agenda depends on the topic of the type of review, but it should be con-
structed to allow sufficient time.

Finally, the physical layout of the room also has much to do with the success
of the session. A proposed layout is shown in Figure 6.4.

Some rules for conducting software requirements, design audits, or code walk-
throughs follow. The session leader must make every effort to implement these practices.

* Stick to the agenda.

* Stay on schedule (agenda topics are allotted specific time).

* Ensure the scribe is able to take notes.

* Avoid technical jargon (if the review is a requirements review and involves
nontechnical personnel).

* Resolve conflicts (try not to defer).

* Encourage group consensus.

* Encourage user and management participation without allowing individ-
uals to dominate the session.

* Keep it impersonal.

e Take notes.

* Take as long as it takes.

126 Software Engineering for Image Processing Systems

IS Professionals
N Rl N
Other Obervers
(2] Whiteboard
5 Overhead Projector
E f . \
[5 -
L‘g - Users . 8 E
~ and Computer_y{__| =
< Managers Projection
-§ l Device
m .
— Scribe
=
Workstation Printer

FIGURE 6.4 Typical room layout for a review session, such as a requirements, design, or
code review.

The end product of any review session is typically a formal written document
providing a summary of the items (specifications, design changes, code changes,
and action items) agreed upon during the session. The content and organization of
the document obviously depend on the nature and objectives of the session.

6.5 DOCUMENTATION

Traceability includes providing good documentation at important points in the soft-
ware life cycle. In the waterfall model, documentation would be an expected output
at the end of each of the phases. Table 6.2 summarizes these documents.

TABLE 6.2

Sample Documentation Produced throughout
the Software Life Cycle Corresponding to
Each Phase in the Waterfall Model

Phase Document
Concept White paper
Requirements Software requirements specification
Design Software design description
Code Documented code
Test Test report

Maintenance Change requests, change reports

The Software Production Process 127

Similar documentation can be expected along the way for each of the other
software life cycle models. The software requirements specification and software
design description documentation have already been discussed, along with docu-
mentation of the code.

It is beyond the scope of this text to describe each document in detail. The form
the documentation takes depends on organizational preferences, customer demands,
and the software process model and standards that are adopted. In any event,
carefully written and edited documentation is an important software artifact — not
just an onerous chore undertaken to satisfy management. Indeed, the first step in
dealing with legacy systems or acquired software systems is the hunt for extant
documentation.

6.6 EXERCISES

6.1 Which of the languages discussed in this chapter provide for some sort
of GOTO statement? Does the GOTO statement affect performance? If
so, how?

6.2 It can be argued that in some cases there exists an apparent conflict
between good software engineering techniques and real-time perfor-
mance. Consider the relative merits of recursive program design vs. inter-
active techniques, and the use of global variables vs. parameter lists. Using
these topics and an appropriate programming language for examples,
compare and contrast real-time performance vs. good software engineer-
ing practices as you understand them.

6.3 What other compiler options are available for your compiler and what do
they do?

6.4 Why do you think that it is impossible to bypass the preprocessor phase
of the compilation process?

6.5 In the object-oriented language of your choice, design and code an
“image” class that might be useful across a wide range of projects. Be
sure to follow the best principles of object-oriented design.

6.6 In a procedural language of your choice, develop an abstract data type
called image with associated functions. Be sure to follow the principle of
information hiding.

6.7 Write a set of coding standards for use with imaging systems for the
programming language of your choice. Document the rationale for each
provision of the coding standard.

6.8 Develop a set of tests to exercise a compiler to determine the best use of
the language in an image processing environment. For example, your tests
should determine such things as when to use case statements vs. nested
if-then-else statements, when to use integers vs. Boolean variables for
conditional branching, whether to use while or for loops and when, and
o on.

6.9 How can misuse or misunderstanding of a software technology impede a
software project? For example, writing structured C code instead of

128 Software Engineering for Image Processing Systems

classes in C++, or reinventing a tool for each project instead of using a
standard one.

6.10 Compare how Ada 95 and Java handle the infamous GOTO statement.
What does this indicate about the design principles or philosophy of each
language?

6.11 Java has been compared to Ada 95 in terms of hype and unification —
defend or attack the arguments against this.

6.12 Are there language features that are exclusive to C and C++? Do these
features provide any advantage or disadvantage in embedded environ-
ments?

7 Software Measurement
and Testing

In a few minutes a computer can make a mistake so great that it would take many men
months to equal it.

Merle L. Meacham

7.1 THE ROLE OF METRICS

The key to controlling anything is measurement. Software is no different in this
regard, but the following question arises: What aspects of software can be mea-
sured? Chapter 2 introduced several important software properties and alluded to
their measurement. It is now appropriate to examine the measurement of these
properties and show how this data can be used to monitor and manage the devel-
opment of software.

Metrics can be used in software engineering in several ways. First, certain
metrics can be used during software requirements development to assist in cost
estimation. Another useful application for metrics is benchmarking. For example,
if a company has a set of successful systems, then computing metrics for those
systems yields a set of desirable and measurable characteristics with which to seek
or compare in future systems. Most metrics can be used for testing in the sense of
measuring the desirable properties of the software and setting limits on the bounds
of those criteria.

Of course, metrics can be used to track project progress. In fact, some companies
reward employees based on the amount of software developed per day as measured
by some of the metrics to be discussed (e.g., delivered source instructions (DSIs),
function points, or lines of code).

Finally, metrics can be used during the testing phase and for debugging purposes
to help focus on likely sources of errors.

7.1.1 Lines oF CoDE

The easiest characteristic of software that can be measured is the number of lines
of finished source code. Measured as thousands of lines of code (KLOC), the “clock”
metric is also referred to as DSIs or noncommented source code statements (NCSSs).
That is, the number of executable program instructions, excluding comment state-
ments, header files, formatting statements, macros, and anything that does not show
up as executable code after compilation or cause allocation of memory, are counted.

129

130 Software Engineering for Image Processing Systems

Another related metric is source lines of code (SLOCs), the major difference being
that a single SLOC may span several lines. For example, an if-then-else statement
could be a single SLOC, but many DSIs.

While the clock metric essentially measures the weight of a printout of the source
code, thinking in these terms makes it likely that the usefulness of KLOC will be
unjustifiably dismissed as supercilious. But is not it likely that 1000 lines of code
is going to have more errors than 100 lines of code? Would it not take longer to
develop the latter than the former? Of course, the answer is dependent on how
complex the code is.

One of the main disadvantages of using lines of source code as a metric is that
it can only be measured after the code has been written. While it can be estimated
beforehand and during software production based on similar projects, this is far less
accurate than measuring the code after the fact. Nevertheless, KLOC is a useful
metric, and in many cases is better than measuring nothing. Moreover, many other
metrics are fundamentally based on lines of code.

For example, a closely related metric is delta KLOC (sometimes derisively
referred to as release turmoil). Delta KLOC measures how many lines of code change
over some period of time. Such a measure is useful, perhaps, in the sense that as a
project nears the end of code development, delta KLOC would be expected to be
small. Other, more substantial metrics are also derived from KLOC.

7.1.2 McCaBF’s METRIC

A valid criticism of the KLOC metric is that it does not take into account the
complexity of the software involved. For example, 1000 lines of print statements
probably do have fewer errors than 100 lines of a complex imaging algorithm.

To attempt to measure software complexity, McCabe (1976) introduced the
metric, cyclomatic complexity, which measures program flow of control. This con-
cept fits well with procedural programming, but not necessarily with object-oriented
programming, though there are adaptations for use with the latter. In any case, this
metric has two primary uses:

1. To indicate escalating complexity in a module as it is coded, therefore
assisting the coders in determining the “size” of their modules

2. To determine the upper bound on the number of tests that must be designed
and executed

7.1.2.1 Measuring Software Complexity

The cyclomatic complexity is based on determining the number of linearly indepen-
dent paths in a program module, suggesting that the complexity increases with this
number, and reliability decreases.

To compute the metric, the following procedure is followed. Consider the flow
graph of a program. Let e be the number of edges and » the number of nodes. Form
the cyclomatic complexity, C, as follows:

Software Measurement and Testing 131

C=e-n+2 (7.1)

This is the most generally accepted form.

To get a sense of the relationship between program flow and cyclomatic com-
plexity, refer to Figure 7.1. Here, for example, a sequence of instructions has two
nodes, one edge and one region, and hence would have a complexity of C =1 -2
+ 2 = 1. This is intuitively pleasing, as nothing could be less complex than a simple
sequence.

On the other hand, the case statement, which has six edges and five nodes, would
contribute C=6-5+2=3 to the overall complexity.

As a more substantial example, consider a segment of code extracted from the
noise reduction portion of the visual inspection system. The procedure calls between
modules a, b, c, d, e, and f are depicted in Figure 7.2. Here, then, ¢ = 9 and n = 6,
yielding a cyclomatic complexity of C=9-6+2=5.

Computation of McCabe’s metric can be done easily during compilation by
analyzing the internal tree structure generated during the parsing phase (see Chapter
6). However, commercial tools are available to perform this analysis.

o @9 B

sequence while until three-way
case

FIGURE 7.1 Correspondence of language statements and flow graph. (Adapted from Press-
man, R.S., Software Engineering: A Practioner’s Approach, 5th ed., McGraw-Hill, New York,
2000.)

FIGURE 7.2 Flow graph for noise reduction code for the visual inspection system.

132 Software Engineering for Image Processing Systems

7.1.2.2 Determining the Limit on Number of Test Cases

To determine the upper limit on the number of test cases, McCabe developed an
algorithmic procedure (called the baseline method) to determine a set of basis paths.

First, a clever construction is followed to force the complexity graph to look
like a vector space by defining the notions of scalar multiplication and addition along
paths. The basis vectors for this vector space are then determined.

The method proceeds with the selection of a baseline path, which should cor-
respond to some “ordinary” case of program execution along one of the basis vector
paths. McCabe advises choosing a path with as many decision nodes as possible.
Next, the baseline path is retraced, and in turn, each decision is reversed; that is,
when a node of outdegree of greater than 2 is reached, a different path must be
taken. Continuing in this way until all possibilities are exhausted generates a set of
paths representing the test set (Jorgensen, 2002). It turns out that the number of test
cases generated is precisely C, the cyclomatic complexity.

The technique is rather complicated; thus, it is best to consult an excellent
reference on testing, such as Jorgensen (2002), for the details.

7.1.3 HALSTEAD’S METRICS

One of the drawbacks of McCabe’s metric is that it measures complexity as a function
of control flow. But complexity can exist internally in the way that the programming
language is used.

Halstead’s metrics measure information content, or how intensively the program-
ming language is used. Halstead’s metrics are computed using the following, slightly
modified algorithm:

e First, find n,. This is essentially the number of distinct, syntactic
begin—end pairs (or their equivalent), called operators.

* Next, find n,, the number of distinct statements. A statement is determined
by the syntax of the language; for example, a line terminated by a semi-
colon is a statement in C.

e Next, count N,, the total number of occurrences of n, in the program.

* Finally, count N,, the total number of occurrences of operands or n, in
the program.

From these statistics the following Halstead’s metrics can be computed.
The program vocabulary, n, is defined as

n=n,+n, (7.2)
The program length, N, is defined as
N=N,+N, (7.3)

The program volume, V, is defined as

Software Measurement and Testing 133

V=Nlog,n (7.4)
The potential volume, V*, is defined as
V¥ =2 +n,) - log, 2 +n,) (7.5)
The program level, L, is defined as
L=V*V (7.6)

L is a measure of the level of abstraction of the program. It is believed that increasing
this number will increase system reliability.

Another Halstead metric measures the amount of mental effort required in the
development of the code. The effort, E, is defined as

E=VIL (1.7)

Again, decreasing the effort level is believed to increase reliability as well as ease
of implementation.

In principle, the program length, N, can be estimated, and therefore is useful in
cost and schedule estimation. The length is also a measure of the complexity of the
program in terms of language usage; thus, it can be used to estimate defect rates.

Halstead’s metrics, though dating back almost 30 years, are still widely used,
and tools are available to completely automate their determination.

7.1.4 FuncTtioN PoINTS

Function points were introduced in the late 1970s as an alternative to metrics based
on simple source line count. The basis of function points is that as more powerful
programming languages are developed, the number of source lines necessary to
perform a given function decreases. Paradoxically, however, the cost/lines of code
measure indicated a reduction in productivity, as the fixed costs of software produc-
tion were largely unchanged.

The solution is to measure the functionality of software via the number of
interfaces between modules and subsystems in programs or systems. A big advantage
of the function point metric is that it can be calculated before any coding occurs
based solely on the design description.

The following five software characteristics for each module, subsystem, or
system represent its function points:

Number of inputs to the application (/)
Number of outputs (O)

Number of user inquiries (Q)

Number of files used (F)

Number of external interfaces (X)

Nk L=

134 Software Engineering for Image Processing Systems

Now consider empirical weighting factors for each aspect that reflect their
relative difficulty in implementation. For example, one set of weighting factors for
a particular kind of system might yield the function point (FP) value

FP = 41 + 40+ 50 + 10F+7X (7.8)

Intuitively, the higher FP, the more difficult the system is to implement. Moreover,
a great advantage of the function point metric is that it can be computed before any
coding occurs.

The weights given in Equation 7.8 can be adjusted to compensate for factors
such as application domain and software developer experience. For example, if W,
are the weighting factors, F; the complexity adjustment factors, and A; the item
counts, then FP is defined as

FP =Y (AxW)x [0.65 N 0.0IxZF_;] (7.9)

The complexity factor adjustments can be adapted for other application domains,
such as embedded and real-time systems and even, specifically, imaging systems.
To determine the complexity factor adjustments, a set of 14 questions (see below)
are answered by the software engineer(s) with responses from a scale of 0 to 5:

0 = No influence
1 = Incidental

2 = Moderate

3 = Average

4 = Significant

5 = Essential

For example, in the visual inspection system suppose the engineering team was
queried and the following answers to the questions were obtained:

Question 1: Does the system require reliable backup and recovery? Yes, this
is a rather critical system; assign a 4.

Question 2: Are data communications required? Yes, there is communica-
tion between various components of the system over a standard
bus; assign a 5.

Question 3: Are there distributed processing functions? Yes; assign a 5.

Question 4: Is performance critical? Absolutely, this is a hard real-time
system; assign a 5.

Question 5: Will the system run in an existing, heavily utilized operational
environment? In this case yes; assign a 5.

Question 6: Does the system require on-line data entry? Yes, via sensors
and some operator input; assign a 4.

Software Measurement and Testing

Question 7:

Question 8:
Question 9:

Question 10:

Question 11:

Question 12:

Question 13:

Question 14:

Does the on-line data entry require the input transactions to be
built over multiple screens or operations? Yes; assign a 4.

Are the master files updated on-line? Yes; assign a 5.

Are the inputs, outputs, files, or inquiries complex? Yes, they
involve comparatively complex sensor inputs; assign a 4.

Is the internal processing complex? Clearly it is; the imaging
and pattern recognition algorithms are nontrivial; assign a 4.
Is the code designed to be reusable? Yes, there are high up-front
development costs, and multiple applications have to be sup-
ported for this investment to pay off; assign a 4.

Are the conversion and installation included in the design? In
this case, yes; assign a 5.

Is the system designed for multiple installations in different
organizations? Absolutely, this must be a highly flexible system;
assign a 5.

Is the application designed to facilitate change and ease of use
by the user? Yes, absolutely; assign a 5.

Then, applying Equation 7.9 yields

Now suppose that it was determined from the software requirements specification

O1Y F,=.01-(6:4+8-5)=064

that the item counts were as follows:

A=1=5
A=U=7
A,=0=8
A, =F=5
A=X=5

Using the weighting factors from Equation 7.7,

W, =4
W, =4
W, =5
W, =10
W, =7

and putting them into Equation 7.9 yields

135

136 Software Engineering for Image Processing Systems

FP = [4-5+4-7+5-8+10-5+7-7] [0.65 + 0.64]

=241

For the purposes of comparison, and as a management tool, function points have
been mapped to the relative lines of source code, in particular programming lan-
guages. These are shown in Table 7.1.

For example, it seems intuitively pleasing that it would take many more lines
of assembly language code to express functionality than it would a high-level
language like C. In the case of the visual inspection system, with FP = 241, it might
be expected that about 31,000 lines of code would be needed to implement the
functionality. In turn, it should take many less to express that same functionality in
a more abstract language such as C++. The same observations that apply to software
production might also apply to maintenance, as well as to the potential reliability
of software.

Imaging applications like the visual inspection systems are highly complex and
have many complexity factors rated at 5. In other kinds of systems, such as database
applications, these factors would be much lower. This is an explicit statement about
the difficulty in building and maintaining code for embedded systems vs. nonem-
bedded ones.

The function point metric has mostly been used in business processing, and not
nearly as much in embedded systems. However, there is increasing interest in the
use of function points in real-time embedded systems, especially in large-scale real-
time databases, multimedia, and Internet support. These systems are data driven and
often behave like the large-scale transaction-based systems for which function points
were developed.

The International Function Point Users Group maintains a Web database of
weighting factors and function point values for a variety of application domains.
These can be used for comparison.

TABLE 7.1
Programming Language and Lines of
Code per Function Point

Lines of Code

Language per Function Point
Assembly 320
C 128
Fortran 106
Pascal 90
C++ 64

Source: Adapted from Jones, C., Estimating Soft-
ware Costs, McGraw-Hill, New York, 1998.

Software Measurement and Testing 137

7.1.5 FeAaTURE POINTS

Feature points are an extension of function points developed by Software Pro-
ductivity Research, Inc., in 1986. Feature points address the fact that the classical
function point metric was developed for management information systems, and
therefore is not particularly applicable to many other systems, such as real-time,
embedded, communications, and process control software. The motivation is that
these systems exhibit high levels of algorithmic complexity, but sparse inputs
and outputs.

The feature point metric is computed in a manner similar to that of the function
point metric, except that a new factor for the number of algorithms, A, is added.
The empirical weightings are as follows:

W =3
W, =4
W, =5
W, =4
W=7
W=7
The feature point metric, FP , is then
FP = 31 + 40+ 50 + 4F+7X+7A (7.10)

For example, in the visual inspection system, using the same item counts as
computed before, supposing that the item count for algorithms, A, is 10, and using
the same complexity adjustment factor, FP would be computed as follows:

P =[3:-5+4-7+5-8+4-10+7-7+7-10] [0.65 + 0.64]

=312

If the system were to be written in C, it could be estimated that approximately
40,000 lines of code would be needed — a slightly more pessimistic estimate than
that computed using the function point metric.

7.1.6 METRICS FOR OBJECT-ORIENTED SOFTWARE

While any of the previously discussed metrics can be used in object-oriented code,
other metrics are better suited for this setting. For example, some of the metrics that
have been used include:

138 Software Engineering for Image Processing Systems

e A weighted count of methods per class

e The depth of inheritance tree

e The number of children in the inheritance tree
e The coupling between object classes

e The lack of cohesion in methods

As with other metrics, the key to use is consistency.

7.1.7 OBJECTIONS TO METRICS

There are many who object to the use of metrics in one or all of the ways that have
been described.

One counterargument to the use of certain metrics (in some cases, any metrics)
is that they can be misused or that they are a costly and unnecessary distraction. For
example, metrics related to the number of lines of code imply that the more powerful
the language, the less productive the programmer. Hence, obsessing with code
production based on lines of code is a meaningless endeavor.

Another objection is that measuring the correlation effects of a metric without
clearly understanding the causality is unscientific and dangerous. For example, while
there are numerous studies suggesting that lowering the cyclomatic complexity leads
to more reliable software, there just is not any real way to know why. Obviously, the
arguments about the complexity of well-written code vs. “spaghetti code” apply, but
there is just no way to show the causal relationship. So, the opponents of metrics might
argue that if a study of several companies showed that software written by software
engineers who always wore yellow shirts had statistically significant less defects in
their code, then companies would start requiring a dress code of yellow shirts. This
illustration is, of course, hyperbole, but the point of correlation vs. causality is made.

While it is possible that in many cases these objections might be valid, like
most things, metrics can be either useful or harmful, depending on how they are
used (or abused).

7.2 FAULTS, FAILURES, AND BUGS

There is more than a subtle difference between the terms fault, failure, bug, and
defect. Use of bug is, in fact, discouraged, since it implies that an error somehow
crept into the program through no one’s action. The preferred term for an error in
requirement, design, or code is error or defect. The manifestation of a defect during
the operation of the software system is called a fault. A fault that causes the software
system to fail to meet one of its requirements is a failure.*

The text opened with a discussion of the economic cost of software errors as
reported by National Institute of Standards Technology (NIST). Findings from the
other survey referenced give some sense of the cost of these errors: 43% reported
that error severity in their systems was significant and 34% believed that the cor-

* Some define a fault as an error found prior to system delivery and a defect as an error found post delivery.

Software Measurement and Testing 139

rective hours needed to resolve run-time problems were not minimal (Laplante et
al., 2002e).

7.3 THE ROLE OF TESTING

Verification determines whether the products of a given phase of the software
development cycle fulfill the requirements established during the previous phase.
Verification answers the question “Am I building the product right?”

Validation determines the correctness of the final program or software with
respect to the user’s needs and requirements. Validation answers the question “Am
I building the right product?”

Testing is the execution of a program or partial program with known inputs and
outputs that are both predicted and observed for the purpose of finding faults or
deviations from the requirements.

Although testing will flush out errors, this is just one of its purposes. The other
is to increase trust in the system. Perhaps at one time software testing was thought
of as intended to remove all errors. But testing can only detect the presence of errors,
not the absence of them; therefore, it can never be known when all errors have been
detected. Instead, testing must increase faith in the system, even though it still may
contain undetected faults, by ensuring that the software meets its requirements. This
objective places emphasis on solid design techniques and a well-developed require-
ments document. Moreover, a formal test plan must be developed that provides
criteria used in deciding whether the system has satisfied the requirements documents.

7.4 TESTING TECHNIQUES

There are a wide range of testing techniques for unit- and system-level testing, desk
checking, and integration testing. These techniques are often interchangeable, while
others are not. Any one of these test techniques can be either insufficient or not
computationally feasible. Therefore, some combination of testing techniques is
almost always employed.

7.4.1 UNIT-LeveL TESTING

Several methods can be used to test individual modules or units. These techniques
can be used by the unit author and by the independent test team to exercise each
unit in the system. These techniques can also be applied to subsystems (collections
of modules related to the same function). The techniques to be discussed include
black box and white box testing.

7.4.1.1 Black Box Testing

In black box testing, only inputs and outputs of the unit are considered; how the
outputs are generated based on a particular set of inputs is ignored. Such a technique,
being independent of the implementation of the module, can be applied to any
number of modules with the same functionality. But this technique does not provide
insight into the programmer’s skill in implementing the module. In addition, dead
or unreachable code cannot be detected.

140 Software Engineering for Image Processing Systems

For each module, a number of test cases need to be generated. This number
depends on the functionality of the module, the number of inputs, and so on. If a
module fails to pass a single-module-level test, then the error must be repaired, and
all previous module-level test cases are rerun and passed, to prevent the repair from
causing other errors.

Some widely used black box testing techniques include:

* Exhaustive testing
e Boundary value testing
¢ Random test generation
¢ Worst-case testing

An important aspect of using black box testing techniques is that clearly defined
interfaces to the modules are required. This places additional emphasis on the
application of Parnas partitioning principles to module design.

7.4.1.1.1 Exhaustive Testing

Brute force or exhaustive testing involves presenting each code unit with every
possible input combination. Brute force testing can work well in the case of a small
number of inputs, each with a limited input range, for example, a code unit that
evaluates a small number of Boolean inputs. A major problem with brute force
testing, however, is the combinatorial explosion in the number of test cases. For
example, for the code that will threshold the raw binary code for a 1024 x 1024
binary image, 21924192 test cases would be required, which is clearly beyond the
realm of practicality.

7.4.1.1.2 Boundary Value Testing

Boundary value or corner case testing solves the problem of combinatorial explosion
by testing some very tiny subset of the input combinations identified as meaningful
“boundaries” of input.

For example, consider a code unit with five different inputs, each of which is a
16-bit signed integer. Approaching the testing of this code unit using exhaustive
testing would require 2'°-2'0.2'°.2'°.2'® = 2% test cases. However, if the test
inputs are restricted to every combination of the minimum, maximum, and average
values for each input, then the test set would consist of 3% =243 test cases. A test
set of this size can be handled easily with automatic test case generation.

7.4.1.1.3 Random Test Case Generation

Random test case generation, or statistically based testing, can be used for both unit-
and system-level testing. This kind of testing involves subjecting the code unit to
many randomly generated test cases over some period. The purpose of this approach
is to simulate execution of the software under realistic conditions.

The randomly generated test cases are based on determining the underlying
statistics of the expected inputs. The statistics are usually collected by expert users
of similar systems or, if none exist, by educated guessing. The theory is that system
reliability will be enhanced if prolonged usage of the system can be simulated in a
controlled environment.

Software Measurement and Testing 141

The major drawback of such a technique is that the underlying probability
distribution functions for the input variables may be unavailable or incorrect. In
addition, randomly generated test cases are likely to miss conditions with a low
probability of occurrence. Precisely this kind of condition is usually overlooked in
the design of the module. Failing to test these scenarios is an invitation to disaster.

7.4.1.1.4 Worst-Case Testing

Worst-case or pathological case testing deals with those test scenarios that might be
considered highly unusual and unlikely. It is often the case that these exceptional
cases are exactly those for which the code is likely to be poorly designed, and
therefore to fail.

For example, in the visual inspection system, while it might be highly unlikely
that the system is to function at the maximum conveyor speed, this worst case still
needs to be tested.

7.4.1.2 White Box Testing

One disadvantage of black box testing is that it can often bypass unreachable or
dead code. In addition, it may not test all of the control paths in the module. Another
way to look at this is that black box testing only tests what is expected to happen
— not what was not intended. White or clear box testing techniques can be used to
deal with this problem.

Whereas black box tests are data driven, white box tests are logic driven; that
is, they are designed to exercise all paths in the code unit. For example, in the reject
mechanism functionality of the visual inspection system, all error paths would need
to be tested, including those pathological situations that deal with simultaneous and
multiple failures.

White box testing also has the advantage that it can discover those code paths
that cannot be executed. This unreachable code is undesirable because it is likely a
sign that the logic is incorrect, because it wastes code space memory, and because
it might inadvertently be executed in the case of the corruption of the computer’s
program counter.

7.4.1.2.1 Code Inspections

Group walk-throughs or code inspections are a kind of white box testing in which
code is inspected line by line. Walk-throughs have been shown to be much more
effective than other types of testing.

In code inspections, the author of some collection of software presents each line
of code to a review group, which can detect errors as well as discover ways for
improving the implementation. This audit also provides excellent control of the
coding standards. Finally, unreachable code can be discovered.

The conduct of audits and reviews was discussed in the previous chapter.

7.4.1.2.2 Formal Program Proving

Formal program proving is a kind of white box testing using formal methods in
which the code is treated as a theorem and some form of calculus is used to prove
that the program is correct. This form of verification requires a high level of training

142 Software Engineering for Image Processing Systems

and is useful, generally, for only limited purposes because of the intensity of activity
required. There are also difficulties dealing with temporal behavior.

7.4.2 TesTING OBJECT-ORIENTED SOFTWARE

A test process that complements object-oriented design and programming can sig-
nificantly increase reuse, quality, and productivity. There are three issues in testing
object-oriented software:

1. Testing the base class
2. Testing external code that uses a base class
3. Dealing with inheritance and dynamic binding

Without inheritance, object-oriented programming is not very different from
simply testing abstract data types, such as an image. This image object has some
data structure, such as an array, and a set of member functions to operate. There are
also member functions to operate on the image. These member functions are tested
like any other using black box or white box techniques.

In a good object-oriented design there should be a well-defined inheritance
structure. Therefore, most of the tests from the base class can be used for testing
the derived class, and only a small amount of retesting of the derived class is required.
On the other hand, if the inheritance structure is bad, for example, if there is
inheritance of implementation (where code is grabbed from the base class), then
additional testing will be necessary. Hence, the price of using inheritance poorly is
having to retest all of the inherited code.

Finally, dynamic binding requires that all cases be tested for each binding
possibility.

Effective testing is guided by information about likely sources of error. The
combination of polymorphism, inheritance, and encapsulation is unique to object-
oriented languages, presenting opportunities for error that do not exist in conven-
tional languages. The main rule here is that if a class is used in a new context, then
it should be tested as if it were new.

7.4.3 SysTEM-LEVEL TESTING

Once individual modules have been tested, then subsystems or the entire system
needs to be tested. In larger systems, the process can be broken down into a series
of subsystem tests and then a test of the overall system.

System testing treats the system as a black box so that one or more of the black
box testing techniques can be applied. System-level testing always occurs after all
modules pass their unit test. At this point, the coding team hands the software over
to the test team for validation.

If an error occurs during system-level testing, it must be repaired. Ideally, every
test case involving the changed module must be rerun, and all previous system-level
tests must be passed in succession. The collection of system test cases is often called
a system test suite.

Software Measurement and Testing 143

Burn-in testing is a type of system-level testing that seeks to flush out those
failures appearing early in the life of the system, and thus to improve the reliability
of the delivered product.

System-level testing is usually followed by alpha testing, which is a type of
validation consisting of internal distribution and exercise of the software. This testing
is followed by beta testing, where preliminary versions of validated software are
distributed to friendly customers who test the software under actual use. Later in
the life cycle of the software, if corrections or enhancements are added, then regres-
sion testing is performed.

Regression testing (which can also be performed at the module level) is used to
validate the updated software against the old set of test cases that have already been
passed. Any new test case needed for the enhancements is then added to the test
suite, and the software is validated as if it were a new product. Regression testing
is also an integral part of integration testing as new modules are added to the tested
subsystem.

7.4.3.1 Cleanroom Testing

The principal tenant of cleanroom software development is that given sufficient time
and with care, error-free software can be written. Cleanroom software development
relies heavily on group walk-throughs, code inspections, code reading by stepwise
abstraction, and formal program validation. It is taken for granted that software
specifications exist that are sufficient to completely describe the system.

In this approach, the development team is not allowed to test code as it is being
developed. Rather, syntax checkers, code walk-through, group inspections, and for-
mal verifications are used to ensure product integrity. Statistically based testing is
then applied at various stages of product development by a separate test team. This
technique reportedly produces documentation and code that are more reliable and
maintainable and easier to test than other development methods.

The program is developed by slowly “growing” features into the code, starting
with some baseline of functionality. At each milestone, an independent test team
checks the code against a set of randomly generated test cases based on a set of
statistics describing the frequency of use for each feature specified in the requirements.

This group tests the code incrementally at predetermined milestones and either
accepts it or returns it to the development team for correction. Once a functional
milestone has been reached, the development team adds to the “clean” code, using
the same techniques as before. Thus, like an onion’s skin, new layers of functionality
are added to the software system unit it has completely satisfied the requirements.

Numerous projects have been developed in this way, in both academic and
industrial environments. In any case, many of the tenants of cleanroom testing can
be incorporated without completely embracing the methodology.

7.4.3.2 Stress Testing

In another type of testing, stress testing, the system is subjected to a large disturbance
in the inputs (for example, a large burst of interrupts), followed by smaller distur-

144 Software Engineering for Image Processing Systems

bances spread out over a longer period. One objective of this kind testing is to see
how the system fails (gracefully or catastrophically).

Stress testing can also be useful in dealing with cases and conditions where the
system is under heavy load, for example, in testing for memory or processor utili-
zation in conjunction with other application and operating system resources to
determine if performance is acceptable.

7.5 DESIGN OF TESTING PLANS

The test plan should follow the requirements document item by item, providing
criteria that are used to judge whether the required item has been met. A set of test
cases are then written that are used to measure the criteria set out in the test plan.
Writing such test cases can be extremely difficult when a user interface is part of
the requirements.

The test plan includes criteria for testing the software on a module-by-module
or unit level, and on a system or subsystem level; both should be incorporated in a
good testing scheme. The system-level testing provides criteria for the hardware or
software integration process.

Other documentation may be required, particularly in Department of Defense
(DOD)-style software development, where preliminary and final documents are
required and where additional documentation such as the hardware integration plan,
software integration plan, and so on, may be required.

Many software systems that interact directly or indirectly with humans also
require some form of user’s manual to be developed and tested.

7.6 EXERCISES

7.1 Recalculate McCabe’s metric for the if, while, and until structures in
Figure 7.1.

7.2 Research the use of McCabe’s metric in imaging systems by searching
the literature.

7.3 Recalculate the FP metric for the visual inspection system set of weight-
ings that assumes that significant off-the-shelf software (say 70%) is to
be used. Make assumptions about which factors will be most influenced
by the off-the-shelf software. How many lines of C code do you estimate
you will need?

7.4 Redo Exercise 7.3, except recalculate the feature point metric. How many
lines of C code do you estimate will be needed?

7.5 For the visual inspection system, which testing approaches would you
use? When and why?

7.6 If the visual inspection system were written in C++ according to the design
fragment described in Chapter 5, describe the testing strategy you would
use. If possible, try to design some test cases.

7.7 How much can testing and test case/suite generation be automated? What
are the roadblocks to automating a test suite? In languages like Java?

Hardware-Software
Integration and
Maintenance

Planned obsolescence is another word for progress.

James Jeffrey Roch

8.1 GOALS OF SYSTEM INTEGRATION

Integration is the process of combining partial functionality to form the overall
system functionality. Because imaging systems are embedded, the integration pro-
cess involves both multiple software units and hardware. Each of these parts has
potentially been developed by different teams or individuals within the project
organization. Although they have been rigorously tested and verified separately, the
overall behavior of the system, and conformance with most of the software require-
ments, cannot be tested until the system is wholly integrated. Software integration
can be further complicated when both hardware and software are new.

The software integration activity has the most uncertain schedule and is typically
the cause of project cost overruns. Moreover, the stage has been set for failure or
success at this phase by the design and implementation practices used throughout
the software project life cycle. Hence, by the time of software integration, it may
be very difficult to fix problems. Indeed, many modern programming practices were
devised to ensure arrival at this stage with the fewest errors in the source code. For
example, Ada has built-in tests for consistency of argument lists, and the C pro-
gramming language uses an associated utility program called lint to do the same.
Automation can help avoid the integration troubles mentioned in this chapter.

8.2 SYSTEM UNIFICATION

Fitting the pieces of the system together from its individual components is tricky
business, especially for imaging systems. Parameter mismatching, variable name
mistyping, and calling sequence errors are some of the problems possibly encoun-
tered during system integration. Even the most rigorous unit-level testing cannot
eliminate these problems completely.

The system unification process consists of linking together the tested software
modules drawn in an orderly fashion from the source code library. During the linking

145

146 Software Engineering for Image Processing Systems

TABLE 8.1

Sample Test Log for Visual Inspection System
Test Reference

Number Requirements # Test Name Pass/Fail Date Tester
S121 3222 Detect shape la Pass 5/16/03 PL.
S122 3222 Detect shape 1b ~ Pass 5/16/03 PL.
S123 3222 Detect shape 1c Fail 5/16/03 PL.

process, errors are likely to occur that relate to unresolved external symbols, memory
assignments violations, page link errors, and the like.

These problems must, of course, be resolved. Once resolved, the loadable code,
called a load module, can be downloaded from the development environment to the
target machine. This is achieved in a variety of ways depending on the system
architecture, but it can include tapes, disks, network connections, modems, or use
of an intermediate computer. In any case, once the load module has been created
and loaded into the target machine, testing of timing and hardware—software inter-
action can begin.

8.3 SYSTEM VERIFICATION

Final system testing of embedded systems can be a tedious process, often requiring
days or weeks. During system validation, a careful test log must be kept, indicating
the test case number, results, and disposition. Table 8.1 is a sample of such a test
log for the visual inspection system.

If a system test fails, it is imperative, once the problem has been identified and
presumably corrected, that all affected tests be rerun. These include:

1. All module-level test cases for any module that has been changed
2. All system-level test cases

Even though the module-level test cases and previous system-level test cases
have been passed, it is imperative that these be rerun to ensure that no side effects
have been introduced during error repair.

8.4 SYSTEM INTEGRATION TOOLS

As mentioned before, it is not always easy to identify sources of error during a
system test. A number of hardware and software tools are available to assist in the
validation of embedded systems. Remember that test tools make the difference
between success and failure — especially in deeply embedded systems.

Hardware-Software Integration and Maintenance 147

8.4.1 MULTIMETER

The use of a multimeter in the debugging of imaging systems may seem odd, but
it is an important tool in embedded systems where the software controls or reads
analog values through hardware. The multimeter measures voltage, current, or power,
and can be used to validate the analog input or output into the system.

8.4.2 OsCILLOSCOPE

An oscilloscope, like a multimeter, is not always regarded as a software-debugging
tool, but it is useful in embedded software environments. Oscilloscopes range from
the basic single-trace variety to storage oscilloscopes with multiple traces. Oscillo-
scopes can be used for validating interrupt integrity, discrete signal issuance, and
receipt, and for monitoring clocks. The more sophisticated storage oscilloscopes
with multiple inputs can often be used in lieu of logic analyzers, by using the inputs
to track the data and address buses and synchronization with an appropriate clock.

8.4.3 Locic ANALYZER

The logic analyzer, an important tool for debugging software, especially in embedded
imaging systems, can be used to capture data or events, to measure individual
instruction times, or to time sections of code. Moreover, the introduction of pro-
grammable logic analyzers with integrated debugging environments has further
enhanced the capabilities of the system integrator.

More sophisticated logic analyzers include built-in dissemblers and compilers
for source-level debugging and performance analysis. These integrated environments
typically are found on more expensive models, but they make the identification of
performance bottlenecks particularly easy.

No matter how elaborate, all logic analyzers have the same basic functionality.
This is shown in Figure 8.1. The logic analyzer is connected to the system under
test via probes that sit directly on the memory and data buses. A clock probe connects
to the memory access synchronization clock. Upon each memory access, the data

Bus
Memory K= Buffers K——o SUT

Display)

il

Control

T

Clock
Logic

FIGURE 8.1 Basic logic analyzer structure connected to the system under test (SUT).

148 Software Engineering for Image Processing Systems

and address are captured by the logic analyzer and stored in buffers for transfer to
the logic analyzer’s main memory, processing for display, and display to the screen.

Using the logic analyzer, the software engineer can capture specific memory
locations and data for the purposes of timing or for verifying execution of a specific
segment of code.

8.4.3.1 Timing Instructions

The logic analyzer can be used to time an individual macroinstruction, segments of
code, or an entire process. To time an individual instruction, the engineer finds a
memory location in the code segment of memory containing the desired instruction.
Then the logic analyzer is set to trigger on this opcode at the desired location, and
on the opcode and location of the next instruction. The trace is set for absolute time.
The logic analyzer will then display the difference in time between the fetch of the
first instruction (the target) and the next instruction. This is the most accurate means
for determining the instruction execution time.

For example, suppose a system contains a 30-msec frame buffering task. It is
known from the linker output that instructions and data are found at memory location
4356 through 464B (hexadecimal). Then the memory location, corresponding numer-
ical opcode (in hex), and symbolic equivalent will appear in the display of the logic
analyzer as follows:

Location (Hex) Opcode (Hex) Instruction
4356 2321 STORE R2, R1
4357 4701 1000 LOAD R1, 1000
4359 2401 FC32
464B 6300 2000 JUMP 2000

The code represents part of an interrupt handler in which the first instruction is
to disable all interrupts and the last instruction is to enable all interrupts. If the logic
analyzer is set to trigger on address = 4357 and data = 4701, and to capture only
address = 4357 and data = 4701, the time to complete the LOAD (4701) will be
displayed. In this case the “data” is the instruction upcode.

8.4.3.2 Timing Code

The logic analyzer also provides an accurate method for measuring time to complete
for any periodic task. To measure the total elapsed time for any task in the system,
set the logic analyzer to trigger on the starting and ending addresses and opcode for
the first instruction of that task. It should be the first instruction of the interrupt
handler — usually a disable interrupt instruction. Disable the interrupts for all higher-
priority cycles and set the trace for absolute time. The time displayed is the total
time of that task cycle.

Hardware-Software Integration and Maintenance 149

Consider the code shown in the previous example. If the logic analyzer is set
to trigger on address = 4356 and data = 2321, and to capture only address = 464B
and data = 6300, the absolute time to execute all instructions in the module will be
measured. Suppose the elapsed time is 3, measured as milliseconds for a 10-msec
rate. Then the utilization contribution from this code is 33.33% (see Section 8.6.1).
This approach can be used to time one or several modules within a cycle, or even
sections of code within a module.

8.4.4 IN-Circuit EMULATOR

During module-level debug and system integration in conjunction with embedded
systems, the ability to single-step the computer, set the program counter, and deposit
and read from memory is extremely important. This capability in conjunction with
the symbolic debugger, as in the Unix/Linux environment, was discussed in Chapter
6. In an embedded environment, however, this capability is provided by an in-circuit
emulator. In-circuit emulation (ICE) uses special hardware in conjunction with
software to emulate the target central processing unit (CPU) while providing the
aforementioned features. Typically, the in-circuit emulator plugs into the chip carrier
or card slot normally occupied by the CPU. External wires connect to an emulation
system. Access to the emulator is provided directly or via a secondary computer.

In-circuit emulators are useful in software patching and for single-stepping
through critical portions of code. In-circuit emulators are not typically useful in
timing tests, however, because subtle timing changes can be introduced by the
emulator.

In certain ICE systems, the symbol table may be too large to load. Privatization
of certain global variables can be used to reduce the size of the symbol table. For
example, in C, judicious use of the static data type during testing can reduce the
number of variables in the global symbol table. This aids in the debugging process.

8.4.5 SOFTWARE SIMULATORS

When integrating and debugging embedded systems, software simulators are often
needed to stand in for hardware or inputs that do not exist or that are not readily
available, for example, to generate simulated images where real images are unavail-
able at the time. The author of the simulator code has a task that is by no means
easy. The software must be written to mimic exactly the hardware specification,
especially in timing characteristics. The simulator must be rigorously tested (unfor-
tunately, this is sometimes not the case). Many systems have been successfully
validated and integrated with software simulators only to fail when connected to the
actual hardware.

8.4.6 HARDWARE PROTOTYPES

In the absence of the actual hardware system under control, simulation hardware
may be preferable to software simulators. These devices might be required when the
software is ready before the prototype hardware, or when it would be impossible to
test the software on the actual hardware, such as in the control of a large nuclear plant.

150 Software Engineering for Image Processing Systems

Video image generators can simulate real life and can be useful for integration
and testing, but they are not suitable for testing the underlying algorithms — real
images from live action or tape are needed.

8.5 SOFTWARE INTEGRATION

A deliberate approach must be used when performing system to ensure system
integrity. Failure to use one can lead to cost escalation and frustration. Software
integration approaches are largely based on experience. The following represents a
simple strategy for software integration based on significant experience.

8.5.1 A SIMPLE INTEGRATION STRATEGY

In any embedded operating system, it is important to ensure that all tasks in the
system are being scheduled and dispatched properly. Thus, the first goal in integrating
the embedded system is to ensure that each task is running at its prescribed rate,
and that context is saved and restored. This is done without performing any functions
within those tasks; functions are added later.

As discussed before, a logic analyzer is quite useful in verifying cycle rates by
setting the triggers on the starting location of each of the tasks involved. During
debugging, it is most helpful to establish the fact that cyclic processes are being
called at the appropriate rates. Until the system cycles properly, the application code
associated with each of the tasks should not be added.

The success of this method depends on the fact that one change at a time is
made to the system so that when the system becomes corrupted, the problem can
be isolated.

The overall approach is shown in Figure 8.2. It involves establishing a baseline
of running kernel components (no applications programs). This ensures that inter-
rupts are being handled properly and that all cycles are running at their prescribed
rates, without worry about interference from the applications code. Once the baseline
is established, small sections of applications code are added and the cycle rates
verified. If an error is detected, it is patched if possible. If the patch succeeds in
restoring the cycle rates properly, then more code is added. This ensures that the
system is grown incrementally, with an appropriate baseline at each stage of the
integration. This approach represents a phased integration with regression testing
after each step.

8.5.2 PATCHING

The process of correcting errors in the code directly on the target machine is called
patching. Patching allows minor errors detected during the integration process to be
corrected directly on the target machine, without undergoing the tedious process of
correcting the source code and creating a new load module. Patching requires an
expert command of the opcodes for the target machine unless a macroassembly-
level patching facility is available. It also requires an accurate memory map, which
includes the contents of each address in memory, and a method for depositing directly

Hardware-Software Integration and Maintenance 151

Establish
Baseline

}

Add Code

Test

@ Patch

FIGURE 8.2 A simple integration strategy.

to memory. This capability is provided by many commercial development environ-
ments and by in-circuit emulators.

Patching, which is analogous to placing jumper wires on prototype hardware,
typically requires only a minor change of memory contents. If the patch needed fits
into the memory space accorded to the code to be changed, then it is considered an
in-line patch.

In Figure 8.3, for example, a 1 was supposed to be added to register 1 (R1)
instead of a 0. This error can easily be changed by altering the memory location
containing the LOAD R1,0 instruction to LOAD R1,1.

If the patch requires more memory than is currently occupied by the code to be
replaced, it is considered an oversized patch. In this case a jump to some unused
portion of memory is required, followed by the patched code and then a return jump
to the next significant location. This technique is illustrated in Figure 8.4.

+O6APD—R16«—— LOADRI, 1
ADD R1,R2
STORE Rl,@x1

FIGURE 8.3 In-line patch.

152 Software Engineering for Image Processing Systems

(Added
Code)

JUMP_ JUMP

FIGURE 8.4 Placing an oversized patch.

The loading of patches during system integration can often be automated through
the use of batch files. However, a large number of patches and patches on top of
other patches can become confusing. It is imperative that a careful record be kept
of all patches made, that the patches eventually find their way back to the source
code, and that a new system be generated before validation testing begins. This is
essential from a maintenance standpoint. Final testing should never be performed
on a patched system.

Patching of software written in object-oriented languages is very difficult
because of the lack of a straightforward mapping from the source code to the object
code. Symbolic debuggers are quite helpful in this case, but even so, patching is
risky in this situation at best.

8.5.3 THEe Prose Errect

The uncertainty principle, originally postulated by Werner Heisenberg in 1927,
states essentially that the precise position and momentum of a particle cannot be
known simultaneously. An analogy to the Heisenberg uncertainty principle applies
in software integration. While software systems do not explicitly deal with electrons
(except as ensemble behavior), the uncertainty arises because the more closely a
system is examined, the more likely the examination process will affect the system.
This fact is especially true for embedded systems where test probes can affect
timing.

For example, an engineer is debugging an imaging system and discovers that a
certain deadline is not being met. Some debugging code is added to print out a
preliminary result to a file. But after adding the debugging code, the problem goes
away. Declaring success, the engineer removes the debugging code and the problem
reappears. In this case, it is clear that the debugging code somehow changed the
timing of the system.

The software version of the Heisenberg uncertainty principle should be taken
as a warning that testing methods often affect the systems that they test. When this

Hardware-Software Integration and Maintenance 153

is the case, nonintrusive testing should be considered (for example, using a logic
analyzer). Furthermore, wherever there is an inverse correlation between two vari-
ables affecting a system, Heisenberg uncertainty is suggested.

8.6 POSTINTEGRATION SOFTWARE OPTIMIZATION

In general, to achieve optimal performance in image processing algorithms, designers
attempt to match the hardware to the problem. Failing this, a variety of techniques
used in conjunction with high-level languages are employed to squeeze additional
performance from the machine. These techniques include the use of assembly lan-
guage patches and hand-tuning compiler output. Often, however, use of these prac-
tices leads to code that cannot be maintained and is unreliable because it is poorly
documented. More desirable, then, is to use coding “tricks” that involve direct
interaction with the high-level language and that can be documented. These tricks
improve real-time performance, but generally not so at the expense of maintainability
and reliability. Note that when optimizing average-case performance, worst-case
performance is generally adversely affected.

8.6.1 CPU UTILIZATION ESTIMATION

CPU utilization estimates are measures that are meaningful primarily in cyclic real-
time systems. In interrupt-driven systems, calculation of CPU utilization from mea-
sured data is easy only for periodic systems, to which this discussion is confined.

For periodic systems, CPU utilization is the sum of task execution times divided
by the cycle times. In other fixed-rate, sporadic, or mixed systems, the maximum
task execution period can be used in place of the cycle time. The CPU utilization T
is given by Equation 8.1:

zﬂ’A,, /T 8.1
i=1

where n is the number of tasks, 7; is the cycle time (or minimum time between
occurrences), and A, is the worst-case execution time for task i. A CPU utilization
of 100% or higher is considered a time-overloaded condition and will lead to missed
deadlines.

For example, consider an imaging system where data are gathered from sensors
every 5 msec via an interrupt-driven routine (collecting the data takes 2.1 msec). A
second process, which is initiated every 30 msec by an interrupt, processes the
images and displays them on a visual display. This process requires 11 msec to
complete. Finally, a 1-sec process performs hardware diagnostics and takes 5 msec
to complete. The CPU utilization is then

2.1/5 + 11/30 + 5/1000 = 79.1%

154 Software Engineering for Image Processing Systems

What is a desirable CPU utilization? Certainly not 100% or too close, or dead-
lines would be missed. A well-known result is that a system that has a large number
of interrupt cycles cannot guarantee meeting all deadlines unless it is at 69% or less
CPU utilization. In practice, however, around 80% is acceptable. Even so, the real
problem in deadline satisfaction is a function of the predictability of the system, the
proper use of locking mechanisms, and avoidance of deadlock — issues that are
readily studied in the design of real-time systems (Laplante, 1997).

8.6.2 ExecutioN TIME ESTIMATION

As discussed above, CPU utilization is based on the execution time estimates for
each procedure. But how should execution time be estimated or measured? The best
method for measuring the execution time of any piece of code is to use a logic
analyzer, as previously described. One advantage of this approach is that hardware
latencies and other delays not due simply to instruction execution times are taken
into account. The drawback in using the logic analyzer is that the system must be
completely (or partially) coded and the target hardware available. Hence, the logic
analyzer is usually employed only in the late stages of coding, during testing, and
especially during system integration.

When a logic analyzer is not available, the code execution time can be estimated
by examining the compiler output and counting macroinstructions. This technique
also requires that the code be written, an approximation of the final code exists, or
similar systems are available for analysis. The approach simply involves tracing the
worst-case path through the code, counting the macroinstructions along the way,
and adding their execution times. These can be found in the manufacturer’s speci-
fications or through measurement with a logic analyzer.

Another accurate method of code execution timing uses the system clock, which
is read before and after executing code. The time difference can then be measured
to determine the actual time of execution. This technique, however, is only viable
when the code to be timed is large relative to the code that reads the clock.

8.6.3 ScALED NUMBERS

In virtually all computers, integer operations are faster than floating-point ones. This
fact can be exploited by converting floating-point algorithms into scaled integer
algorithms. In these so-called scaled numbers, the least significant bit (LSB) of an
integer variable is assigned a real number scale factor. Scaled numbers can be added
and subtracted together and multiplied and divided by a constant (but not another
scaled number). The results are converted to floating point only at the last step —
hence saving considerable time.

For example, suppose an analog-to-digital converter is converting optical infor-
mation from a camera into electrical impulses corresponding to gray values and
storing them in a 16-bit unsigned integer. In this case, floating-point gray values in
the range 0 < x <1 indicate that the pixel is black (1) or white (0). If the LSB of
the 16-bit integer has a value of 27', then the most significant bit is 1 — 2-16 =
0.999984741.

Hardware-Software Integration and Maintenance 155

180 [90 |45 |225(... o f oo f o | e] e e] e] e] 180027 180-2°F
MSB LSB

FIGURE 8.5 A 16-bit BAM word.

A common practice is to quickly convert the integer number into its floating-
point equivalent by xf = x-0.0000153 and then proceed to use it in calculations
directly with other converted numbers; for example, diff = xf — zf where zf is a
similarly converted floating-point number. Instead, the calculation can be performed
in integer form first and then converted to floating point: diff = (x —z)-0.0000153 .

For applications involving the manipulation, addition, and subtraction of large
quantities of floating-point pixel data, scaled numbers can introduce significant sav-
ings. Note, however, that multiplication and division (by any number other than 0 or
1) cannot be performed on a scaled number, as those operations change the scale
factor. Finally, accuracy is generally sacrificed by excessive use of scaled numbers.

8.6.4 BINARY ANGULAR MEASURE

Another type of scaled number is based on the fact that adding 180°to any angle is
analogous to taking its two’s complement. This technique, called binary angular
measurement (BAM), works as follows. Consider the LSB of an n-bit word to be
271 . 180° with most significant bit (MSB) = 180°. The range of any angle 6
represented this way is 0 < 0 < 360 — 180 - 2--D°. A 16-bit BAM word is shown
in Figure 8.5. For more accuracy, BAM can be extended to two more words.

BAM is frequently used in navigation software and imaging systems using line
manipulation algorithms such as ray tracing. In addition, it works well in conjunction
with digitizing imaging devices.

8.6.5 Look-Upr TABLES

Another variation of the scaled number concept uses a stored table of function values
at fixed intervals. Such a table, called a look-up table, allows for the computation
of continuous functions using mostly fixed-point arithmetic.

Let f(x)be a continuous real function and let Ax be the interval size. Suppose
it is desired to store n values of f over the range [x,,x, +(n—1)Ax] in an array
of scaled integers. Values for the derivative, f’, may also be stored in the table.
The choice of Ax represents a trade-off between the size of the table and the desired
resolution of the function. A generic look-up table is given in Table 8.2.

It is well known that the table can be used for the interpolation of x < X < x + Ax
by the formula

J(x+Ax) = f(x)

X)=f(x)+(x—x 8.2
fR) = f()+(2-x) Ay (8.2)
This calculation is done using integer instructions, except for the final multiplication,

by the factor (x— x)/ Ax and conversion to floating point. As a bonus, the look-up

156 Software Engineering for Image Processing Systems

TABLE 8.2

Generic Function Look-Up Table
X f(x)

X Jxo)

Xy + Ax f(—xo + AX)

Xy + 2Ax Sflxy + 2Ax)

x0+ (n - DAx f(x0 +(n — DAY)

table has a faster execution time if x happens to be one of the table values. If f’(x)
is also stored in the table, then the look-up formula becomes

FR) = fO)+(2—x)f(x) (8.3)

This improves the execution time of the interpolation somewhat.

The main advantage in using look-up tables, of course, is speed. If a table value
is found and no interpolation is needed, then the algorithm is much faster than the
corresponding series expansion. In addition, even if interpolation is necessary, the
algorithm is interruptible and hence helps improve performance, compared to a
series expansion.

Look-up tables are widely used in the implementation of continuous functions
such as the exponential sine, cosine, and tangent functions; their inverses; and so
on. For example, consider the combined look-up table for sine and cosine using
radian measure, shown in Table 8.3.

Because these trigonometric functions and exponentials are used frequently in
conjunction with the discrete Fourier transform (DFT) and discrete cosine transform
(DCT), look-up tables can provide considerable savings in imaging applications.

TABLE 8.3

Look-Up Table for Trigonometric Functions

Angle (rads) Cosine Sine Angle (rads) Cosine Sine
0.000 1.000 0.000 6.981 0.766 0.643
0.698 0.766 0.643 7.679 0.174 0.985
1.396 0.174 0.985 8.378 -0.500 0.866
2.094 -0.500 0.866 9.076 -0.940 0.342
2.793 -0.940 0.342 9.774 -0.940 -0.342
3.491 -0.940 -0.342 10.472 -0.500 -0.866
4.189 -0.500 -0.866 11.170 0.174 -0.985
4.887 0.174 -0.985 11.868 0.766 -0.643
5.585 0.766 -0.643 12.566 1.000 0.000

6.283 1.000 0.000

Hardware-Software Integration and Maintenance 157

8.6.6 IMPRECISE COMPUTATION

In cases where software routines are needed to provide mathematical support (in
the absence of firmware support or digital signal processing (DSP) coprocessors),
complex algorithms are often employed to produce the desired calculation. For
example, a Taylor series expansion (perhaps using look-up tables for function deriv-
atives) can be terminated early, at a loss of accuracy but with improved performance.
Techniques involving early truncation of a series in order to meet deadlines are often
called imprecise computation. Imprecise computation (also called approximate rea-
soning) is often difficult to apply, however, because it is not always easy to determine
the processing that can be discarded or its cost.

A variation on imprecise computation occurs when applying an algorithm on a
compressed version of the image rather than the image itself in order to save
computation time. As an illustration of the approach, suppose a 256-gray-level
document image has been captured and it is desired to use a linear matched filter
to identify characters within the image. Owing to the binary-like nature of most
documents, processing could commence by first thresholding the document to a
binary image and then applying a much faster, sparse hit-or-miss matched filter.

8.6.7 OprTIMIZING MEMORY USAGE

In modern computer architectures, memory constraints are not as troublesome as
they once were. Nevertheless, in embedded applications or in legacy systems (those
that are being reused), often the imaging engineer is faced with restrictions on the
amount of memory available for program storage or for scratch-pad calculations,
dynamic allocation, and so on. Since there is a fundamental trade-off between
memory usage and CPU utilization (with rare exceptions), when it is desired to
optimize for memory usage, it is necessary to trade performance to save memory.
For example, in the trigonometric function just discussed, using quadrant identities
can reduce the need for a large look-up table. The additional logic needed, however,
represents a small run-time penalty.

Finally, it is important to match the image processing algorithms to the under-
lying architecture. In the case of parallel architectures, this is a specialized problem
that is out of the scope of this text. But in the case of the von Neumann architecture,
for example, it is helpful to recognize the effects of such features as cache size and
pipeline characteristics. In the case of cache size, for example, the algorithm should
be chosen to optimize the cache hit ratio — the percentage of time that data are
found in the cache. In the case of pipelines, increasing the code locality of reference
(the tendency of the code to execute sequential instructions) can reduce the amount
of deleterious pipeline flushing.

8.7 A SOFTWARE REENGINEERING PROCESS MODEL

Many commercial imaging systems are legacy systems; that is, they constitute the
next generation of an existing system. Others borrow code from related systems. In
any case, most systems need to have a long shelf life so that development costs can

158 Software Engineering for Image Processing Systems

Forward Forward
Engineering Engineering
— >
Requirements Design Implementation
Reverse Reverse
Engineering Engineering
- -
Restructuring Restructuring/ Restructuring/
Refactoring Refactoring

FIGURE 8.6 A reverse engineering process model.

be recouped. Maintaining a system over a long period usually requires some form
of reengineering, that is, a reverse flow through the software life cycle.

Generically, reverse engineering is the process of analyzing a subject system to
identify its components. Reengineering is sometimes called renovation or reclama-
tion. While there are negative connotations to reverse engineering, as in theft of a
design, in some form it is essential for the improvement of the design or implemen-
tation, or for recovery of documentation in the case of a system that may have been
acquired legitimately from a third party,

Figure 8.6 is a graphical representation of a reengineering process. The forward
engineering flow represents a simple, three-phase waterfall model — requirements,
design, and implementation.

Documentation recovery or redocumentation is the creation or revision of doc-
umentation from a given system, including requirements and design documentation
discovery. The need for redocumentation arises when there is poor or missing
documentation for any of a number of reasons.

Design recovery is a subset of reverse engineering that recreates the design from
code, existing documentation, personal insight, interviews with developers, and
general knowledge. Again, the need for this arises in the case of poorly documented
design, missing documentation, acquisition of a product from a company with
inferior software engineering practices, and so on.

Restructuring is the transformation of one representation to another. In the case
of code refactoring, the code is transformed so that the behavior is preserved. In
design refactoring, the design is reengineered.

8.8 A MAINTENANCE PROCESS MODEL

Of all the phases, perhaps the maintenance model is the least understood (see Figure
8.7). The maintenance phase generally consists of a series of reengineering processes
to prolong the life of the system. There are three types of maintenance:

Hardware-Software Integration and Maintenance 159

!

Syst
Change Impact ystem Change System
> . Release > . >
Requests Analysis R Implementation| Release
Planning
(
Perfective Adaptive Corrective
Maintenance Maintenance Maintenance

FIGURE 8.7 A maintenance process model. (Adapted from Sommerville, 1., Software Engi-
neering, Sth ed., Addison-Wesley, New York, 2000.)

1. Adaptive — Changes that result from external changes to which the
system must respond

2. Corrective — Changes that involve maintenance to correct errors

3. Perfective — All other maintenance, including enhancements, documen-
tation changes, efficiency improvements, and so on

A widely adopted maintenance model illustrates the relationship between these
various forms of maintenance (Sommerville, 2000). The model starts with the gen-
eration of change requests by either the customer, management, or engineering team.
An impact analysis is performed. This analysis involves studying the effect of the
change on related components and systems and includes the development of a budget.

System release planning involves determination of whether the change is per-
fective, adaptive, or corrective. The nature of the change is crucial in determining
whether the release needs to be made to all customers and specific customers,
whether the release is going to be immediate or included in the next version, and
so on. Finally, the change is implemented (in fact, invoking a mini-software life
cycle process from concept to acceptance testing), followed by the official release
of the new version.

8.9 SOFTWARE REUSE

Pure software reuse is a highly sought prize in software engineering. It is clearly
desirable to have a collection of mix-and-match, validated software components that
could easily be pulled off the shelf for customized software applications. However,
software reuse is virtually an exploitation of hard-learned experience. Even if soft-
ware modules are not being explicitly reused, the lessons learned from previous but
similar software projects should be carried forward.

Moreover, current practice shows that the benefits of software reuse are very
slow to be realized. There are several reasons for this. First, even when a mandate
is given to adopt software reuse technology, the effort needed to make it happen far
exceeds the benefits in the short run. Second, pressures to deliver projects can quickly

160 Software Engineering for Image Processing Systems

put software reuse efforts on the back burner. Finally, it takes great discipline and
a change in thinking on the part of most software engineers to apply software reuse
principles effectively.

Unfortunately, even if rigorous reuse policies and practices are adopted, an initial
decrease in productivity is to be expected because of the additional activities required
for software reuse. For this reason and the previously mentioned drawbacks, a long-
term, high-level commitment to the adoption of software reuse policies and practices
is needed.

Software components that developers tend to reuse the most are small compo-
nents, such as abstract data types, utility routines (e.g., memory and I/O handling
functions), or class libraries. However, small-component reuse produces minimal
savings because such components represent only a small percentage of the final
product, perhaps 20% of the entire application (see Pareto’s principle below).
Another 15% is usually application specific, and therefore not normally reusable;
this leaves 65% that is domain specific (Poulin, 1997).

Most of the cost savings can then be expected by reusing domain-specific
models; in this case, the domain is image processing. To reuse domain-specific logic,
however, developers must clearly separate domain logic from that of the application.
They must also clearly distinguish logic that is domain independent.

Developers can achieve this separation by designing applications so that their class
structure exhibits high cohesion and low coupling. Unfortunately, doing so is easier said
than done, and reusable software design is especially difficult (Neill and Gill, 2003b).

Therefore, the best way to begin a program of software reuse is to start small
and learn by doing. Try identifying several small software modules that are good
candidates for reuse and focus on preparing these modules for that reuse.

8.9.1 WHeN Not 10 REUSE

It is sometimes desirable to plan not to reuse certain codes. For example, throwaway
prototypes are intentionally not to be reused. In other cases, it may not be desirable
to try to reuse code that is of limited value. For example, a set of utilities intended
for very specific hardware or that serve a very specialized function are probably not
worth engineering for reuse when the hardware changes or becomes obsolete.

In any event, reuse of code that was not designed and coded for reuse can create
many problems. For example, when a “quick-and-dirty program” becomes a widely
used tool, it can present a maintenance nightmare.

8.9.2 AcHIEVING REUSE

One approach to reuse involves building program libraries. Program libraries consist
of components that have been validated or certified for “error-free” use.

Many of the beneficial software engineering practices already discussed can lead
to a high level of reuse. For example, the benefits of Parnas partitioning in this regard
has been mentioned. In addition, the appropriate coding standards can lead to more
readable code, which can enhance the potential for reuse. Finally, in object-oriented
systems, use of design patterns following the object-oriented design principles pre-

Hardware-Software Integration and Maintenance 161

viously described (open—closed principle, once and only once, dependency inversion
principle, Liskov substitution principle) and the software engineering principle of
generality foster reusability.

8.9.2.1 In Procedural Languages

Another technique that has been used in building program libraries involves domain
analysis. Domain analysis views software codes as functions with an input domain
and output range, based on the range of their inputs.

The approach is as follows. In a set-theoretic way, define the input and output
(I/0) domains for each module to be added to the program library. Then determine
the I/0O dependencies between each module in the library and any candidate module
to be added to the library. The existence of such dependencies determines the
compatibility of the candidate module with the existing library modules. Of course,
it is assumed that each candidate module has been validated and is fully tested at
the module level.

For example, consider a program library that consists of trusted code unit A.
Code unit A has an input domain of A;and an output range of A,. Now consider a
new candidate code unit B, which has already been unit tested. Code unit B has an
input domain of B; and an output range of B,. “Domains” and “ranges” mean the
set of I/O variables of these modules, and their ranges.

Now, if the output range of A, that is, the variables that A could change, does
not intersect with the input range of B, and vice versa, then module B may be added
to the program library without any further interdependence or compatibility testing.
If the input range of B and the output range of A overlap, then interdependencies
and compatibility need to be tested before adding A to the library. Formally,

If A,nB,=¢ and B,NA, =¢ then add A to the library

Else test further before adding (8.4)
As additional modules or code are added to the library, interdependence testing
must be done for all modules in the library. For example, if A and B are trusted

software in the library and module C is a candidate for the library, it now must be
tested against A and B before adding it. Formally,

If A,nC,=¢ and B,NC, =¢ and
ConA =0 and C,NB, =0 then add C to the library (8.5)

Else test further before adding

It is easy to see that the level of effort grows rapidly as new code is added to
the trusted program library.

162 Software Engineering for Image Processing Systems

8.9.2.2 In Object-Oriented Languages

In this situation, the key is to employ the protected variation (Parnas partitioning)
principle by identifying those design aspects that are likely to change and build a
stable interface around them. Design patterns can loosen the binding between pro-
gram components, enabling certain types of program evolution to occur with minimal
changes to the program itself. However, to make good use of design patterns, the
application’s design process must undergo a couple of iterations over the project life
cycle. Because time to market is often the foremost priority, developers might not
have time to create a flexible design. Even if the application does not have the
required flexibility, however, introducing that flexibility is possible by refactoring
the application (Neill and Gill, 2003b).

8.9.2.3 Pareto’s Principle

Pareto was a late-19th- and early-20th-century Italian mathematician and economist
who was interested in the laws of chance. His observations can be applied in several
ways related to software reuse and engineering. For example, Pareto’s principle
might suggest that:

* 20% of the code contributes to 80% of the cost of software development.
e 20% of the code contributes 80% of the errors.

e 20% of the errors accounts for 80% of the cost to fix.

¢ 20% of the modules consumes 80% of the execution time.

The percentages are, of course, arbitrary. But these observations provide insight
into how to approach software reuse, testing, and effort planning. For example, it
would be helpful to identify the 20% of software that is the most expensive in order
to develop and plan to reuse those software. The other 80%, the ones that are
relatively easy to develop, might not be prime candidates for reuse. Checkpoints
and software black boxes can help to collect code unit execution frequency to identify
the high-use code.

8.10 THE SECOND SYSTEM EFFECT

The second system effect, first characterized by Brooks (1995), explains why soft-
ware maintenance for legacy systems presents such challenges. This phenomenon
is discussed in The Mythical Man-Month, a series of essays on software project
management by Brooks that was first published in the early 1980s. The essays are
still relevant today. Brooks notes that “second systems,” or the next generation of a
delivered system, tend to be overengineered. That is, there is a tendency to carry
over and refine techniques whose existence has been made obsolete by changes in
basic system assumptions. Doing so tends to make these systems hard to maintain,
unwieldy, and unreliable.

Hardware-Software Integration and Maintenance 163

Consider, for example, an imaging system that was developed in the 1970s for
hardware that is no longer available. In a second system, the underlying hardware
may have been modernized. Hence, carrying over old design decisions can be
disastrous. Imaging systems tend to be based on carryover software, often originally
written in Fortran, C, assembly language, or even BASIC. In some cases, C code is
simply “objectified” by wrapping the C code in such a way that it can be compiled
as C++ code. This does not realize the benefits of object orientation (see Chapter 6).

Brooks (1995) suggests that the way to avoid this effect is to insist on a project
leader who has had experience with at least two systems. In this recommendation,
Brooks recognizes that software houses tend to assign new software engineers to
maintain old legacy systems, while the more senior engineers are assigned to new
software development. While new projects may be more glamorous, younger engi-
neers may not have the confidence or experience to challenge bad design decisions
on a legacy system. Hence, it is probably better to have a combination of experience
and youth assigned to both new and legacy system software development.

8.11 CODE AND PROGRAM MAINTENANCE

A source code control system places strict control over the access of files related to
a software project to prevent conflicts such as multiple engineers editing a file
simultaneously. In addition, source code control keeps an audit trail of changes and
sets file access permissions. This kind of control is crucial when developing large
programs for which many people will have access. Strict version control is quite
important when handling programs consisting of a large number of files or when
more than one individual is working on the same project.

For example, it would be disastrous if two programmers decided to modify the
same source code file simultaneously — one set of changes would be lost. Similarly,
suppose that a project consists of dozens of source files along with header and
include files. If a header file is changed, every single source file using that header
file must be recompiled or very difficult-to-find bugs will be introduced.

8.12 EXERCISES

8.1 Why is the maintenance aspect of the software life cycle perhaps the least
well understood?

8.2 Derive the look-up table for the tangent function in increments of 1°. Be
sure to take advantage of symmetry.

8.3 Identify the likely library functionality for the visual inspection system.
In other words, which modules or objects would be likely to be reused in
other, similar systems? Which code units would be likely to be reused in
other, dissimilar systems?

8.4 What are the advantages and disadvantages of writing a BAM object class
in an object-oriented language?

164 Software Engineering for Image Processing Systems

8.5 Should software reuse be an ad hoc/implicit requirement in a project, or
an explicit goal of the project?

8.6 When software reuse is not possible, on what other goals can a software
project focus?

8.7 Can the tools available impact the software project and the code quality?
How?

9 Management of
Software Projects

Adding manpower to a late project makes it later.

Frederick Brooks

9.1 WHY SOFTWARE PROJECT MANAGEMENT?

It is a commonly held notion that the vast majority of software projects are delivered
late and over budget. Surprisingly, however, some recent research seems to suggest
that the problem might not be as bad as once thought, at least for one group.

For example, in the previously referenced survey (see Chapter 3), about 42%
of the respondents thought that project costs were within budget estimates, and 35%
believed that their projects were not. Roughly 45% of respondents thought that
projects were finished on time, but an equal number thought that their projects
overran their deadlines. About 15% of the respondents thought that “project goals
were achieved earlier than predicted,” while 60% disagreed with this statement;
41% of the respondents thought that the project could have been completed faster,
but at the expense of quality. About 40% disagreed with that statement (Laplante
et al., 2002e).

Whether this apparent mitigation of widely held perceptions about software is
due to improved project management is unknown — many other studies still show
that cost overruns and project delays are major problems. But it is certainly the case
that software development costs can better be controlled through the application of
improved management practices.

Many companies have tried to improve their software project management prac-
tices through the adoption of one or another more “fashionable” technique. But doing
so may ultimately lead to failure and abandonment of that technique. The truth is
that there is no magic elixir, no silver bullet for improving project management
practices. Bad management habits take a long time to develop and even longer to
break. Bad management practices are so pervasive, in fact, that they have been widely
described as “antipatterns,” that is, apparent solutions with negative consequences.

There are other reasons to study software project management separately.
Although there are many similarities between software project management and
other types of project management, software project management has several unique
aspects. Moreover, the skills that make a good software engineer are not the skills
needed to be a good project manager. But many companies promote software
engineers to project management positions without the necessary training. Finally,
it is usually too late when it is discovered that a software project is headed for

165

166 Software Engineering for Image Processing Systems

disaster, in what has been described as a “death march.” Unfortunately, last-minute
heroics are a poor substitute for careful planning and execution throughout the
software life cycle, and this is particularly true in highly complex imaging systems.

9.2 SOFTWARE PROJECT MANAGEMENT THEMES

This chapter will emphasize several themes. First, the software model or project
methodology used is not necessarily as important as having the resolve to select an
appropriate one and staying with it.

The second theme is that in project management, of any kind, the use of good
interpersonal skills such as negotiating, communicating, and expectation setting is
critical.

The final theme for this chapter is that using quantitative tools such as metrics
and process monitoring models is essential to keeping a scientific approach to
software project management.

9.3 GENERAL PROJECT MANAGEMENT BASICS

A project is a set of tasks with a defined beginning and end. Without a defined
beginning, there is no way to begin measuring progress. Without a defined end, there
is no way to determine if the project has been completed, and thus progress mea-
surement is again impossible. The simple project definition is recursive in that any
project probably consists of more than one subproject.

Generally, a project that involves only a single person is uninteresting. This is
the case because without the complexity introduced by the interactions of other
human beings, task completion is really just a simple exercise in separation of
concerns and self-discipline. Separation of concerns implies that one of the objectives
in project management is to subdivide the project in a meaningful way.

Many software engineering project management activities are different from
those needed for software project management. These are summarized in Table 9.1.

This framework provides a model for discussion for the rest of this chapter.

9.3.1 WHAT DoEs THE PrROJECT MANAGER CONTROL?

A project manager may have one of the following three elements under his control:

1. Resources — Such as equipment and team members, and money to buy
more of them. Almost always, however, there are financial limitations,
and generally these are fixed prior to the start of the project.

2. Schedule — The manager should have some control over the schedule.
Even if the delivery date of the product is hard, there should be some
flexibility for internal manipulation of the schedule that does not change
the delivery date.

3. Functionality — The product functionality may or may not be controlla-
ble. Often when negotiating a project, the project manager cannot increase

Management of Software Projects 167

TABLE 9.1
Software Process Planning vs. Project Planning

Software Project Management Planning

Software Engineering Planning Activities Activities
Determine tasks to be done Determine skills needed for the task
Establish task precedence Establish project schedule
Determine level of effort in person-months Determine cost of effort

Determine technical approach to solving problem Determine managerial approach to monitoring
project status

Select analysis and design tools Select planning tools

Determine technical risks Determine management risks

Determine process model Determine process model

Update plans when the requirements or Update plans when the managerial conditions and
development environment change environment change

Source: Adapted from Thayer, R.H., Computer, 35, 4, 68-73, 2002.

costs, but can decrease product functionality in order to meet a customer’s
budget or deal with an unforeseen problem.

Generally, in terms of controlling the project, the manager must understand the
project goals and objectives. Next, the manager needs to understand the constraints
imposed on the resources. These include cost and time limitations, performance
constraints, and available staff resources. Next, the manager develops a plan that
enables her to meet the objectives within the given constraints. Of course, moni-
toring and control mechanisms must be in place, including metrics. The manager
should be prepared to modify the plan as it progresses. These modifications need
to be made to the plan, and then team members can make adjustments as necessary
and appropriate. Finally, a calm, productive, and positive environment is desirable
to maximize the performance of the team and to keep the customer (whether
internal, like senior management, or a client) happy and confident that the job is
being done right.

9.4 SOFTWARE PROJECT MANAGEMENT

Throughout the text, various properties of software have been discussed. What has
been infrequently noted, however, is that the things that make software different
from other types of endeavors also make it harder to manage the software process.
For example, unlike hardware, to a large extent, software designers build software
knowing that it will have to change. Hence the designer has to think about both the
design and redesign. That adds a level of complexity.

Of course, software development involves novelty, which introduces uncertainty.
It can be argued that there is a higher degree of novelty in software than in other
forms of engineering. Why else are there so few reusable and off-the-shelf software
components?

168 Software Engineering for Image Processing Systems

The uniqueness of software project management is intensified by a number of
specialized activities. These include:

* The process of software development itself
* The complex software maintenance process
* The unique and not well-evolved process of verification and validation
* The interplay of hardware and software that faces the systems engineer

The uniqueness of software and these activities leads to a number of problems,
which introduce risk. Many of these have been discussed already, but a more
complete list includes:

e Incomplete and imprecise specifications

» Difficulties in modeling highly complex systems

* Uncertainties in allocating functionality to software or hardware and the
subsequent turf battles

* Uncertainties in cost and resource estimation

» Difficulties with progress monitoring

* Rapid changes in software technology and the underlying hardware tech-
nology

* Measuring and predicting the reliability of the software

e Problems with interface definition

e Problems that are encountered during software—software or hard-
ware—software integration

e Unrealistic schedules and budgets

* Gold plating, which is perfecting functionality that needs no further per-
fection

» Shortfalls in externally furnished components

e Real-time performance shortfalls

* Trying to strain the limits of computer science capabilities

The following sections describe some approaches to attacking these risk factors.

9.5 MANAGING AND MITIGATING RISKS

The role of the project manager includes managing and mitigating the risks previ-
ously introduced. From the list, it can be seen that many of the risks can be managed
through close attention to the requirements specification and design processes. Pro-
totyping (especially throwaway) is also an important tool in mitigating risk, as was
described in Chapter 3. Code reviews and walk-throughs can play an important role
as well. Finally, judicious and vigorous testing can reduce or eliminate many of
these risks.

The remainder of the risks need to be managed, that is, closely monitored and
controlled where possible. Table 9.2 summarizes the risk factors and possible
approaches to risk management and mitigation.

Management of Software Projects

169

TABLE 9.2

Various Project Risk Sources and Possible Management, Measurement,

Elimination, and Mitigation Techniques

Risk Factor

Incomplete and imprecise specifications

Difficulties in modeling highly complex systems

Uncertainties in allocating functionality to software or hardware and
the subsequent turf battles
Uncertainties in cost and resource estimation

Difficulties with progress monitoring

Rapid changes in software technology and the underlying hardware
technology
Measuring and predicting the reliability of the software

Problems with interface definition

Problems that are encountered during software—software or
hardware—software integration

Unrealistic schedules and budgets

Gold plating
Shortfalls in externally furnished components
Real-time performance shortfalls

Trying to strain the limits of computer science capabilities

Possible Management/
Mitigation Approach

Prototyping
Requirements reviews
Formal methods
Prototyping

Testing

Prototyping
Requirements reviews
Project management
Metrics

Project management
Monitoring tools
Metrics

Prototyping

Testing

Metrics

Testing

Prototyping
Prototyping

Testing

Project management
Monitoring tools
Metrics

Code audits and walk-throughs
Testing

Prototyping

Testing

Code audits and walk-throughs
Testing

9.6 PERSONNEL MANAGEMENT

One of the most important but frequently overlooked aspects of managing software
projects is managing people. Of course it is well known that the success of a project
is directly related to the quality of talent employed and, more importantly, the manner
in which the talent is deployed on the project (MacDonald, 1998). But too frequently
project managers* view themselves as technical managers only, forgetting that

human nature enters into technical situations.

* Manager is a general term for anyone responsible for one or more other persons developing, managing,
installing, supporting, or maintaining systems and software. Typical other titles include software project

manager, technical lead, senior developer, and so on.

170 Software Engineering for Image Processing Systems

TABLE 9.3
Four Possible Combinations of Good/Bad Management

and Good/Bad Team Chemistry

Good Team Chemistry Bad Team Chemistry

Good Management Likely success Possible success
Bad Management Unlikely success Unlikely success

The special challenges of developing software are imposed on top of the already
daunting challenge of managing human teams. Some people might consider the
aspect of human resource management insignificant if the project team has enough
technical skill. This is not generally true.

The key problem in most cases is that the chemistry of the team makes it
impossible for the manager to overcome the constraints — even with good people.
Table 9.3 illustrates the four possible cases of good/bad management and good/bad
team chemistry. In the case where both are good, the likelihood of project success
(which itself must be carefully defined) is high. In the case of bad management,
success is unlikely — even with good team chemistry — because bad management
will eventually erode morale. But it is where the team chemistry is bad that good
management can possibly lead to success.

9.6.1 THE N-BoDY PROBLEM

One reason why creating a good team chemistry is so hard is that the number of
working relationships grows as a polynomial function of 7, the number of people
on the team. This might be whimsically referred to as the n-body problem and is
depicted in Figure 9.1.

In fact, it can easily be shown by induction that for n people on a team, there
are n(n — 1)/2 possible working relationships, any of which can sour. Furthermore,

A D

(@) (b) (©)

FIGURE 9.1 The n-body problem as the growth of working relationships to be managed as
a function of number of team members. (a) Two persons with one relationship. (b) Three
persons with three relationships. (c) Five persons with 10 relationships. (From Laplante, P.,
IT Prof., Jan./Feb., 46-50, 2003. With permission from the Institute of Electrical and Elec-
tronics Engineers.)

Management of Software Projects 171

a working relationship is not transitive. So, for example, Roger may work well with
Mary, and Mary with Sue, but Roger and Sue may not work well together. Finally,
complicating these interactions are intercultural differences and outsourcing of
project components. All these aspects must be considered when building and man-
aging teams, planning projects, and dealing with difficult personal situations (Mac-
Donald, 1998). “Too many chefs spoil the broth, indeed,” or to paraphrase Brooks,
“Adding manpower to a late software project makes it later” (Brooks, 1995).

9.6.2 SOME APPROACHES TO LEADING TEAMS

There are almost as many management styles as there are people. But traditionally,
a small collection of paradigms can be used to more or less describe the management
style of an individual. Understanding these basic approaches can be helpful in
understanding the motivations of customer, supervisors, and subordinates. Much of
the foregoing discussion is adapted from Laplante (2003a).

9.6.2.1 Theory X

Theory X is perhaps the oldest management style, and it is closely related to the
hierarchical, command-and-control model used by military organizations. According
to Theory X, this approach is necessary because most people inherently dislike work
and will avoid it if they can. Hence, managers should coerce, control, direct, and
threaten their workers in order to get the most out of them. Generally, the theory
holds that most people prefer to be told what to do than to have to decide for
themselves. A typical statement by Theory X managers might be “People only do
what you audit.”

9.6.2.2 Theory Y

As opposed to Theory X, Theory Y holds that work is a natural and desirable activity.
Hence, external control and threats are not needed to guide the organization. In fact,
the level of commitment is based on the clarity and desirability of the goals set for
the group. Finally, most individuals actually seek responsibility and do not shirk it,
as Theory X proposes.

A Theory Y manager simply needs to provide the resources, articulate the goals,
and leave the team alone. This does not always work, of course, because some
individuals do need more supervision than others.

9.6.2.3 Theory Z

Theory Z is based on the philosophy that employees will stay for life with a single
employer, which results in strong bonding to the corporation and subordination of
individual identity to that of the company. Theory Z organizations have implicit,
not explicit, control mechanisms such as peer and group pressure. The norms of
the particular corporate culture also provide additional implicit controls. Japanese
companies are well known for their collective decision making and responsibility
at all levels.

172 Software Engineering for Image Processing Systems

Theory Z management emphasizes a high degree of cross-functionality for all
of its workers. Specialization is discouraged. Most top Japanese managers have
worked in all aspects of their business from the production floor to sales and
marketing. This is also true within functional groups. For example, assemblers will
be cross-trained to operate any machine on the assembly floor. Theory Z employers
are notoriously slow in giving promotions, and most Japanese CEOs are over 50.

9.6.2.4 Theory W

Theory W is a software project management paradigm developed by Boehm and
Ross (1989) that focuses on the following for each project:

» Establishing a set of win—win preconditions
e Structuring a win—win software process
e Structuring a win—win software product

Establishing a set of win—win preconditions recognizes that the best working rela-
tionships are those in which everyone “wins.” Zero-sum or win—lose or lose—win situ-
ations can leave one or both parties bitter. Win—win solutions can be sought as follows.

First, recognize that everyone wants to win. Then understand what constitutes
a winning situation for each individual. Money, power, and recognition contribute
to winning conditions for most people, but there are other, more subtle conditions,
such as job satisfaction, a feeling of belonging, and moral fulfillment.

Next, establish reasonable expectations. The importance of setting reasonable and
mutually fulfilling expectations in every aspect of human relations cannot be overem-
phasized. Then ensure that people’s task assignments will match their win conditions.

Finally, provide an environment that supports the fulfillment of people’s win
conditions. This can take a variety of forms but might include such things as financial
incentives, group activities, and communication sessions to head off problems.

Structuring a win—win software process means setting up a system that will lead
to success. This includes establishing a realistic process plan based on some standard
methodology. This methodology may be internal and company-wide or off-the-shelf.

It is also important to use the project/management plan to control the project.
It has been said, “The plan is nothing, planning is everything.” Too often, managers
develop a project plan to sell the job to senior management or the customer, and
then throw away the plan once it has been sold. Use and maintain the project plan
throughout the life of the project.

Project managers need to monitor the risks that have been described, as they
can lead to win—lose or lose—lose situations. Thus, risks should be identified and
eliminated at the earliest opportunity.

Keeping people involved is essential. It helps team members feel a part of the
project and improves communications. Besides, listening to team members can
highlight great ideas.

Structuring a win—-win software product refers to the process of specification
writing. Matching the users’ and maintainers’ win conditions is the key. This process
includes careful expectation setting.

Management of Software Projects 173

9.6.3 PRINCIPLE-CENTERED LEADERSHIP

All of the management approaches discussed thus far focus on organizational frame-
works for management. Principle-centered leadership focuses on the behavior of the
manager as an agent for change (Covey, 1992). Some management theorists hold that
motivating team members by example and leadership, and not through hierarchical
application of authority, is much more effective (manage things, but lead people). A
key concept in principle-centered leadership is that the best managers are leaders and
that the only way to affect change is by the managers changing themselves first.

Principle-centered leadership recognizes that principles are more important than
values. Values are society based and can change over time and differ from culture
to culture. Principles are more universal, more lasting. Think of some of the old
principles, like the golden rule. These are timeless and transcend culture.

Another example of a timeless principle is “you reap what you sow.” This holds
true when dealing with people. Treat people with respect, and you will be respected.
Failure to respect people leads to disrespect.

In fact, there is a great deal of similarity in principle-centered leadership and
Theory W, with principle-centered leadership being much more generic.

9.6.3.1 Management by Sight

Management by sight, also known as management by walking around, is not really a
full-bodied management approach, but rather a substrategy for the approaches already
discussed. This approach is people oriented because it requires the manager to be very
visible and to interact with staff. Interacting with staff at all levels is a good way for
managers to collect important information about the project and people in their care.

Really, management by sight is obvious. The manager uses observation and
visibility to provide leadership, to monitor the situation, and even to control when
necessary. In general, it is advisable to incorporate this strategy into any management
approach.

9.6.3.2 Management by Objectives

Management by objectives (MBO) is another substrategy that can be used in con-
junction with any other approach to management. MBO involves managers and
subordinates jointly setting carefully structured objectives with measurable outcomes
and rewards.

Coupled with periodic reviews to measure progress, MBO has the effect of a
“carrot-and-stick” reinforcement of desired performance.

For example, a manager may contract with a team member responsible for writing
a section of the software design description that she completes her task by a certain
date (provisos can be made for various, inevitable distractions that will appear). In
return, time off might be granted for meeting the goal — more time off for early
completion. The scenario becomes somewhat more complex when the other 10 things
that the team member is responsible for are factored in (for example, producing other
reports, attending meetings, working on another project simultaneously). The process
tracking tools to be discussed shortly are very helpful in this case.

174 Software Engineering for Image Processing Systems

The keys to MBO are setting reasonable but aggressive goals and having a clear
means of measuring success.

9.6.4 DeALING WITH DirricuLt PeOPLE

One challenge facing every manager is dealing with difficult people, whether they
are subordinates, peers, or superiors. Dealing with difficult people is largely person-
ality based. In any case, it is important that the manager does not form an opinion
about a person or situation too soon. Never attribute some behavior to malice when
a misunderstanding could be the reason. Almost without exception, taking the time
to investigate an issue and to think about it calmly is superior to reacting spontane-
ously or emotionally.

Whatever management style is employed, the manager should make sure that
the focus is on issues and not people. Managers should avoid the use of accusatory
phrases such as telling someone that he is incompetent. The manager should instead
focus on her feelings about the situation. Make sure that all sides of the story are
listened to when arbitrating a dispute — before forming a plan of resolution. It is
often said that there are three sides to an issue, the sides of the two opponents and
the truth, which is somewhere in between. While this is just a cliché, there is much
truth to it.

The manager should always work to set or clarify expectations. Management
failures, parental failures, marital failures, and the like are generally caused by a
lack of clear expectations. The manager should set expectations early in the process,
making sure that everyone understands them. She should continue to monitor the
expectations and refine them if necessary.

Good team chemistry can be fostered through mentoring, and most of the best
managers you probably know also fit the description of a mentor. The behaviors
already described are generally those of someone who has a mentoring personality.

Finally, the manager should be an optimist. No one chooses to fail. In fact,
MacDonald (1998) notes that most programmers are optimists. The manager should
always give people the benefit of the doubt and work with them.

9.7 ASSESSMENT OF PROJECT PERSONNEL

Managers use a variety of testing instruments to evaluate job applicants for skills,
knowledge, and even personality. Candidate exams range widely from programming
tests, exam-like tests, situation analysis, and “trivia” tests that purport to test critical
thinking skills. Some companies do not test at all.

9.7.1 SkiLs TESTING

Skills tests can be used to assess a variety of proficiencies. For those who might
work on imaging software systems, the proficiencies should include:

¢ Knowledge of imaging algorithms and underlying science
¢ Knowledge of commercial imaging hardware

Management of Software Projects 175

* Proficiency in one or more relevant programming languages, such as C,
C++, Java, assembly language, or Fortran

* Proficiency with commercial computer-aided software engineering and
programming environment tools

In some companies, the test is written, administered, and graded by the HR
department. In other companies, the technical line managers administer the test.
Elsewhere, the tests are organized and delivered by “peer” staff — those who would
potentially work with the candidate and who seem to be in the best position to
determine which technical skills are relevant. Finally, some companies outsource
this kind of testing.

During the dot.com era, a number of websites emerged that provided on-line
testing. These companies wrote and managed a test data bank and also provided
incentives for candidates to visit the site and take the test. For a fee, subscribing
companies could access the database and interview those candidates who had
achieved a certain score or answered certain questions correctly on the test.

The real question, however, is “Are any of these tests a true predictor of job
performance?” There seems to be no consensus, even among those who study human
performance testing.

One thing a company could do to test the efficacy of a knowledge/skills exam
is to give it to a group of current employees who are known to be successful and
to another group who are less successful. Correlating the results could lead to a set
of questions that “good” employees are more likely to get right (or wrong). Alter-
natively, a company could survey those employees who were fired for their poor
skills to identify any common trends. Clearly though, while such studies might be
interesting, they would be nearly impossible to conduct, and in any case, it is unclear
if these tests measure what a hiring manager really wants to know.

Perhaps skill or knowledge testing is not what is needed. In many cases, a failure
in attitude leads to performance shortfalls. Perhaps then some sort of assessment of
potential to get along with others might be needed. Some organizations will measure
a candidate’s compatibility with the rest of the team by using tests that measure
emotional intelligence or some variation of that (for example, the Kersey’s Temper-
ament Sorter Test). The idea is to establish the “style” of existing team members
based on their personalities, and then look to add someone whose style is compatible.
This practice, however, can be used to illegally discriminate.

In any case, it is questionable as to whether these kinds of tests really do lead
to better hires. Unfortunately, it is also hard to gauge a person’s fit with the team
based on a series of interviews with team members and the obligatory group lunch
interview. Anyone can put on airs for a few hours in order to get hired, and most
interviewers are not specifically trained to see through the act.

9.7.2 RECOMMENDED PRACTICES

If the company must use an assessment of “intelligence,” college grades or graduate
record examination scores may be used. If the real goal is to determine programming
prowess, checking grades in programming courses might be helpful. Better still, the

176 Software Engineering for Image Processing Systems

manager can ask the candidate to bring in a sample of some code he or she developed
and discuss it. If the code sample is too trivial or the candidate struggles in explaining
it, it is likely that he or she did not write it or understand it that well. Other skills
can be tested this way too; for example, if the job entails writing software specifi-
cations or design or test plans, the candidate can be asked to provide a writing
sample. It is possible that candidates do not have samples from their current or past
jobs for proprietary or security reasons, but they should still be able to talk about
what they did without notes. If they can recount the project in great detail, then they
probably know what they are talking about.

As for compatibility with the rest of the team, there is no magic here. Managers
have to do their homework. They must spend time with candidates in a variety of
settings, even having lunch with them (a lot can be learned about a person from his
or her manners, for example). Make sure that whoever will be working closely with
the applicant is on the hiring or interview team and gets to meet the candidate. But
make sure that everyone has been trained on what to look for during an interview.
Then get together and compare notes right after the candidate leaves.

Background checking is important too, and most people do not do a good job
on the phone dealing with references. Here are some simple guidelines for back-
ground checking:

1. First, ask legal questions. There are many questions that cannot be asked;
a human resources or legal advisor should be consulted before writing
the interview questions.

2. Be sure you check at least three references. It is harder to hide any
problems this way.

3. Be sure to talk to supervisors, peers, and subordinates. A team member
has to be able to lead and be led.

4. Take good notes and ask follow-up questions. Many references are reluc-
tant to say bad things about people even if they do not believe the person
is a strong candidate. By listening carefully to what references say — and
do not say — the real message will come through.

5. Be sure to ask a broad range of questions, especially questions that
encourage elaboration (as opposed to yes/noanswers). For example, some
of the following might be helpful:

a. “Describe the candidate’s technical skills.”

b. “Describe a difficult situation that the candidate encountered and how
he dealt with it.”

c. “Describe the candidate’s interpersonal skills.”

d. “Why do you think the candidate is leaving the company?”

e. “Describe the kind of work environment in which the candidate would
thrive.”

f. “Describe the current work environment in which the candidate works.”

g. “Describe the contributions of the candidate in the capacities with
which you are familiar.”

h. “Describe the kind of manager that you think would be best for the
candidate.”

Management of Software Projects 177

6. Evaluate the references that candidates give you. If they have difficulty
providing references, or if none are for a direct supervisor (or subordinate),
then this may indicate some problem. If the reference barely knows the
candidate or simply worked in the same building, then regardless of the
person’s opinions, they cannot be weighed heavily.

In summary, it is crucial that the hiring manager and hiring or interview team
learn the art of interviewing and background checking. This is more likely to lead
to the right fit than a series of tests. Relying on “trivia” tests is risky at best and
might cost a good employee.

9.8 TRACKING AND REPORTING PROGRESS

Tracking progress is important for identifying problems early, for reporting purposes,
and for performing appropriate resource allocation and reallocation as required.
Three tools that can help the software project manager to measure the progress of
a project are:

1. Gantt chart
2. Critical path method (CPM)
3. Program evaluation and review technique (PERT)

There are numerous commercial implementations of these tools, which typically
can convert from one to the other and integrate with many popular word processing,
spreadsheet, and presentation software.

9.8.1 GANTT CHART

The ubiquitous Gantt chart was developed by Henry Gantt during the First World
War as a planning tool. The approach is simple in that it lists project tasks in a
sequential or parallel fashion.

Project tasks are listed along the left-hand side of the chart in a hierarchical
fashion. If a work breakdown structure was used in the software design description,
then it can be transferred to the chart.

The chart provides a visual aid in assessing progress for each task and its
subordinate and dependent tasks. So long as the chart is a realistic reflection of the
situation, the manager can use it to track progress, adjust the schedule, and perhaps,
most importantly, communicate about the status of the project.

A time line is drawn along the bottom edge of the chart. Each project subtask
activity is represented by a directed arrow. The starting point of the arc is placed at
the point in the time line where the task would commence. Project durations are
represented by the length of the arcs. Personnel are listed next to the project activity
on the left-hand side. Milestones can be marked, and task slippage can be denoted
by dashed lines in the activity arcs. The chart is redrawn as necessary.

As an example, consider the simple work breakdown structure for the visual
inspection system (VIS). A corresponding Gantt chart is shown in Figure 9.2. It can

178 Software Engineering for Image Processing Systems

3.2 Code Operational Software (PAL) .
3.2.1 Initialization (PAL) ~—>

3.2.2 Normal Operation (PAL) ——>

3.2.2.1 Image Capture (KAG) *~—>

3.2.2.2 Error Correction (KAG) *~—>

3.2.2.3 Image Analysis Code (CIN) >

3.2.2.4 Conveyor System Control (CJN) e¢—— »

3.2.2.5 Reject Mechanism Control (CJN) ~—>

3.2.2.6 Error Handling (CJN) ~—>

3.3 Diagnostic Software (CJN) >

4 Software Integration (All) —>
4.1 Integration Test (All) ~—>

4.2 Acceptance Test (All) —————>

Time
FIGURE 9.2 Partial Gantt chart for the VIS.

be seen from the chart that parallel tasks can be identified and sequencing easily
depicted. Task assignments can be made by writing the name of the person respon-
sible next to each task. PAL, CJN, and KAG are the initials of the persons assigned
to the tasks; “All” represents all team members.

Here the time units are omitted, but would usually be represented by tick marks
in units of days, weeks, or months. Furthermore, personnel would be assigned to
each task. Commercial products are available for building these charts and for
depicting the activities as a CPM or PERT chart.

9.8.2 CriTicAL PATH METHOD

The CPM is an improvement on the Gantt chart in that task dependencies can be
more easily depicted and task times are represented numerically rather than visually.
The method was developed in the 1950s by researchers at DuPont and Remington
Rand.

The CPM chart is essentially a precedence graph (also known as a Hasse diagram)
connecting tasks and illustrating their dependencies, as well as the budgeted com-
pletion time and maximum cumulative completion time, along the path from the
origin to the current task (Figure 9.3). Because one of the paths will be longer than
the others, the project manager can identify what is known as the critical path. The
critical path is the one that can be improved to reduce overall project completion time.

Budgeted Completion Time/

Cumulative Completion Time
task id > next_task id

FIGURE 9.3 Basic element of CPM showing first task and next dependent task. The arc is
labeled with best, average, and worst-case completion times.

Management of Software Projects 179
3/11

3223 4

17/17

FIGURE 9.4 Partial CPM corresponding to VIS Gantt chart shown in Figure 9.2.

Returning again to the VIS example, consider the tasks in the work breakdown
structure by their numerical coding shown in the Gantt chart. These tasks are depicted
in Figure 9.4. Here tasks 3.2.1, 3.2.2.3, and 3.2.2.4 may all begin simultaneously.
Assume that task 3.2.1 is expected to take four time units (days). Notice that, for
example, the arc from task 3.2.1 is labeled with “4/4” because the estimated time
for that task is four, and the cumulative time along that path up to that node is four.
Looking at task 3.2.2.1, which succeeds task 3.2.1, we see that the edge is labeled
with “4/8.” This is because a completion time for task 3.2.2.1 is estimated at 4 days,
but the cumulative time for that path (from tasks 3.2.1 through 3.2.2.1) is estimated
to take a total of 8 days.

Finally, task 3.2.2.2 is expected to take 3 days, and hence the cumulative com-
pletion time is 11 days. On the other hand, task 3.2.2.3 is expected to take 17 days.
The task durations are based on either estimation or using a tool such as COCOMO,
which will be discussed later. If a Gantt chart accompanies the CPM diagram, the
task durations represented by the length of the arrows there should correspond to
those labeled on the CPM chart.

Moving along the last path at the bottom of Figure 9.4, it can be seen that the
cumulative completion time is 17. Therefore, in this case, the two lower task paths
represent critical paths. Hence, only by reducing the completion time of both can
the project completion be accelerated.

9.8.3 PROGRAM EVALUATION AND REVIEW TECHNIQUE

PERT was developed by the Navy and Lockheed (now Lockheed Martin) in the
1950s, around the same time as CPM. PERT is the same as CPM topologically,
except that PERT depicts optimistic, likely, and pessimistic completion times along
each arc between tasks (Figure 9.5). Figure 9.6 is a partial PERT chart for the VIS.

180 Software Engineering for Image Processing Systems

> Best Case/Y, Likely Case/Y, Worst Case
task id next_task id

FIGURE 9.5 Partial PERT corresponding to VIS Gantt chart shown in Figure 9.2.

4/4/4 3/4/5
3/3/4

3223 > 4

14/17/20

FIGURE 9.6 Partial PERT chart for VIS showing best-case, likely, and worst-case completion
times for each task.

In this depiction, it can be seen that the topology is the same as that for CPM.
Here the triples indicate the best, likely, and worst-case completion times for each
task. These times are estimated, as in CPM, either through best engineering judgment
or through the use of a tool like COCOMO.

Adding these triples vectorially yields the PERT chart in Figure 9.7. The aggre-
gated times can now be seen along the arcs, providing cumulative best, likely, and
worst-case scenarios. This provides even more control information than the Gantt
or CPM project representations.

9.9 COST ESTIMATION USING COCOMO

One of the most widely used software modeling tools is Boehm’s COCOMO model,
first introduced in 1981. COCOMO is an acronym for constructive cost model. That
is, it is a predictive model. There are three versions of COCOMO: basic, interme-
diate, and detailed.

9.9.1 Basic COCOMO

The basic COCOMO model is based on thousands of lines of deliverable source
instructions. In short, for a given piece of software, the time to complete is a function

Management of Software Projects 181

4/4/4
10/11/13

3223 > 4
14/17/20
14/16/23
5/6/8 9/10/15 12/13/19

FIGURE 9.7 Partial PERT chart for VIS showing cumulative best-case, likely, and worst-
case completion times for each task.

of L, the number of lines of delivered source instructions (KDSIs), and two additional
parameters, a and b, which will be explained shortly. This is the effort equation for
the basic COCOMO model.

T = al’ 9.1)

Dividing T by a known productivity factor, in KLOC (thousands of lines of code)
per person-month, yields the number of person-months estimated to complete the
project. The parameters a and b are a function of the type of software system to be
constructed.

For example, if the system is organic, that is, one that is not heavily embedded
in the hardware, then the following parameters are used: a = 3.2, b = 1.05. If the
system is semidetached, that is, partially embedded, then these parameters are used:
a=3.0,b=1.12.

Finally, if the system is embedded, that is, closely tied to the underlying hardware
like the VIS, then the following parameters are used: a = 2.8, b = 1.20. Note that
the exponent for the embedded system is the highest, leading to the longest time to
complete for an equivalent number of delivered source instructions.

Recall from Chapter 7 that for the VIS, using feature points, 40,000 lines of C
code were estimated. Hence, an effort level estimate is obtained using COCOMO of

T =2.8-(40K)"* =234K

Suppose, then, it is known that an efficient software engineer using computer-
aided software engineering and other tools can generate 2000 lines of code per
month. Then superficially, at least, it might be estimated that the project would take

182 Software Engineering for Image Processing Systems

about 117 person-months to complete. Not counting dependencies in the task graph,
this implies that a five-person team would take about 20 months to complete the
project. It would be expected, however, that more time would be needed because of
task dependencies (identified, e.g., using PERT).

9.9.2 INTERMEDIATE AND Detaiteo COCOMO

The intermediate and detailed COCOMO models dictate the kinds of adjustments
used. Consider the intermediate model, for example. Once the effort level for the
basic model is computed based on the appropriate parameters and number of source
instructions, other adjustments can be made based on additional factors.

In this case, for example, if the lines of code to be produced consist of design
modified, code modified, and integration modified code rather than straight code, a
linear combination of these relative percentages is used to create an adaptation
adjustment factor as follows.

Adjustments are then made to 7 based on two sets of factors: the adaptation
adjustment factor, A, and the effort adjustment factor, E.

The adaptation adjustment factor is a measure of the kind and proportion of
code that is to be used in the system, namely, design modified, code modified, and
integration modified. The adaptation factor, A, is given by Equation 9.2:

A = 0.4 (% design modified) + 0.03 (% code modified)
+ 0.3 (% integration modified) 9.2)

For new components, A = 100. On the other hand, if all of the code is design
modified, then A = 40, and so on. Then the new estimation for delivered source
instructions, FE, is given as

E=L-A/100 (9.3)

An additional adjustment, the effort adjustment factor, can be made to the number
of delivered source instructions based on a variety of other factors, including:

¢ Product attributes
* Computer attributes
¢ Personnel attributes
* Project attributes

Each of these attributes is assigned a number based on an assessment that rates
them on a relative scale. Then a simple linear combination of the attribute numbers
is formed based on project type. This gives a new adjustment factor, E’ .

The second effort adjustment factor, E”, is then made based on the formula

E”= E"-E 94

Then the delivered source instructions are adjusted, yielding the new effort
equation:

Management of Software Projects 183

T = aE”* 9.5)

The detailed model differs from the intermediate model in that different effort
multipliers are used for each phase of the software life cycle.

COCOMO is widely recognized and respected as a software project management
tool. It is useful even if the underlying model is not really understood. COCOMO
software is commercially available and can even be found on the Web for free use.
One drawback, however, is that the model does not take into account the leveraging
effect of productivity tools.

Finally, the model bases its estimation almost entirely on lines of code, not on
program attributes, which is something that function points do. Function points,
however, can be converted to lines of code using standard conversion formulas, as
was shown.

9.9.3 COCOMO II

COCOMO 1I is a major revision of COCOMO that is evolving to deal with some
of the previously described shortcomings. For example, the original COCOMO 81
model was defined in terms of delivered source instructions. COCOMO II uses the
metric source lines of code instead of delivered source instructions. The new model
helps better accommodate more expressive modern languages as well as software
generation tools that tend to produce more code with essentially the same effort.

In addition, in COCOMO II some of the more important factors that contribute
to a project’s expected duration and cost are included as new scale drivers. These
five scale drivers are used to modify the exponent used in the effort equation:

* Precedentedness (that is, novelty of the project)
* Development flexibility

e Architectural/risk resolution

e Team cohesion

* Process maturity

The first two drivers, precedentedness and development flexibility, for example,
describe many of the same influences found in the adjustment factors of COCOMO
81.

It is beyond the scope of this text to study COCOMO in detail. As with any
metric and model, it must be used carefully and based on practice and experience.
Nevertheless, using proven models is better than none at all or guessing.

9.10 EXERCISES

9.1 Compare FP and FP examples shown in the previous chapter to the
COCOMO basic, intermediate, and detained models. Make appropriate
assumptions where necessary.

184 Software Engineering for Image Processing Systems

9.2 Research commercially available tools that can be used to implement:
* Gantt charts
* PERT
+ CPM
What free versions are available?

9.3 Find a demo version of COCOMO 81 or COCOMO II on the Web and
experiment with the VIS example.

9.4 How can COCOMO be used to measure progress? When should it be
used?

9.5 Are there any inherent problems in using project management tools like
Gantt charts, PERT, CPM, and COCOMO, which were developed in a
“procedural-oriented world” with object-oriented techniques?

9.6 Does self-auditing of projects by managers/team leaders and reviews of
goals by team members prove fruitful? Or is outside oversight more
impartial to a project team that might overrank itself?

Glossary

Many of these terms are taken, with permission, from the CRC Comprehensive
Dictionary of Computer Science, Engineering and Technology (Laplante, 2001).

Term

Abstract class
Adaptive programming

Agile programming

Algorithm

Approximate reasoning
Argument

Arithmetic operation
Artifact

Assembler

Attribute

Benchmark

Definition

A superclass that has no direct instances.

A lightweight programming methodology that offers a
series of frameworks to apply adaptive principles and
encourage collaboration.

A lightweight programming methodology that is
divided into four activities: planning, designing, coding,
and testing, all performed iteratively.

A systematic and precise step-by-step procedure for
solving certain kinds of problems or accomplishing a
task, for instance, converting a particular kind of input
data to a particular kind of output data, or controlling
a machine tool. An algorithm can be executed by a
machine.

See imprecise computation.

(1) An address or value that is passed to a procedure or
function call, as a way of communicating cleanly across
procedure and function boundaries. (2) Data given to a
hardware operator block.

Any of the following operations and combination
thereof: addition, subtraction, multiplication, division.
Any by-product of the software production process,
including code and documentation.

A computer program that translates an assembly-code
text file to an object file suitable for linking.

A named property of a class that describes a value held
by each object of the class.

Standard tests that are used to compare the performance
of computers, processors, circuits, or algorithms.

185

186

Term

Branch instruction

Branch prediction

Break point

Break-point instruction

Built-in self-test (BIST)

Call-by-address
Call-by-reference

Call-by-value
parameter passing

Software Engineering for Image Processing Systems

Definition

An instruction is used to modify the instruction execu-
tion sequence of the CPU. The transfer of control to
another sequence of instructions may be unconditional
or conditional based on the result of a previous instruc-
tion. In the latter case, if the condition is not satisfied,
the transfer of control will be to the next instruction in
sequence. It is equivalent to a jump instruction, although
the range of the transfer may be limited in a branch
instruction compared to the jump.

A mechanism used to predict the outcome of branch
instructions prior to their execution.

(1) An instruction address at which a debugger is
instructed to suspend the execution of a program. (2) A
critical point in a program at which execution can be
conditionally stopped to allow examination (if the pro-
gram variables contain the correct values) or other
manipulation of data. Break-point techniques are often
used in modern debuggers, which provide nice user
interfaces to deal with them.

A debugging instruction provided through hardware
support in most microprocessors. When a program hits
a break point, specified actions occur that save the state
of the program, and then switch to another program that
allows the user to examine the stored state. The user
can suspend the execution of a program; examine the
registers, stack, and memory; and then resume the pro-
gram’s execution, which is very helpful in a program’s
debugging.

Special software used to perform self-testing. On-line
BIST assures testing concurrently with normal opera-
tion (e.g., accomplished with coding or duplication
techniques). Off-line BIST suspends normal operation
and is carried out using a built-in test pattern generator
and a test response analyzer (e.g., Signature analyzer).
See call-by-reference.

Parameter passing mechanism in which the address of
the parameter is passed by the calling routine to the
called procedure so that it can be altered there. Also
known as call-by-address.

Parameter passing mechanism in which the value of the
actual parameter in the subroutine or function call is
copied into the procedure’s formal parameter.

Glossary

Term

Capability

Checkpoint

Checkpointing

Checksum

Class

Code

Coding

Command

Compiler

187

Definition

An object that contains both a pointer to another object
and a set of access permissions that specify the modes
of access permitted to the associated object from a pro-
cess that holds the capability.

Time in the history of execution at which a consistent
version of the system’s state is saved so that if a later
event causes potential difficulties, the system can be
restarted from the state that had been saved at the check-
point. Checkpoints are important for the reliability of a
distributed system, since timing problems or message
loss can create a need to “back up” to a previous state,
which has to be consistent in order for the overall system
to operate functionally.

Method used in rollback techniques in which some sub-
set of the system states (data, program, etc.) is saved at
specific points (checkpoints), during the process execu-
tion, to be used for recovery if a fault is detected.

A value used to determine if a block of data has
changed. The checksum is formed by adding all of the
data values in the block together and then finding the
two’s complement of the sum. The checksum value is
added to the end of the data block. When the data block
is examined (possibly after being received over a serial
line), the sum of the data values and checksum should
be zero.

A group of objects with similar attributes, behavior, and
relationships to other objects.

(1) A technique for representing information in a form
suitable for storage or transmission. (2) A mapping from
a set of messages into binary strings.

The process of programming, generating code in a spe-
cific language, and translating data from a representa-
tion form into a different one by using a set of rules or
tables.

(1) Directives in natural language or symbolic notations
entered by users to select computer programs or func-
tions. (2) Instructions from the central processor unit
(CPU) to controllers and other devices for execution. (3)
A CPU command or a single instruction, add, load, etc.
A program that translates a high-level language program
into an executable machine instruction program or other
lower-level form, such as assembly language.

188

Term

Complement

Computer-aided
software engineering
(CASE)

Computer simulation

Conditional instruction
Configuration

Correctness

Crystal

Data dependency

Data-oriented
methodology

Data structure
Debug
Debug port

Debugger

Software Engineering for Image Processing Systems

Definition

(1) To swap 1 for 0 and O for 1 in a binary number. (2)
Opposite form of a number system.

A computer application automating the development of
graphics and documentation of application design.

A set of computer programs that allows one to model
the important aspects of the behavior of the specific
system under study. Simulation can aid the design pro-
cess (e.g., by allowing one to determine appropriate
system design parameters) or the analysis process (e.g.,
by allowing one to estimate the end-to-end performance
of the system under study).

An instruction that performs its function only if a certain
condition is met.

Operation in which a set of parameters is imposed for
defining the operating conditions.

A property in which the software does not deviate from
the requirements specification. Often used synony-
mously with reliability, correctness requires a stricter
adherence to the requirements.

A lightweight programming methodology that empowers
the development team to define the development process
and refine it in subsequent iterations until it is stable.
The normal situation in which the data that an instruction
uses or produces depends upon the data used or produced
by other instructions such that the instructions must be
executed in a specific order to obtain the desired results.
An application development methodology that consid-
ers data the focus of activities because they are more
stable than processes.

A particular way of organizing a group of data, usually
optimized for efficient storage, fast search, fast retrieval,
and fast modification.

To remove errors from hardware or software.

The facility to switch the processor from run mode into
probe mode to access its debug and general registers.
(1) A program that allows interactive analysis of a run-
ning program, by allowing the user to pause execution
of the running program and examine its variables and
path of execution at any point. (2) Program that aids in
debugging.

Glossary

Term

Debugging

Default

Dependability

Disassembler

Distributed computing

DSI

Dynamic systems
development method
(DSDM)

Embedded software
Embedded system

Emulate

Emulation

Emulation mode

Emulator

189

Definition

(1) Locating and correcting errors in a circuit or a com-
puter program. (2) Determining the exact nature and
location of a program error and fixing the error.

The value or status that is assumed unless otherwise
specified.

System feature that combines such concepts as reli-
ability, safety, maintainability, performance, and test-
ability.

A computer program that can take an executable image
and convert it back into assembly code.

An environment in which multiple computers are net-
worked together and the resources from more than one
computer are available to a user.

Delivered source instruction. See KLOC.

A lightweight programming methodology conceived as
a methodology for rapid application development,
DSDM relies on a set of principles that include empow-
ered teams, frequent deliverables, incremental develop-
ment, and integrated testing.

Software that is part of an embedded system.

A computing machine contained in a device whose pur-
pose is not to be a computer. For example, the computers
in automobiles and household appliances are embedded
computers. An embedded computer uses embedded
software, which integrates an operating system with
specific drivers and application software. Their design
often requires special software—hardware co-design
methods for speed, low power, low cost, high testability,
or other special requirements.

Executing a program compiled to one instruction set on
a microprocessor that uses an incompatible instruction
set, by translating the incompatible instructions while
the program is running.

(1) A model that accepts the same inputs and produces
the same outputs as a given system. (2) To imitate one
system with another.

State describing the time during which a microprocessor
is performing emulation.

(1) The firmware that simulates a given machine archi-
tecture. (2) A device, computer program, or system that
accepts the same inputs and produces the same outputs
as a given system.

190

Term

Encapsulation

Entity relationship
diagram
Environment

Error extension

Extreme programming

(XP)

Failure

Fault prevention

Fault tolerance

Feature-driven
development

Finite state automaton
(FSA)

Finite state machine
(FSM)

Firm real-time system

Software Engineering for Image Processing Systems

Definition

Property of a program that describes the complete inte-
gration of data with legal process relating to the data.
A diagram that describes the important entities in a
system and the ways in which they are interrelated.

A set of objects outside the system, a change in whose
attributes affects, and is affected by, the behavior of the
system.

The multiplication of errors that might occur during the
decoding of a line coded sequence, or during the decod-
ing of a forward error control coded sequence when the
number of symbol errors exceeds the error correction
capability of the code.

A lightweight programming methodology based on 12
practices, including pair programming (all code devel-
oped jointly by two developers), test-first coding, hav-
ing the customer on-site, and frequent refactoring.
Extreme programming is perhaps the most prescriptive
of the lightweight methodologies.

Manifestation of any defect. It relates to execution of
wrong actions, nonexecution of correct actions, perfor-
mance degradation, etc.

Any technique or process that attempts to eliminate the
possibility of having a failure occur in a hardware device
or software routine.

Correct execution of a specified function in a circuit
(system), provided by redundancy, despite faults. The
redundancy provides the information needed to negate
the effects of faults.

A lightweight model-driven, short-iteration process
built around the feature, a unit of work that has meaning
for the client and developer and is small enough to be
completed quickly.

See finite state machine.

A mathematical model of a machine consisting of a set
of inputs, a set of states, and a transition function that
describes the next state given the current state and an
input. Also known as finite state automaton and state
transition diagram.

A real-time system that can fail to meet one or more
deadlines without system failure.

Glossary

Term

Flowchart

Forward error recovery

Framework
FSA

FSM
Function test
Functional

decomposition
Garbage

Garbage collector

Generalization
Global variable
Hard real-time system

Hazard

Heterogeneous

Host

ICE
Imprecise computation

191

Definition

A traditional graphic representation of an algorithm or
a program that uses named functional blocks (rectan-
gles), decision evaluators (diamonds), and I/O symbols
(paper, disk) interconnected by directional arrows that
indicate the flow of processing. Synonym: flow diagram.
A technique (also called roll-forward) of continuing
processing by skipping faulty states (applicable to some
real-time systems in which occasional missed or wrong
responses are tolerable).

A skeletal structure of a program that requires further
elaboration.

Finite state automaton. See finite state machine.

See finite state machine.

A check for correct device operation generally by truth
table verification.

The division of processes into modules.

An object or a set of objects that can no longer be
accessed, typically because all pointers that direct
accesses to the object or set have been eliminated.

A software run-time system component that periodi-
cally scans dynamically allocated storage and reclaims
allocated storage that is no longer in use (garbage).
The relationship between a class and one or more vari-
ations of that class.

Any variable that is within the scope of all modules of
the software system.

A real-time system in which missing even one deadline
results in system failure.

A momentary output error that occurs in a logic circuit
because of input signal propagation along different
delay paths in the circuit.

Having dissimilar components in a system; in the con-
text of computers, having different types or classes of
machines in a multiprocessor or multicomputer system.
A computer that is the one responsible for performing
a certain computation or function.

See in-circuit emulator.

Techniques involving early truncation of a series in
order to meet deadlines. Sometimes called approximate
reasoning.

192

Term

In-circuit emulator
(ICE)

Incrementality
Information hiding
Inheritance

Initialize

Instance
Instruction issue

Instruction set

Interoperability

Interpreter

Interrupt

Interrupt handler

KLOC

Legacy system

Software Engineering for Image Processing Systems

Definition

A device that replaces the processor and provides the
functions of the processor plus testing and debugging
functions.

A software approach in which progressively larger
increments of the desired product are developed.

A program design principle that makes available to a
function only the data it needs.

In object orientation, the possibility for different data
types to share the same methods.

(1) To place a hardware system in a known state, for
example, at power up. (2) To store the correct beginning
data in a data item, for example, filling an array with
zero values before it is used.

An occurrence of a class.

The sending of an instruction to functional units for
execution.

The instruction set of a processor is the collection of
all the machine-language instructions available to the
programmer.

Software quality that refers to the ability of the software
system to coexist and cooperate with other systems.

A computer program that translates and immediately
performs intended operations of the source statements
of a high-level language program.

An input to a processor that signals the occurrence of
an asynchronous event. The processor’s response to an
interrupt is to save the current machine state and execute
a predefined subprogram. The subprogram restores the
machine state on exit, and the processor continues in
the original program.

A predefined subprogram executed when an interrupt
occurs. The handler may perform input or output, save
data, update pointers, or notify other processes of the
event. The handler must return to the interrupted pro-
gram with the machine state unchanged.

A software metric measuring thousands of lines of code
(not counting comments and nonexecutable statements).
Called the clock metric. Also known as thousands of
delivered source instructions (KDSIs) and noncom-
mented source statements (NCSSs).

Applications that are in a maintenance phase but are not
ready for retirement.

Glossary

Term

Library

Lightweight
programming
methodology

Link

Linker

Logic analyzer
Logical operation

Machine code

Machine language

Macro

Maintainability

Maintenance

Mealy finite state
machine

Memory reference
instruction

Message-passing system

Microcode

193

Definition

A set of precompiled routines that may be linked with
a program at compile time or loaded at load time or
dynamically at run time.

Any programming methodology that is adaptive rather
than predictive and emphasizes people rather than process.

The portion of the compilation process in which sepa-
rate modules are placed together and cross-module ref-
erences resolved.

A computer program that takes one or more object files,
assembles them into blocks that are to fit into particular
regions in memory, and resolves all external (and pos-
sibly internal) references to other segments of a program
and to libraries of precompiled program units.

A machine that can be used to send signals to, and read
output signals from, individual chips or circuit boards.
The machine-level instruction that performs Boolean
operations such as AND, OR, and COMPLEMENT.
The machine format of a compiled executable, in which
individual instructions are represented in binary nota-
tion.

The set of legal instructions to a machine’s processor,
expressed in binary notation.

A short code-like text, defined by the programmer,
which the assembler or compiler will recognize and
which will result in an in-line insertion of a predefined
block of code into the source code.

A software quality that is a measure of how easy the
system can be evolved to accommodate new features,
or changed to repair errors.

The changes made on a system to fix errors, to support
new requirements, or to make it more efficient.

A finite state machine with outputs.

An instruction that communicates with virtual memory,
writing to it (store) or reading from it (load).

A multiprocessor system that uses messages passed
among the processors to coordinate and synchronize the
activities in the processors.

A collection of low-level operations executed as a result
of a single instruction being issued.

194

Term

Modularity
Moore finite state

machine
Multiprocessor

NCSS
Nested subroutine

Object
Object code

Object type

Object oriented

Object-oriented
analysis

Object-oriented design

Object-oriented
methodology

Open source code

Open system

Operating system

Software Engineering for Image Processing Systems

Definition

Design principle that calls for the design of small, self-
contained code units.
See finite state machine.

A computer system that has more than one internal
processor capable of operating collectively on a com-
putation. Normally associated with those systems where
the processors can access a common main memory.
Noncommented source statement. See KLOC.

A subroutine called by another subroutine. The pro-
gramming technique of a subroutine calling another
subroutine is called nesting.

An instance of a class definition.

A file comprising an intermediate description of a pro-
gram segment.

The type of an object determines the set of allowable
operations that can be performed on the object. This
information can be encoded in a “tag” associated with
the object, can be found along an access path reaching
to the object, or can be determined by the compiler that
inserts “correct” instructions to manipulate the object
in a manner consistent with its type.

The organization of software into discrete objects that
encapsulate both data structure and behavior.

A method of analysis that examines requirements from
the perspective of the classes and objects found in the
problem domain.

A design methodology viewing a system as a collection
of objects with messages passed from object to object.
An application development methodology that uses a
top-down approach based on a decomposition of a
system in a collection of objects communicating via
messages.

Source code that is made available to the user commu-
nity for moderate improvement and correction.

An extensible collection of independently written
applications that cooperate to function as an integrated
system.

A set of programs that manages the operations of a
computer. It oversees the interaction between the hard-
ware and the software and provides a set of services to
system users.

Glossary

Term

Operation

Output dependency

Overloading

Pair programming

Pattern

Performance
Portability

Power-on self-test
(POST)
Preprocessing

Procedure

Procedure call

Process

Process control block

(PCB)

Programmed 1/0

195

Definition

Specification of one or a set of computations on the
specified source operands, placing the results in the
specified destination operands.

The situation when two sequential instructions in a pro-
gram write to the same location. To obtain the desired
result, the second instruction must write to the location
after the first instruction.

Principle according to which operations bearing the
same name apply to arguments of different data type.
A technique in which two persons write code together.
A named problem-solution pair that can be applied in
new contexts, with advice on how to apply it in novel
situations.

A measure of the software’s capability of meeting certain
functional constraints such as timing or output precision.
A quality in which the software can easily run in dif-
ferent environments.

A series of diagnostic tests performed by a machine
(such as the personal computer) when it powers on.

A series of image enhancements and transformations
performed to ease the subsequent image analysis pro-
cess through, e.g., noise removal or feature extrac-
tion/enhancement.

A self-contained code sequence designed to be reexe-
cuted from different places in a main program or another
procedure.

In program execution, the execution of a machine-lan-
gauge routine, after which execution of the program
continues at the location following the location of the
procedure call.

The context, consisting of allocated memory, open files,
network connections, etc., in which an operating system
places a running program.

An area of memory containing information about the
context of an executing program. Although the PCB is
primarily a software mechanism used by the operating
system for the control of system resources, some com-
puters use a fixed set of PCBs as a mechanism to hold
the context of an interrupted process.

Transferring data to or from a peripheral device by run-
ning a program that executes individual computer instruc-
tion or commands to control the transfer. An alternative
is to transfer data using direct memory address (DMA).

196

Term

Protection

Protection fault

Prototyping

Pseudo-code

Pseudo-exhaustive
testing
Pseudo-operation

Pseudo-random testing

Pure procedure

Race condition

Random testing

Real-time

Real-time computing

Software Engineering for Image Processing Systems

Definition

Control access to information in a computer’s memory,
consistent with a particular policy or mechanism. The
term security is used when the constraints and policies
are very restrictive.

An error condition detected by the address mapper when
the type of request is not permitted by the object’s
access code.

Building an engineering model of all or part of a system
to prove that the concept works.

A technique for specifying the logic of a program in an
English-like language. Pseudo-code does not have to
follow any syntax rules and can be read by anyone who
understands programming logic.

A testing technique that relies on various forms of code
segmentation and application of exhaustive test patterns
to these segments.

In assembly language, an operation code that is an
instruction to the assembler rather than a machine-lan-
guage instruction.

A testing technique based on pseudo-randomly gener-
ated test patterns. Test length is adapted to the required
level of fault coverage.

A procedure that does not modify itself during its own
execution. The instructions of a pure procedure can be
stored in a read-only portion of the memory and can be
accessed by many processes simultaneously.

A situation where multiple processes access and manip-
ulate shared data with the outcome dependent on the
relative timing of these processes.

The process of testing using a set of pseudo-randomly
generated patterns.

Refers to systems whose correctness depends not only
on outputs, but also on the timeliness of those outputs.
Failure to meet one or more of the deadlines can result
in system failure.

Support for environments in which response time to an
event must occur within a predetermined amount of
time. Real-time systems may be categorized into hard,
firm, and soft real-time.

Glossary

Term

Reentrant

Recovery

Recursion
Recursive procedure

Redundancy

Reentrancy

Refactoring
Register indirect
addressing

Reliability

197

Definition

Term describing a program that uses concurrently,
exactly the same executable code in memory for more
than one invocation of the program (each with its own
data), rather than separate copies of a program for each
invocation. The read and write operations must be
timed, so that the correct results are always available
and the results produced by an invocation are not over-
written by another one.

Action that restores the state of a process to an earlier
configuration after it has been determined that the sys-
tem has entered a state that does not correspond to
functional behavior. For overall functional behavior, the
states of all processes should be restored in a manner
consistent with each other, and with the conditions
within communication links or message channels.

The situation whereby a program calls itself.

A procedure that can be called by itself or by another
program that it has called; effectively, a single process
can have several executions of the same program alive
at the same time. Recursion provides one means of
defining functions.

The use of parallel or series components in a system to
reduce the possibility of failure. Similarly, referring to
an increase in the number of components that can inter-
changeably perform the same function in a system.
Sometimes it is referred to as hardware redundancy in
the literature to differentiate it from so-called analytical
redundancy in the field of FDI (fault detection and iso-
lation/identification). Redundancy can increase the sys-
tem reliability.

The characteristic of a block of software code that if
present, allows the code in the block to be executed by
more than one process at a time.

To perform a behavior preserving code transformation.
An instruction-addressing method in which the register
field contains a pointer to a memory location that contains
the memory address of the data to be accessed or stored.
The probability a component or system will function
without failure over a specified period, under stated
conditions.

198

Term

Requirements analysis

Reusability

Reuse

Reverse engineering

Robustness

Safety

Safety-critical system

Scrum

Self-modifying code

Self-test
Self-test and repair

Sequential fault

SLOC
Soft computing

Software Engineering for Image Processing Systems

Definition

A phase of software development life cycle in which
the business requirements for a software product are
defined and documented.

The possibility to use or easily adapt the hardware or
software developed for a system to build other systems.
Programming modules are reused when they are copied
from one application program and used in another. Reus-
ability is a property of module design that permits reuse.
The reverse analysis of an old application to conform
to a new methodology.

A software quality that measures the software’s toler-
ance to exceptional situations, for example, an input out
of range.

The probability a system will either perform its func-
tions correctly or discontinue its functions in a well-
defined, safe manner.

A system intended to handle rare unexpected, dangerous
events.

A lightweight programming methodology based on the
empirical process control model, the name is a reference
to the point in a rugby match where the opposing teams
line up in a tight and contentious formation. Scrum
programming relies on self-directed teams and dis-
penses with much advanced planning, task definition,
and management reporting.

A program using a machine instruction that changes the
stored binary pattern of (usually) another machine
instruction in order to create a different instruction, which
will be executed subsequently. Definitely not a recom-
mended practice and not supported on all processors.

A test that a module, either hardware or software, runs
upon itself.

A fault-tolerant technique based on functional unit
active redundancy, spare switching, and reconfiguration.
A fault that causes a combinational circuit to behave
like a sequential one.

See source line of code.

An association of computing methodologies centering on
fuzzy logic, artificial neural networks, and evolutionary
computing. Each of these methodologies provides us with
complementary and synergistic reasoning and searching
methods to solve complex, real-word problems.

Glossary

Term

Soft real-time system

Software design

Software development
life cycle
Software engineering

Software evolution

Software interrupt

Software reengineering

Source code

Source line of code
(SLOC)

Specification

Speculative execution

State diagram

Subclass

Subroutine

Superclass

199

Definition

A real-time system in which failure to meet deadlines
results in performance degradation but not necessarily
failure.

A phase of software development life cycle that maps what
the system is supposed to do into how the system will do
it in a particular hardware or software configuration.

A way to divide the work that takes place in the devel-
opment of an application.

Systematic development, operation, maintenance, and
retirement of software.

The process that adapts the software to changes of the
environment where it is used.

A machine instruction that initiates an interrupt func-
tion. Software interrupts are often used for system calls
because they can be executed from anywhere in memory
and the processor provides the necessary return address
handling.

The reverse analysis of an old application to conform
to a new methodology.

Software code written in a form or language meant to
be understood by programmers. Must be translated to
object code in order to run on a computer.

A metric that measures the number of executable pro-
gram instructions — one SLOC may span several lines,
for example, as in an if-then-else statement.

A statement of the design or development requirements
to be satisfied by a system or product.

A CPU instruction execution technique in which
instructions are executed without regard to data depen-
dencies.

A form of diagram showing the conditions (states) that
can exist in a logic system and what signals are required
to go from one state to another state. Also called finite
state machine (FSM) or finite state automaton (FSA).
A class that adds specific attributes, behaviors, and rela-
tionships for a generalization.

A group of instructions written to perform a task, inde-
pendent of a main program; can be accessed by a pro-
gram or another subroutine to perform the task.

A class that holds common attributes, behaviors, and
relationships for generalization.

200

Term
Synchronous
Syntax

System implementation

Systems engineering

Test-first coding

Test pattern
Testability

Testing

Timing error

Traceability

Tracing

UML
Unconditional branch

Software Engineering for Image Processing Systems

Definition

An operation or operations that are controlled or syn-
chronized by a clocking signal.

The part of a formal definition of a language that spec-
ifies legal combinations of symbols that make up state-
ments in the language.

A phase of software development life cycle during
which a software product is integrated into its opera-
tional environment.

An approach to the overall life cycle evolution of a
product or system. Generally, the systems engineering
process is composed of a number of phases. There are
three essential phases in any systems engineering life
cycle: formulation of requirements and specifications,
design and development of the system or product, and
deployment of the system. Each of these three basic
phases may be further expanded into a larger number.
For example, deployment is generally composed of
operational test and evaluation, maintenance over an
extended operational life of the system, and modifica-
tion and retrofit (or replacement) to meet new and evolv-
ing user needs.

A software engineering technique in which the code unit
test cases are written by the programmer before the actual
code is written. Also called test-driven development.
Input vector such that the faulty output is different from
the fault-free output.

The measure of the ease with which a system can be
tested.

A phase of software development life cycle during
which the application is exercised for the purpose to
find errors.

An error in a system due to faulty time relationships
between its constituents.

A software property concerned with the relationships
between requirements, their sources, and the system
design.

In software engineering, the process of capturing the
stream of instructions, referred to as the trace, for later
analysis.

See unified modeling language.

An instruction that causes a transfer of control to
another address without regard to the state of any con-
dition flags.

Glossary

Term

Unified modeling
language (UML)

Unified process model
(UPM)

UPM
Usability

Validation
Verifiability
Virtual machine
WBS

Work breakdown
structure (WBS)

201

Definition

A collection of modeling tools for object-oriented rep-
resentation of software and other enterprises.

Process model that uses an object-oriented approach by
modeling a family of related software processes using
the unified modeling language (UML) as a notation.
See unified process model.

A property of software detailing the ease with which it
can be used.

A review to establish the quality of a software product
for its operational purpose.

Software property in which its other properties (e.g.,
portability, usability) can be verified easily.

A process on a multitasking computer that behaves as
if it were a stand-alone computer and not part of a larger
system.

See work breakdown structure.

A hierarchically decomposed listing of tasks.

References

Abdel-Hamid, T.K. and Madnick, S.E., (1986), Impact of schedule estimation on software
project behavior, IEEE Software, 70-75.

Akao, Y., Ed., (1990), Quality Function Deployment, Productivity Press, Cambridge, MA.

Andersen, O., (1990), The use of software engineering data in support of project management,
Software Eng. J., 5, 350-356.

Armour, FJ. and Gupta, M., (1999), Mentoring for success, IT Prof., 64—66.

Bach, J., (1998), The highs and lows of change control, Computer, 31, 113-115.

Banker, R.D. et al., (1993), Repository evaluation of software reuse, IEEE Trans. Software
Eng., 19, 4, 379-389.

Beck, K., (1999), Extreme Programming Explained: Embrace Change, Addison-Wesley, New
York.

Beizer, B., (1990), Software Testing Techniques, 2nd ed., Van Nostrand Reinhold, New York.

Bentley, J.L., (1982), Writing Efficient Programs, Prentice Hall, Englewood Cliffs, NJ.

Beyer, H. and Holtzblatt, K., (1995), Apprenticing with the customer: a collaborative approach
to requirements definition, Commun. ACM.

Blum, B.I1., (1992), Software Engineering: A Holistic View, Oxford University Press, New
York.

Boehm, B., (1988), A spiral model of software development and enhancement, IEEE Comput.,
21, 61-72.

Boehm, B.W. and Ross, R., (1989), Theory-W software project management: principles and
examples, IEEE Trans. Software Eng., SE-15, 902-916.

Booch, G., (1991), Object-Oriented Design with Applications, Benjamin Cummings, Menlo
Park, CA.

Brooks, E., (1995), The Mythical Man-Month, 2nd ed., Addison-Wesley, New York.

Bucci, G., Campanai, M., and Nesi, P., (1995), Tools for specifying real-time systems, in
Real-Time Systems: The International Journal of Time Critical Systems, Vol. 8§,
Kluwer Academic Press, Netherlands, pp. 117-172.

Budgen, D., (1994), Software Design, Addison-Wesley, New York.

Caldiera, G. and Basili, V.R., (1991), Identifying and qualifying reusable software compo-
nents, /[EEE Comput., 24, 2, 61-70.

Chikofsky, E.J. and Cross, J.H., II, (1990), Reverse engineering and design recovery: a
taxonomy, IEEE Software, 7, 1, 13-17.

Covey, S., (1992), Principle Centered Leadership, Simon & Schuster, New York.

DeMarco, T., (1978), Structured Analysis and System Specification, Prentice Hall, Englewood
Cliffs, NIJ.

DeMarco, T., (1982), Controlling Software Projects, Prentice Hall, Englewood Cliffs, NJ.

Dougherty, E.R. and Laplante, P.A., (1995a), Introduction to Real-Time Image Processing,
SPIE Press/IEEE Press, Bellingham, WA.

Dougherty, E.R. and Laplante, P.A., (1995b), Real-Time Image Processing, SPIE Press/IEEE
Press, Bellingham, WA.

Douglass, B.P., (1998), Real Time UML: Developing Efficient Objects for Embedded Systems,
Addison-Wesley, Reading, MA.

203

204 Software Engineering for Image Processing Systems

Everett, W.W., (1990), Software reliability measurement, IEEE J. Selected Areas Commun.,
8, 257-252.

Everett, W.W. and Musa, J.D., (1993), A software reliability engineering practice, Computer,
26, 77-79.

Fenton, N., (1994), Software measurement: a necessary scientific basis, IEEE Trans. Software
Eng., 20, 199-206.

Fenton, N., (1996), Software Metrics: A Rigorous Approach, Chapman & Hall, New York.

Flynn, M.J., (1966), Very high-speed computing systems, Proc. IEEE, 54, 12, 1901-1909.

Frakes, W.B. and Fox, C.J., (1996), Quality improvement using a software reuse failure modes
model, IEEE Trans. Software Eng., 22, 4, 274—179.

Frakes, W.B. and Isoda, S., (1994), Success factors of systematic reuse, IEEE Software, 11,
14-19.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., (1994), Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, New York.

Gane, C. and Saron, T., (1979), Structured Systems Analysis, Prentice Hall, Englewood Cliffs,
NJ.

Ghezzi, C., Jazayeri, M., and Mandriolo, D., (1991), Fundamentals of Software Engineering,
Prentice Hall, Englewood Cliffs, NJ.

Grady, R., (1992), Practical Software Metrics for Project Management and Process Improve-
ment, Prentice Hall, Englewood Cliffs, NJ.

Gries, D., (1981), The Science of Programming, Springer-Verlag, Heidelberg.

Haag, S., Raja, M.K., and Schkade, L.L., (1996), Quality function deployment usage in
software development, Commun. ACM, 41-49.

Hall, T. and Fenton, N., (1997), Implementing effective software metrics programs, /[EEE
Software, 14, 2, 55-65.

Hatley, D.J. and Pirbhai, I.A., (1987), Strategies for Real-Time System Specification, Dorest
House Publishing, New York.

Hauser, J.R. and Clausing, D., (1988), The house of quality, Harv. Bus. Rev., 3, May/June, 63-73.

Henderson-Sellers, B. and Edwards, J.M., (1990), The object-oriented systems life cycle,
Comm. of the ACM, 33,9, 152.

Institute of Electrical and Electronics Engineers, (1998), IEEE Standard 830-1998: Recom-
mended Practice for Software Requirements Specifications, IEEE, New York.

Jacobson, I. et al., (1997), Making the reuse business work, Computer, 30, 10, 36—42.

Jacobson, 1., Christerson, M., Jonsson, P., and Overgaard, G., (1992), Object-Oriented Soft-
ware Engineering: A Use Case Driven Approach, Addison-Wesley, Reading, MA.

Jones, C., (1994), Software metrics: good, bad and missing, Computer, 27, 98—100.

Jones, C., (1995), Determining software schedules, Computer, 28, 73-75.

Jones, C., (1996a), Software change management, Computer, 29, 80-82.

Jones, C., (1996b), Activity based software costing, Computer, 27, 98-100.

Jones, C., (1998), Estimating Software Costs, McGraw-Hill, New York.

Jorgensen, P., (2002), Software Testing: A Craftsman’s Approach, 2nd ed., CRC Press, Boca
Raton, FL.

Kanoun, K. et al., (1997), Qualitative and quantitative reliability assessment, I[EEE Software,
14, 77-87.

Kremer, R., (2000), Programming Patterns Overview, University of Calgary, Canada.

Laplante, P., (2003a), Remember the human element in IT project management, /T Prof.,
Jan./Feb., 46-50.

Laplante, P. and Neill, C., (January 2003c), A Class of Kalman Filters for Real-Time Image
Processing, paper presented at Proceedings of the Real-Time Imaging Conference,
SPIE, Santa Clara, CA, 22-29.

References 205

Laplante, P., Stoyenko, A., and Sinha, D., (1996b), Image Processing Methods: Real-Time
Imaging, SPIE Press, Bellingham, WA (conference proceedings).

Laplante, P.A., (1997), Real-Time Systems Design and Analysis: An Engineer’s Handbook,
2nd ed., IEEE Press/IEEE CS Press, Piscataway, NJ.

Laplante, P.A., Ed., (2001), Comprehensive Dictionary of Computer Science, Engineering
and Technology, CRC Press, Boca Raton, FL.

Laplante, P.A., (2002b), Software engineering: the seven deadly sins, Opt. Eng., 37.

Laplante, P.A., (2002d), A retrospective on real-time imaging, a new taxonomy and a roadmap
for the future, Real-Time Imaging, 8, 5, 413-425.

Laplante, P.A. and Neill, C.J., (January 2002a), An overview of software specification tech-
niques for real-time imaging, in Real-Time Imaging VI, vol. 4666, SPIE Press, Bell-
ingham, WA, pp. 55-64.

Laplante, P.A. and Neill, C.J., (2003b), Software specification and design for imaging systems,
J. Electron. Imaging, 12, 252-262.

Laplante, P.A., Neill, C.J., and Jacobs, C., (December 2002¢), Requirements Specification
Practices: Some Real Data, paper presented at 27th NASA/IEEE Software Engineer-
ing Workshop, Greenbelt, MD, IEEE Computer Society Press, Los Alamitos, CA.
Proceedings on disk.

Laplante, P.A., Neill, C.J., and Russell, D.W., (July 2002c), Object-Oriented Requirements
Specification for Imaging Systems, paper presented at Proceedings of the Real-Time
Imaging Conference, SPIE, Seattle.

Laplante, P.A. and Stoyenko, A., Eds., (1996a), Real-Time Image Processing: Theory, Tech-
niques, and Applications, IEEE Press, New York.

Larman, C., (2002), Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Process, 2nd ed., Prentice Hall, New York.

Levine, D. and Schmidt, D., (2000), Introduction to Patterns and Frameworks, Washington
University, St. Louis.

Liskov, B., (1988), Data abstraction and hierarchy, SIGPLAN Notices, 23, 17-34.

Lorenz, M. and Kidd, J., (1994), Object-Oriented Software Metrics, Prentice Hall, Englewood
Cliffs, NJ.

Louden, K.C., (1993), Programming Languages Principles and Practice, PWS-KENT Pub-
lishing Company, Boston.

Low, G.C. and Jeffery, D.R., (1990), Function points in the estimation and evaluation of the
software process, IEEE Trans. Software Eng., 16, 64-T1.

Macaulay, L.A., (1996), Requirements Engineering, Springer-Verlag, London.

MacDonald, J.S., (1998), Systems Engineering: Art and Science in an International Context,
keynote speech presented at the 1998 INCOSE Symposium.

Mann, C.C., (2002), Why software is so bad, Technol. Rev., July/Aug., 33-38.

Mariatos, E.P., Birbas, M.K., Birbas, A.N., and Petrellis, N., (1996) Object-oriented proto-
typing at the system level: an image reconstruction application example, in Proceed-
ings of the Seventh IEEE International Workshop on Rapid System Prototyping, June
19-21, 1996, IEEE Computer Society Press, Los Alamitos, CA, 1996, 90-95.

Martin, R.C., (May 1996), The Dependency Inversion Principle, C++ Report, WordenWare,
www.brent.worden.org.

Matson, J.E. et al., (1994), Software Development Cost Estimation Using Function Points,
IEEE Trans. Software Eng., 20, 275-287.

McCabe, T., (1976), A software complexity measure, I[EEE Trans. Software Eng., SE-2,
308-320.

Metzger, P. and Boddie, J., (1996), Managing a Programming Project: Processes and People,
3rd ed., Prentice Hall, Upper Saddle River, NJ.

206 Software Engineering for Image Processing Systems

Meyer, B., (1998), The role of object-oriented metrics, Computer, 31, 123-127.

Meyer, B., (2000), Object-Oriented Software Construction, 2nd ed., Prentice Hall, Englewood
Cliffs, NJ.

Mili, H., Mili, F.,, and Mili, A., (1995), Reusing software: issues and research directions, [EEE
Trans. Software Eng., 21, 528-562.

Moeller, K.H. and Paulish, D.J., (1993), Software Metrics: A Practitioner’s Guide to Improved
Product Development, Chapman & Hall, London.

Moller, T. and Haines, E., (1999), Real-Time Rendering, A. K. Peters, Natick, MA.

Motus, L. and Rodd, M.G., (1994), Timing Analysis of Real-Time Software, Pergamon, Oxford.

Myers, W., (1997), Software reuse: ostriches beware, Computer, 30, 119-120.

Naks, T. and Motus, L., (2001), Handling timing in a time-critical reasoning system: a case
study, Annu. Rev. Control, 25, 157-168.

Neill, C.J. and Gill, B., (2003b), Refactoring reusable business components, /T Prof., Jan./Feb.,
33-38.

Neill, C.J. and Holt, J.D., (2002a), Adding temporal modeling to the UML to support systems
design, Syst. Eng., 5, 213-222.

Neill, C.J. and Laplante, P.A., (July 2002b), Modeling Time in Object-Oriented Specifications
of Real-Time Imaging Systems, paper presented at Proceedings of the Real-Time
Imaging Conference, SPIE, Seattle.

Neill, C.J. and Laplante, P.A., (2003a), Specification of real-time imaging systems using
UML, Real-Time Imaging, 9, 2, 125-137.

NIST, (2002), The Economic Impact of Inadequate Infrastructure for Software Testing, Plan-
ning Report 02-3, www.nist.gov/director/prog-ofc/report02-3.pdf.

Page-Jones, M., (1980), The Practical Guide to Structured Systems Design, Prentice Hall,
Englewood Cliffs, NJ.

Parnas, D.L., (1972), On the criteria to be used in decomposing systems into modules,
Commun. ACM, 15, 1053-1058.

Parnas, D.L., (1979), Designing software for ease of extension and contraction, IEEE Trans.
Software Eng., SE-5, 128—-138.

Parnas, D.L., (1996), Introduction to Chapter 6.5, in Great Papers in Computer Science,
Laplante, P.A., Ed., West Publishing, New York.

Parnas, D.L. and Clements, P.C., (1986), A rational design process: how and why to fake it,
IEEE Trans. Software Eng., 12, 251-257.

Pfleeger, S.L., (1992), Measuring software reliability, IEEE Spectrum, 29, 8, 55-60.

Poling, C., (2002), Designing a machine-vision system, Opt. Eng., May, 34-36.

Poulin, J., (1997), Measuring Software Reuse Principles, Practices and Economic Models,
Addison-Wesley, New York.

Pressman, R.S., (2000), Software Engineering: A Practitioner’s Approach, 5th ed., McGraw-
Hill, New York.

Putnam, L.H. and Myers, W., (1997), Industrial Strength Software: Effective Management
Using Measurement, IEEE Computer Society Press, Los Alamitos, CA.

Quirk, W.J. and Gilbert, R., (1977), The Formal Specification of the Requirements of Complex
Real-Time Systems, No. 8602, Atomic Energy Research Establishment, Harwell, U.K.

Rajeswari, M. and Rodd, M.G., (1999), Real-time analysis of an IC wire-bonding inspection
system, Real-Time Imaging, 5, 409—421.

Roman, D., Fisher, M., and Cubillo, J., (1998), Digital image processing: an object-oriented
approach, IEEE Trans. Educ., 41, 331-333.

Rosenfeld, A., (2000), Classifying the literature related to computer vision and image analysis,
Comput. Vision Understanding, 79, 308-323.

References 207

Rzucidlo, M., (2002), Fault tolerance and reliability in software, in Proceedings of the
Research Institute, February 2002, Penn State Great Valley School of Graduate and
Professional Studies, Malvern, PA.

Sadr, B. and Dousette, P.J., (1996), An OO project management strategy, Computer, 29, 33-38.

Selic, B., Gullekson, G., and Ward, P.T., (1994), Real-Time Object-Oriented Modeling, John
Wiley & Sons, New York.

Selic, B. and Rumbaugh, J., (March 1998), Using UML for Modeling Complex Real-Time
Systems, ObjecTime Limited/Rational Software Corp. white paper, available at
www.rational.com.

Sengupta, K. and Abdel-Hamid, T.K., (1996), The Impact of unreliable information on the
management of software projects: a dynamic decision perspective, IEEE Trans. Syst.
Man Cybern., A26, 177-189.

Shi, Y.Q. and Sun, H., (2000), Image and Video Compression for Multimedia Engineering,
CRC Press, Boca Raton FL.

Sigried, S., (1996), Understanding Object-Oriented Software Engineering, IEEE Press, New
York.

Sinha, P., Gorinsky, S., Laplante, P.A., and Stoyenko, A.D., (1996), A survey of real-time
imaging, J. Electron. Imaging, 5, 466—478.

Sommerville, 1., (2000), Software Engineering, 5th ed., Addison-Wesley, New York.

Stoyenko, A., Marlowe, T., and Laplante, P.A., (1996), A description language for engineering
of complex real-time systems, Real-Time Syst. J., 11, 223-244.

Svoboda, C.P., (1997), Structured analysis, in /[EEE Software Requirements Engineering, 2nd
ed., IEEE Computer Society Press, Los Alamitos, CA.

Thayer, R.H., (2002), Software system engineering: a tutorial, Computer, 35, 4, 68-73.

Thomas, A.D.H., Rodd, M.G., Holt, J.D., and Neill, C.J, (1995), Real-time industrial inspec-
tion: a review, Real-Time Imaging J., 1, 139-158.

Tran, T. and Sherif, J.S., (1995), QFD: an effective technique for requirements acquisition
and reuse, in Proceedings of the 2nd IEEE International Software Engineering Stan-
dards Symposium, IEEE Computer Society Press, Los Alamitos, CA, 191-200.

Tucker, A.B., Jr., Ed., (1996), The Computer Science and Engineering Handbook, CRC Press,
Boca Raton, FL.

Voas, J., (2001), The pitfalls of managing a superstar, IT Prof., 3, 2, 65-67.

Wang, Y. and King, G., (2000), Software Engineering Processes: Principles and Applications,
CRC Press, Boca Raton, FL.

Ward, P.T. and Mellor, S.J., (1985), Structured Development for Real-Time Systems, Vol. 1,
Introduction & Tools; Vol. 2, Essential Modeling Techniques; Vol. 3, Implementation
Modeling Techniques, Yourdon Press, New York.

Wood, A., (1996), Predicting software reliability, Computer, 29, 69-77.

Yourdon, E., (1991), Modern Structured Analysis, Prentice Hall, Englewood Cliffs, NJ.

Index

Note: Ttalicized pages refer to notes, tables and illustrations

A

abstract data types, 112, 114, 160

abstract interface, 72

acceptance testing, 27

ACM (Association for Computing Machinery), 36

Ada 95 programming language, 109, 114-115
See also programming languages
call-by-value-result parameter passing in, /70
consistency checking in, 145
dynamic memory allocation in, 111
modularity in, 113
pragma pseudo-op in, 115

adaptive adjustment factor (A), 182

adaptive maintenance, 159

adaptive programming, 33

ADC (analog-to-digital converters), 107, 154

agile programming, 33

Algol-60 programming language, 110

algorithms, 2

analog-to-digital converters (ADC), 107, 154

AND states, 50-51

ANSI-C standard, 113, 122

anticipation of change, in software engineering,

18

application programming interface (API), 18, 79

approximate reasoning, 157

AR (autoregressive) model, 100

arrays, 118

artifacts, 23

as program, 119

assemblers, 3, 118

assembly language, 109, 115
See also programming languages
lines of code per function point, /36
translation high-level language into, 118

assessment of project personnel, 174
background checking in, 176-177
recommended practices in, 175-177
skills testing, 174175

Association for Computing Machinery (ACM), 36

Atomic Energy Research Establishment (U.K.),

85
attributes, 15, 81, 113
autoregressive (AR) model, 100

B

B programming language, 115

background checking, 176-177

backtracking transitions, 27-28

BAM (binary angular measure), 155

baseline method, 132

basic COCOMO (constructive cost model),
180-182

BASIC programming language, 109

bathtub curve, 10-11

BCPL programming language, 115

behavior of objects, 80-81

behavioral model, 60

binary angular measure (BAM), 155

black boxes, 104-105, 162

black box testing, 139-141

block diagrams, 55

block matching, 55-56

Boolean types, 112

boundary value testing, 140

boundary violation errors, 112

breakpoints, 121

broadcast communication, 49, 51

bugs, 46, 138-139

built-in test software, 105

burn-in testing, 143

bus, 94

bus multiplexers, 107

C

C beautifier (cb), 121

C programming language, 109, 115-116
See also programming languages
consistency checking in, 145
dynamic memory allocation in, 111
exception handling in, 113
functionality in, 136
information hiding in, 113
lines of code per function point, /36
modularity in, 113
and SASD (structured analysis and structured

design), 59

209

210 Software Engineering for Image Processing Systems

typing, 112
C++ programming language, 109, 116
See also programming languages
functionality in, 136
lines of code per function point, /36
c2 program, 119
cache hit ratio, 157
cache memory, 98
calibration mode, 47
call-by-address parameter passing, 110
call-by-constant parameter passing, /10
call-by-name parameter passing, /70
call-by-reference parameter passing, 110, 117
call-by-value parameter passing, 110, 117
call-by-value-result parameter passing, /70
camera input, 4
CameraProxy element, 88
capability maturity model (CMM), 34-35
capability maturity model integration (CMMI), 35
Carnegie-Mellon University, 34
CASE (computer-aided software engineering), 27
CASE tools, 77
¢b program, 121
cc program, 119
ccom program, 119
central processing unit (CPU), 94, 149
CFDs (control flow diagrams), 78
chain reactions, 51
channels, 85
character types, 112
charge-couple device (CCD) arrays, 5
checkpoints, 102, 162
checksums, 106
circular message-waiting conditions, 88
class libraries, 160
class structure, /9
Classifier element, 88
ClassifyStrategy element, 89
cleanroom software development, 143
cleanroom testing, 143
clock probes, 147-148
CMM (capability maturity model), 34-35
CMMI (capability maturity model integration), 35
COCOMO (constructive cost model), 180
See also software project management
basic, 180-182
COCOMO 11, 183
intermediate and detailed, 182—183
COCOMO 11, 183
code unit testing, 27
codes, 2
control and maintenance of, 163
debugging, 121-122
documenting, 2

excessive, 2
inspection of, 141
link with documentation, 20-21
loadable, 146
locality of reference, 157
reuse of, 2
reviews and audits of, 124-126
standards, 123-124
writing and testing, 118-123
cohesion, 15-18
coincident level of cohesion, 16
collision testing, 56
communicational level of cohesion, 17
compilers, 3
converting Java to machine or object codes,
117
handling errors in, 120
in logic analyzers, 147
tests on language constructs, 122-123
translating high-level language with, 118
Unix/Linux C, 119-120
composite color, 5
compression, 5
computer-aided software engineering (CASE), 27
configuration management software, 26-27
consistency checking, 45
constant types, 115
constructive cost model. See COCOMO
content coupling, 18
control coupling, 18
control flow diagrams (CFDs), 78
control models, 79
control signals, 4
control specifications (C-SPECs), 78
control stores, 78
conventional model, 24
conveyors, 6
coprocessors, 94-95
core dump, 121
corrective maintenance, 159
correctness of software, 12
cosine function, 156
coupling, 15-18
CPM (critical path method), 178-179
cpp program, 119
CPU (central processing unit), 94, 149
CPU testing, 106
CPU utilization, 153-154, 157
CRC (cyclic redundancy code), 106
critical path method (CPM), 178-179
Crystal programming, 33
customers, 43-44
cycle time (7'), 153
cyclic redundancy code (CRC), 106

Index

D

data abstraction, 80
data consumption time, 86
data coupling, 18
data dictionaries, 59, 76-77
data flow diagrams (DFDs), 49, 59
data flow processors, 96
data types, 112
DCT (discrete cosine transform), 156
debugging, 120

See also errors; software testing

of imaging systems, 152

symbolic, 121

and system cycles, 150
decision tables, 75
decision trees, 75
decompression, 5
decorators, 88
delivered source instructions. See DSIs
Department of Defense (DOD), 36, 114
dependency inversion principle (DIP), 82, 161
design activity, 71-72
design constraint requirements, 43
design patterns, 83, 84
design recovery, 158
developers, 43—44
DFDs (data flow diagrams), 49

in structured analysis and structured design

(SASD), 59

in structured design (SD), 74-76
DFT (discrete Fourier transform), 156
diagnostic mode, 47, 79
digital signal processing (DSP), 94-95, 157
digital-to-analog converters (DAC), 107
digitizing imaging devices, 155
DIP (dependency inversion principle), 82, 161
direct memory address (DMA), 97-98
discrete cosine transform (DCT), 156
discrete Fourier transform (DFT), 156
dissemblers, 147
divide-and-conquer methods, 111
divide-by-zero errors, 97, 112
DMA (direct memory address), 97-98
documentation, 126—127
documentation recovery, 158
DOD (Department of Defense), 36, 114
DOD-STD-2167A software standard, 37-38
DOD-STD-498 software standard, 37
DOD-STD-7935A, 37
domain analysis, 161
domains, 161
domain-specific logic, 160
dot coms, 175
downtime, 10

211

DRAM (dynamic random access memory), 98
DSDM (dynamic systems development methods),
33
DSIs (delivered source instructions), 129-130
See also metrics
adjustment factors, 182
in basic COCOMO model, 181
DSP (digital signal processing), 94-95, 157
DuPont, 178
dynamic memory allocation, 111
dynamic random access memory (DRAM), 98
dynamic requirements, 43
dynamic systems development methods (DSDM),
33

E

effort adjustment factor (E), 182
embedded imaging systems, 1
risk factors, 35-36
state charts in, 51
end-product liability, 69
entity relationship diagrams (ERDs), 59
environmental model, 60
epilogues, 115
equivalence interval, 86
ERDs (entity relationship diagrams), 59
errors, 138
economic cost of, 1
handling and recovery, 42, 112-113
hard, 106
percentage of cost in software development,
162
pixel overflow, 112
as side effect of software development, 8
soft, 106
synchronization, 12
syntax, 120
evolutionary delivery cycle, 30
evolutionary prototyping, 30
evolvability of software, 13
exception handling, 112-113
execution time, 154, 162
exhaustive testing, 140
exponential functions, 156
external interface requirements, 43
extreme programming (XP), 33, 122

F

failure function, 10, 7/
failures, 138-139
See also errors

212 Software Engineering for Image Processing Systems

exponential model of, 77/
intensity of, 10
probability of, 10
fault tolerance, 99
faults, 138-139
fault-tolerant design, 99
checkpoints, 102
n-version programming, 105-107
recovery blocks, 102-104
software black boxes, 104—-105
spatial fault tolerance, 99
using Kalman filter, 99-102
feasibility studies, 41
feature points, 137
feature-driven development, 33
feedback control, 99
filter operation, 80
FilterDecorator element, 89
FilterImp instance, 102
filtration, 5
finite state automation (FSA), 46
finite state machine. See FSM
firing rule, 52
firm real-time systems, 12
firmware, 157
flash memory, 98
floating-point overflow errors, 112-113
floating-point types, 112, 155
flowcharts, 45
of multigrid block matching, 56
in multiresolution block matching, 55
formal methods, 4445
FSM (finite state machine), 46-49
limitations of, 45-46
Petri nets, 51-53
state charts, 49-51
survey of, 68
uses for, 45
Z language, 46
formal program proving, 141-142
formality in software engineering, 15
Fortran programming language, 109
information hiding in, 113
lines of code per function point, /136
modularity in, 113
and SASD (structured analysis and structured
design), 59
fountain model, 31-32
fractal compression, 111
frame grabbers, 5, 6, 107
FrameGrabber element, 88
FSA (finite state automation), 46
FSM (finite state machine), 4649
See also SRS (software requirements
specification)

design in procedural form, 78-80
modes of operation, 47
for transition matrix of visual inspection
system, 48
function points, 134-136
function polymorphism, 80
functional level of cohesion, 17
functional requirements, 4243
functionality, control of, 166

G

Gantt chart, 177-178

Gantt, Henry, 177

garbage collection, 113, 118
Gaussian distribution, 101
generality in software engineering, 20
generic function look-up table, /56
global variables, 110-111, 149
GoF (gang of four) patterns, 83, 84
gold plating, 2

GOTO statement, 118

graphical objects, 56

graphical user interface (GUI), 121
graphics-rendering software, 73
grid computers, 96

group walkthroughs, 141

GUI (graphical user interface), 121

H

Hadamard matrices, 111

Halstead's metrics, 132—-133

hard errors, 106

hard real-time systems, 12

hardware interrupts, 96-97

hardware prototypes, 149-150

Hasse diagram, 178

Heisenberg uncertainty principle, 152-153
Heisenberg, Wernter, 152

hierarchical collision testing algorithm, 57
high-level language, 118

Hungarian notation standard, 123

ICE (in-circuit emulation), 149
IEEE (Institute of Electrical and Electronics
Engineers), 36
IEEE Standard 830, 26
requirements, 42—43
template for, 64—66
image capture elements, 88

Index

image reconstruction systems, 57-58
ImageProcessor element, 88, 89
imaging dilemma, real-time, 12
imaging systems, 1
See also visual inspection system
debugging, 152
hardware considerations in, 93-99
line manipulation algorithms in, 155
prototypes, 36
real-time, 12
reliability of, 9-10
risk factors, 35-36
second system effect in, 163
software engineering approach to, 2
software for, 4-5
software reengineering in, 157-158
specifications, 44-45, 53-54
typical setup, 4
using Kalman filter in, 99-102
implementation model, 60
imprecise computation, 157
in-circuit emulators, 149
incremental model, 31
incrementality in software engineering, 20
Industry Standard Architecture (ISA), 6
inertial navigation data, 99
informal methods, in requirements specification,
45
information hiding, 18
See also Parnas partitioning
in object-oriented programming languages,
80, 113
in procedural languages, 113
in software partitioning, 72
in Z language, 46
inheritance, 114
and late binding, 113
in object-oriented programming language, 80
in Z language, 46
in-line patch, 157
input and output (I/0), 97-99, 161
input devices, 94
input source, 5
InputStream class, 102
inspection software, 5
instantiation, 46
Institute of Electrical and Electronics Engineers
(IEEE), 36
integers, 112, 155
integrated circuit boards, 6
intelligence, assessment of, 175-176
intermediate COCOMO (constructive cost
model), 182-183
International Function Point Users Group, 136
International Standards Organization (ISO), 36

213

interoperability of software, 13

interrupt controllers, 115

interrupt handling, 96-97, 112, 148

1/0 (input and output), 97-99, 161

ISA (Industry Standard Architecture), 6

ISO 9000-9003 standard, 38-39

ISO (International Standards Organization), 36
ISO/IEC 12207 standard, 40

J

JAD (joint application design), 124-126

Java programming language, 109, 113, 117-118
jitters, 12

joint application design (JAD), 124-126
jumper wires, 151

K

Kalman filters, 99-102, 103

KalmanFilter class, 102

KalmanMediator class, 102

kernel components, 150

KLOC (thousands of lines of code), 129-130, 181

L

language constructs, 122-123
late binding, 113
Id program, 119
leadership, principle-centered, 173-174
least-significant bit (LSB), 154-155
legacy systems, 157
life cycle models, 23-24
capability maturity model (CMM), 34-35
evolutionary model, 30
fountain model, 31-32
incremental model, 31
lightweight methodologies, 32-33
spiral model, 28-30
unified process model, 34
V model, 28
waterfall model, 24-28
light barriers, 6
lighting, 5
lightweight methodologies, 32-33
line manipulation algorithms, 155
line scan, 5
linear sequential model, 24
lines of code, 129-130
link loaders, 118
linkers, 118
lint, 121, 145

214 Software Engineering for Image Processing Systems

Linux C compiler, 119-120
Linux operating system, 115, 121
Liskov substitution principle, 82-83, 161
LISP programming language, 114
load modules, 146
logic analyzers, 147-148
See also system integration tools
in measuring performance of imaging
systems, 13
timing code, 148-149
timing instructions, 148
logic errors, 120
logical database requirements, 43
logical level of cohesion, 16
longjmp procedure call, 116
look-up tables, 155-156
lose-win management paradigm, 172
lossy compression, 58
LSB (least-significant bit), 154

M

machine codes, 118
machine vision system, 5657
macroinstructions, 96
mainframe computers, 94
maintainability of software, 13
maintenance engineers, 43-44
maintenance process model, 158-159
management by objectives (MBO), 173-174
management by sight, 173
managers, 43—44, 169
Markov random fields, 57-58
master processors, 105
MBO (management by objectives), 173—-174
McCabe's metric, 130-132
Mealy machine, 48, 49
mean time between failures (MTBF), 11
mean time to first failure (MTFF), 11
memory, 94, 97
memory maps, 150-151
memory testing, 106
memory usage, 157
memory-mapped 1/0, 97
metrics, 129
feature points, 137
function points, 134-136
Halstead's metrics, 132-133
lines of code, 129-130
McCabe's metric, 130-132
objections to, 138
for object-oriented software, 137-138

software complexity, 130-132
microcontrollers, 94
microinstructions, 96
MIL-STD-2167A software standard, 37
MIL-STD-498 software standard, 37
MIL-STD-498 standard, 26
MIMD (multiple instruction multiple data), 96
minicomputers, 94
MISD (multiple instruction single data), 96
ML programming language, 114
model checking, 45
modeling, 3
Modula-2 programming language
dynamic memory allocation in, 111
exception handling in, 113
modularity, 15-18, 113
monochrome cameras, 5
Moore machine, 48
most significant bit (MSB), 155
motion estimation, 55
MSB (most significant bit), 155
MTBF (mean time between failures), 11
MTEFF (mean time to first failure), 11
multimeters, 147
multiple instruction multiple data (MIMD), 96
multiple instruction single data (MISD), 96
multiprocessing systems, 52
multiprocessors, 96
multiprogramming systems, 52
multiresolution block matching, 55-56
Mpythical Man-Month, The, 162

N

National Institute of Standards Technology
(NIST), 1, 138

navigation software, 155

n-body problem, 170-171

NCSSs (noncommented source code statements),
129-130

N-FeatureComparison element, 89, 93

NIST (National Institute of Standards
Technology), 1, 138

NoiseModel instance, 102

noncommented source code statements (NCSSs),
129-130

nonfunctional requirements, 43

nonvolatile memory, 106

non-von Neumann architectures, 95

notation evolution, 46

null channel delay, 86

n-version programming, 105

Index

0]

OAOO (once and only once) principle, 82, 161
object attributes, 15
object codes, 118
object-oriented analysis. See OOA
object-oriented design. See OOD
object-oriented programming language, 15, 80
coding standard for, 124
information hiding in, 113
metrics for, 137-138
patching in, 152
software reuse in, 162
testing, 142
objects, 72
behavior of, 80-81
state, 80
Object-Z, 46
occurrences, 132
OCP (open-closed principle), 81-82, 161
once and only once (OAOO) principle, 161
on-line testing, 175
OOA (object oriented analysis), 61-62
low usage of, 68
state charts in, 51
vs. structured analysis (SA), 62-64
survey of, 68—69
OOD (object-oriented design), 72
benefits of, 81
dependency inversion principle (DIP) in, 82
design patterns, 83
Liskov substitution principle, 82-83
once and only once (OAOO) principle in, 82
open-closed principle in, 81-82
Q-model in, 84-88
using UML (unified modeling language), 84
in visual inspection system, 88-93
opcodes, 150
open-closed principle (OCP), 81-82, 161
operational mode, 47, 79
operators, 132
optics, 5
orthogonality, 49-51
oscilloscopes, 147
output devices, 94
overengineering of algorithms, 2
overflow conditions, 97
oversized patch, 152

P

parallel architectures, 95, 96
parameter passing, 110
Pareto's principle, 162

215

Pareto, Vilfredo, 162

Parnas information hiding, 113

Parnas partitioning, 18, 72-74
See also information hiding
of graphics-rendering software, 73
in module design, 140
in software reuse, 160, 162

partitioning, 72

Pascal programming language
See also programming languages
dynamic memory allocation in, 111
exception handling in, 113
lines of code per function point, /36
pragma pseudo-op in, 115

patching, 150-152

pattern languages, 83

PCI (Peripheral Component Interconnect), 6

PDLs (program description languages), 54, 56

perfective maintenance, 159

performance of software, 12—13

performance requirements, 43

Peripheral Component Interconnect (PCI), 6

personnel management, 169—-170
dealing with difficult people in, 174
n-body problem, 170-171
principle-centered leadership in, 173-174
team management theories, 171-172

PERT (program evaluation and review technique),

179-180

Petri nets, 51-53

pipelined architectures, 96

pixel overflow errors, 112

pixels, 80-81

plug-and-play systems, 7

Poisson distribution, 101

polymorphism, 114
and late binding, 113
in object-oriented programming language, 80
in Z language, 46

portability of software, 14

positioning systems, 5

postintegration software optimization, 153-157
binary angular measure (BAM), 155
CPU utilization estimation, 153-154
execution time estimation, 154
imprecise computation, 157
look-up tables, 155-156
optimizing memory usage in, 157
scaled numbers, 154-155

potential volume (V*), 133

pragma pseudo-op, 115

precedence graph, 178

predicate calculus, 44, 46

primitives, 117

probability of failure, 10

216 Software Engineering for Image Processing Systems

probe effect, 152-153
probes, 147
procedural level of cohesion, 16
procedurally-oriented programming language, 15,
161
procedural-oriented design, 72
data dictionaries, 76-77
Parnas partitioning, 72-74
structured design (SD), 74-78
procedures, 15, 113
process execution time, 86
process group behavior, 88
process pair interaction, 87
process specifications (P-SPECs), 75, 79, 87
process start period, 86
process time set, 86
ProcessDecorator element, 89
processors, 94-95
program description languages (PDLs), 54, 56
program evaluation and review technique (PERT),
179-180
program length (N), 132
program level (L), 133
program vocabulary (n), 132
program volume (V), 132-133
programmed 1/0, 97
programmers, 7
programming, 7
programming languages, 109-110
Ada 95
. See Ada 95 programming language
assembly language, 115
C
. See C programming language
C++
. See C++ programming language
call-by-reference parameter passing, 110
call-by-value parameter passing, 110
dynamic memory allocation, 111
exception handling in, 112-113
Fortran
. See Fortran programming language
global variables, 110-111
Java, 109, 113, 117-118
modularity in, 113
object-oriented
. See object-oriented programming
language
parameter passing, 110
procedurally-oriented, 15, 161
recursion, 111
skills testing in, 175
typing, 112
progressive scan, 5
project managers, 166—-167

projects, 166
prologues, 115
propositional logic, 44
protected variation principle, 162
prototype hardware, 149150
prototyping, 35-36
evolutionary, 30
of imaging systems, 2
in requirements analysis, 41
in spiral software model, 29-30
proximity sensors, 6
pseudo-codes, 54
in collision testing of graphical objects, 56
in process specifications, 75
P-SPECs (process specifications), 75, 79, 87
Python programming language, 114

Q-model, 56
of comparelmage for N-FeatureComparison,
93
development of, 85
generating, 90
levels of analysis in, 87
process parameters, 85-87
of product classification, 92
quad trees, 111
“quick-and-dirty” prototypes, 160

R

RAD (rapid application delivery), 30
random access memory (RAM), 106-107
random test case generation, 140-141
ranges, 161

rapid application delivery (RAD), 30
rapid delivery, 30

ray tracing, 155

read-only memory (ROM), 106
real-time imaging dilemma, 12
real-time imaging systems, 12
real-time interval logic (RTIL), 46
real-valued failure function, 10
reclamation, 158

recovery blocks, 102-104

recursion, 111

redirecting standard error, 120
redocumentation, 158

reduced instruction set computer (RISC), 94
reengineering, 158

register types, 115

regression testing, 143

Index

RejectController element, 89
reliability function, 10
reliability of software, 9-10
Remington Rand, 178
renovation, 158
repairability of software, 13
requirements engineering, 41
See also software engineering; SRS (software
requirements specification)
JAD (joint application design), 124-126
survey of, 68—69
types of requirements, 42—43
requirements users, 43-44
resources, control of, 166
reuse of codes, 2
reverse engineering, 158
RGB color, 5
rigor in software engineering, 15
RISC (reduced instruction set computer), 94
risk analysis, 29
risk factors, 35-36
risk management and mitigation, 168—-169
ROM (read-only memory), 106
RS-170/CCIR, 5
RTIL (real-time interval logic), 46
Ruby programming language, 114
runt-time codes, 121

S

SA (structured analysis), 59-61
vs. object oriented analysis (OOA), 62-64
state charts in, 51
transitioning to structured design, 74-76
sabotage, 3
safety-critical systems, 45
sampling speed, 6
SASD (structured analysis and structured design),
59
problems in imaging applications, 77-78
real-time extensions of, 78
satellite positioning systems, 99
scaled numbers, 154-155
schedules, control of, 166
schema calculus, 46
schemes, 46
scripting languages, 114
scrum programming, 33
SD (structured design), 74
transitioning from structured analysis to,
74-76
sdb program, 121-122
SDD (software design description), 26, 71
SDP (software development plan), 30

217

second system effect, 162—-163
segmentation, 111
semiformal methods, in requirements
specification, 45
senior developer, 169
sensors, 4, 6
separation of concerns, 15
sequential level of cohesion, 17
set theory, 44, 46
setjmp procedure call, 116
SIMD (single instruction multiple data), 95-96
Simonyi, Charles, 123
simultaneity interval, 86
sine function, 156
single instruction multiple data (SIMD), 95-96
single instruction single data (SISD), 95
SISD (single instruction single data), 95
skills tests, 174—-175
slave processors, 105
soft errors, 106
software black boxes, 104-105
software complexity, 130-132
software conception, 25
software design, 26
design activity, 71-72
fault-tolerant design, 99-107
hardware considerations in, 93-99
object-oriented design (OOD), 80-81
procedural-oriented design, 72
software design description (SDD), 26, 71
software development, 26-27, 162
software development plan (SDP), 30
software engineering, 1
anticipation of change, 18
in building imaging systems, 2
generality, 20
incrementality, 20
misconceptions on, 7-8
modularity, 15-18
poor practices in, 2-3
rigor and formality, 15
separation of concerns, 15
vs. software project management, /67
tools, 7
traceability, 20-22
Software Engineering Institute, 34
software engineers, 1
responsibilities to stakeholders, 44
roles of, 3—4
software integration, 150
patching, 150-152
simple strategy in, 150
software life cycle, 2, 126
software maintenance, 27
software methodologies, 23

218 Software Engineering for Image Processing Systems

software partitioning, 72
software processes, 23
software production process
coding standards, 123-124
documentation, 126—-127
programming languages in, 109-118
reviews and audits, 124-126
writing and testing codes in, 118-123
software productivity, 7
Software Productivity Research, Inc., 137
software project management, 165-166
assessment of project personnel in, 174-177
cost estimation with COCOMO, 180-183
managing and mitigating risks in, 168—-169
personnel management in, 169-174
risks in, 168
vs. software engineering, /67
specialized activities in, 168
themes in, 166
tracking and reporting progress in, 177-180
software project manager, 169
software qualities, 9
correctness, 12
interoperability, 13
maintainability, 13
measurement approach, /4
performance, 12-13
portability, 14
reliability, 9-10
system-level, 142-144
usability, 13
verifiability, 14
software reengineering process model, 157-158
software requirements specification. See SRS
software reuse, 159-160
achieving, 160-161
avoiding, 160
in object-oriented languages, 162
Pareto's principle, 162
in procedural languages, 161
software simulators, 149
software specifications, formal methods in, 44-46
software standards, 36-39
DOD-STD-2167A, 37-38
DOD-STD-498, 37
ISO 9000-9003, 38-39
ISO/IEC 12207, 40
software testing, 1
design plans for, 143-144
extended syntax and semantic checking in,
120-121
failures in, 2
of object-oriented software, 142
role of, 139
symbolic debugging in, 121-122

unit-level, 120, 139-142
in waterfall software life cycle, 27
software test requirements specification (STRS),
27
source codes. See codes
spatial fault tolerance, 99
specification of imaging systems, 53-54, 56-57
collision testing of graphical objects, 56
Markov random fields image reconstruction,
57-58
multiresolution block matching, 55-56
recommendations on, 64
spiral model, 28-30
square root of negative errors, 112
SRAM (static random access memory), 98
SRS (software requirements specification), 25-26
See also requirements engineering
current practices in, 68—69
design activity in, 71-72
FSM (finite state machine) in, 78
goal of, 41
and lightweight methodologies, 32-33
organizing, 64—-66
requirements validation and review, 67-68
writing good requirements in, 66—67
stakeholders, 43—44
stamp coupling, 18
state, 80
state charts, 49-51
state transition diagrams (STDs), 46, 59
statements, 15, 132
static random access memory (SRAM), 98
static types, 115
STDs (state transition diagrams), 46, 59
storage oscilloscopes, 147
stress testing, 143—144
string types, 112, 118
STRS (software test requirements specification),
27
structured analysis. See SA
structured analysis and structured design. See
SASD
subroutines, 113
symbolic debugging, 121-122, 152
synchronization error, 12
synchronous clusters, 87
syntax errors, 120
system integration, 145
system integration tools, 146—150
hardware prototypes, 149-150
in-circuit emulators, 149
logic analyzers, 147-149
multimeters, 147
oscilloscopes, 147
software simulators, 149

Index

system unification, 145-146
system verification, 146
system-level testing, 142—144
systolic processors, 96

T

tangent function, 156

Taylor series expansion, 157

team management, theories on, 171-172
technical lead, 169

temporal level of cohesion, 16

terminal states, 47

terminators, 74

test cases, 146

test cases, limit of number of, 132

test engineers, 43—44

test-first coding, 122

testing, 139

theorem proving, 45

Theory W management, 172

Theory X management, 171

Theory Y management, 171

Theory Z management, 171-172
thinning, 111

thousands of lines of code (KLOC), 129-130, 181
throwaway prototypes, 160

timing code, 148-149

timing instructions, 148

traceability, 20-22

transition function, 47

transitions, 105

translation, 46

transmission errors, 58

transputers, 96

traps, 97

trigonometric functions, look-up table for, 156
“try, throw, catch, finally” approach, 113
typing, 112

U

UML (unified modeling language), 34

in notation evolution, 46

in object-oriented design, 81, 84

and Q model, 88

in requirements specification, 45
uncertainty principle, 152-153
unified process model (UPM), 34
unit-level testing, 120

See also software testing

black box testing, 139-141

white box testing, 141-142

219

universal quantification, 42

Universal Serial Bus (USB), 6

Unix C compiler, 119-120

Unix operating system, 115
symbolic debugging in, 121

UPM (unified process model), 34

usability of software, 13

USB (Universal Serial Bus), 6

use cases, 62, 91

utility routines, 160

\%

V model, 28
validation, 139
variable declarations, 15
variable scan, 5
variables, 112
verifiability of software, 14
version control software, 2627
very long instruction word (VLIW) architectures,
96
video capture cards, 6
virtual machine, 117
Visual BASIC programming language, 109
visual inspection system, 5—7
See also imaging system
applications of, 67
behavior of, 47
context diagram for, 67
functional representation of, 56-57
noise reduction code for, 131
object-oriented design in, 88-93
partial CPM diagram for, 179
partial Gantt chart for, /78
partial PERT chart for, /80
problems in using SASD (structured analysis
and structured design), 77-78
real-time, 12
sample test log for, 146
use case diagram of, 62
using Kalman filter in, 99-102
VLIW (very long instruction word) architectures,
172
volatile types, 115
von Neumann architecture, 157
voting schemes, 99

\%%

walkthroughs, 141
waterfall software life cycle, 24
See also life cycle models

220

backtracking transitions in, 27-28
phases in, 25
requirements specification, 25-26
software conception, 25
software design, 26
software development, 2627
software maintenance, 27
summary of, 28
testing, 27
wave-front processors, 96
WBS (work breakdown structure), 65
win-lose management paradigm, 172
win-win management paradigm, 172
work breakdown structure (WBS), 65
worst-case execution time (A?), 153
worst-case testing, 141
wraparound errors, 112

Software Engineering for Image Processing Systems

X

XP (extreme programming), 33, 122
X-Y positioning table, 6

Y

Yourdon's modern structured analysis, 59

V4

Z language, 46
zero-sum management paradigm, 172

	Book Cover
	Title
	Copyright
	Dedication
	Preface
	Acknowledgments
	Author
	Contents
	1 Software Engineering: An Overview
	2 Imaging Software and Its Properties
	3 Software Process and Life Cycle Models
	4 Software Requirements
	5 Software System Design
	6 The Software Production Process
	7 Software Measurement and Testing
	8 Hardware–Software Integration and Maintenance
	9 Management of Software Projects
	Glossary
	References
	Index

