

jcarlson
1_58053_473_2.jpg

Software Verification and Validation
for Practitioners and Managers

Second Edition

For a listing of recent titles in the Artech House Computing Library,
turn to the back of this book.

Software Verification and Validation
for Practitioners and Managers

Second Edition

Steven R. Rakitin

Ag

Artech House
Boston ® London
www.artechhouse.com

Library of Congress Cataloging-in-Publication Data
Rakitin, Steven R.
Software verification and validation for practitioners and managers /Steve Rakitin.—2nd ed.
p. cm.—Rev. ed. of: Software verification and validation.
Includes bibliographical references and index.
ISBN 1-58053-296-9 (alk. paper)

1. Computer software—Verification. 2. Computer software—Validation.

1. Rakitin, Steven R. Software verification and validation. 1I. Title.
QA76.76.V47 R35 2001
005.1’4—dc21 2001022884

British Library Cataloguing in Publication Data

Rakitin, Steven R.
Software verification and validation for practitioners and managers. — 2nd ed.
1. Computer software—Validation 2. Computer software—Verification
L. Title
005.1°4
ISBN 1-58053-473-2

Cover design by Igor Valdman

© 2001 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book
may be reproduced or utilized in any form or by any means, electronic or mechanical, in-
cluding photocopying, recording, or by any information storage and retrieval system, with-
out permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Artech House cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as affecting the validity of any trade-
mark or service mark.

International Standard Book Number: 1-58053-296-9
Library of Congress Catalog Card Number: 2001022884

10987654321

To Eileen, my wife, my best friend, my soul mate.

And to Jason and Sarah, who, in spite of me, have become independent,
talented adults and from whom I've learned more than they know.

Contents

1.1
1.2

1.3

1.3.1
1.3.2
1.3.3
1.3.4

1.4

1.5
1.5.1

Preface to the Second Edition Xxxi
Acknowledgments XXV
Part | Introduction 1
Software in Perspective 3
The Software Crisis 3
The Elusive Silver Bullet 5
Other Attempts to Resolve the Crisis 5
Formal Proof of Correctness 5
Independent Verification and Validation 6
Software Quality Assurance 6
Cleanroom Process 6
Understanding the Nature of Software 7
Software Process Improvement Initiatives 8
SEI Capability Maturity Model (CMM™") 8

vii

viii

Software Verification and Validation for Practitioners and Managers

1.5.2
1.5.3
1.5.4
1.5.5

1.6

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2

4.1
4.2
4.3
4.4

ISO SPICE 9
Bootstrap 10
ISO 12207 11
Trillium 11
Summary 12
References 13
Web Resources 14
Software Development Life-Cycle Models 17
The Waterfall Model 18
Concurrent Development Model 21
The Rapid Prototyping Model 22
The Spiral Model 24
Hybrid Models 27
Model-Based Development 27
Object-Oriented Models 29
Summary 32
References 32
Software Development Process 35
Software Development Process FAQs 36
Summary 42
References 42
Economic Justification 45
Economic Justification 47
Software Defect Cost Models 49
Measuring the Cost of Quality 53
Summary 54
References 55

Contents ix

Selected Bibliography 55

Part Il Overview of Software Verification Activities 57
Reference 58

5 The Inspection Process 59
5.1 Inspection Process FAQs 61
5.2 Summary 71
References 71

Selected Bibliography 71

Web Resources 72

6 Applying the Inspection Process 13
6.1 Attributes of a Good Process 73
6.1.1 Institutionalizing Inspections 74
6.1.2 Real-Life Experiences 75
6.2 Requirements Inspections 76
6.2.1 Objectives and Prerequisites 77
6.2.2 Requirements Inspection Process 77
6.3 Design Inspection 79
6.3.1 Objectives and Prerequisites 80
6.3.2 Design Inspection Process 80
6.4 Code Inspection 83
6.4.1 Objectives and Prerequisites 83
6.4.2 Code Inspection Process 83
6.5 Test Script Inspection 86
6.5.1 Objectives and Prerequisites 86
6.5.2 Test Procedure Inspection Process 86
6.6 Summary 88
References 88

1 Software Quality Metrics 91

Software Verification and Validation for Practitioners and Managers

7.1 Strategy for Implementing a Software Metrics

Program 92
7.2 Software Quality Metrics Framework 93
7.2.1 Definitions 94
7.2.2 The Framework 94
7.2.3 Applying the Software Quality Metrics

Methodology 95
7.3 Metrics That Support Software Verification

Activities 103
7.3.1 Complexity 103
7.3.2 Defect Metrics 105
7.3.3 Product Metrics 106
7.3.4 Process Metrics 106
7.4 Summary 107

References 108

Web References 108
8 Configuration Management 109
8.1 Software Configuration Managment Basics 111
8.1.1 Definitions 112
8.1.2 Example of a Manufacturing Process 112
8.2 Identification 114
8.2.1 Naming and Labeling 115
8.2.2 Version Control 116
8.2.3 Software Configuration Items 118
8.3 Baseline Management 118
8.3.1 Workspace Management 123
8.3.2 Baseline Change Assessment 124
8.3.3 Version Management 124
8.4 Auditing and Reporting 124
8.4.1 Auditing 125
8.4.2 Configuration Status Accounting 125

8.4.3 Reports, Record Collection, and Retention 126

Contents

Xi

8.5

9.1

9.1.1
9.1.2
9.1.3

9.2

9.2.1
9.2.2
9.2.3

9.3

9.3.1
9.3.2
9.3.3

9.4

10

10.1
10.1.1
10.1.2

10.2
10.2.1
10.2.2

10.3
10.3.1
10.3.2

Summary 126
References 128
Part lll Overview of Software Validation Activities 129
Reference 130
Testing 131
Levels, Methods, and Types of Tests 133
Test Levels 133
Test Methods 140
Test Types 141
Concurrent Development/Validation Testing Model 144
Informal Validation 145
Validation Readiness Review 146
Formal Validation 147
Test Planning 149
Test Plan 149
Test Procedure 154
Test Report 155
Summary 155
References 156
Web Resources 157
Validation Metrics 159
Time Measures 160
Find-Fix Cycle Time 160
Cumulative Test Time 161
Test Coverage Metrics 161
Code Coverage 161
Requirements Coverage 163
Quality Metrics 163
Defect Removal Percentage 164
Defects Reported in Each Baseline 164

Xil Software Verification and Validation for Practitioners and Managers

10.3.3
10.4

1"

12

12.1
12.2
12.3
12.4

12.5

13

13.1
13.1.1

Defect Detection Efficiency 164
Summary 165
References 165
Software Reliability Growth 167
Definitions 168
The Test-Analyze-Fix Process 168
Reliability Growth Modeling 169
Objectives of Modeling 170
Types of Models 170
Model Assumptions 172
Model Selection Process 173
Applying the Selected Model 174
Reliability Modeling Tools 174
Summary 176
References 177
Web Resources 177
Part IV Predictable Software Development 179
Reference 180
Motivation for Becoming Predictable 181
Introduction to Predictable Software Development 182
Characteristics of Unpredictable Organizations 186
Characteristics of Predictable Organizations 188
Management Can Change the Organization 188
Summary 192
References 193
Balancing Quality, Features, and Schedule 195
Quality 197
The Impact of Poor Quality 198

Contents

Xiii

13.1.2
13.2

13.3

13.3.1
13.3.2
13.3.3

13.3.4
13.3.5

13.4
13.5

14

14.1

14.2

14.3

14.3.1
14.3.2
14.3.3

14.4
14.4.1
14.4.2

14.5

15

15.1

Quality and Risk 200
Features 202
Schedules 203
Most Projects Are Scheduled Backwards 204
We Don’t Teach Estimating and Scheduling Skills 204
We Don’t Cultivate Software Project Management

Skills 205
We Don’t Manage Risk and Commitments 206
We Don’t Manage Change 206
Balancing Quality, Features, and Schedule 207
Summary 207
References 211
Selected Bibliography 212
Accurate Estimating and Scheduling 213
Why Estimates and Schedules Are Wrong Most

of the Time 214
A Typical Scheduled Backwards Project 217
Software Estimating Techniques 218
Function Points and Feature Points 219
COCOMO1II 219
Wideband Delphi Method 220
Scheduling Techniques 222
PERT and CPM 222
The Yellow Sticky Method 224
Summary 225
References 226
Selected Bibliography 226
Web Resources 227
Balancing People, Process, and Product 229
Process 229

Xiv Software Verification and Validation for Practitioners and Managers

15.1.1 Economic Motivation 230
15.1.2 The Process-Oriented Organization 231
15.1.3 Finding the Right Process 233
15.2 People 235
15.2.1 Provide Motivation 237
15.2.2 Reduce Turnover 239
15.2.3 Build Effective Teams 239
15.2.4 Best Practices for Managing People 240
15.3 Product 242
15.3.1 Project Postmortems 244
15.3.2 Triage Process 245
15.3.3 Root-Cause Analysis 245
15.4 Summary 246
References 247
16 Managing Commitment and Risk 249
16.1 Managing Commitments 249
16.2 Risk 252
16.3 Risk-Management Techniques 252
164 Summary 256
References 256
Appendix A:
Inspection Roles and Responsibilities 257
A.l Roles 257
A2 Responsibilities 258
A.2.1 Moderator 258
A.2.2 Producer 259
A.2.3 Reader 260
A2.4 Inspectors 260
A.2.5 Recorder (Optional Role) 261

A2.6 Manager 261

Contents Xv
Appendix B:

A Sample Inspection Process 263

B.1 Planning 264
B.1.1 Objectives 264
B.1.2 Enury Ciriteria 264
B.1.3 Activities 264
B.1.4 Exit Criteria 265
B.1.5 Metrics 266
B.2 Overview Meeting (Optional) 266
B.2.1 Objective 266
B.2.2 Entry Criteria 266
B.2.3 Activities 266
B.2.4 Exit Criteria 266
B.2.5 Metrics 267
B.3 Preparation 267
B.3.1 Objective 267
B.3.2 Entry Criteria 267
B.3.3 Activities 267
B.3.4 Exit Criteria 268
B.3.5 Metrics 268
B.4 Inspection Meeting 268
B.4.1 Objective 268
B.4.2 Entry Criteria 268
B.4.3 Activities 268
B.4.4 Exit Criteria 269
B.45 Metrics 270
B.5 Follow-Up 270
B.5.1 Objective 270
B.5.2 Entry Criteria 270
B.5.3 Activities 270
B.5.4 Exit Criteria 270
B.5.5 Metrics 271

Xvi Software Verification and Validation for Practitioners and Managers

D.1
D.2
D.3
D.4

D.5
D.5.1
D.5.2
D.5.3
D.5.4
D.5.5
D.5.6
D.5.7
D.5.8
D.5.9
D.5.10
D.5.11
D.5.12
D.5.13
D.5.14
D.5.15
D.5.16
D.5.17
D.5.18
D.5.19
D.5.20

D.6

Appendix C:

Inspection Process Forms 273
Appendix D:

Inspection Checklists 2717
Requirements Inspection Checklist 277
Design Inspection Checklist: High-Level Design 278
Design Inspection Checklist: Detailed Design 279
Code Inspection Checklist for C Code 282
A C++ Code Inspection Checklist 284
Variable Declarations 284
Data Usage 287
Initialization 288
Macros 288
Sizing of Data 289
Dynamic Allocation 290
Pointers 291
Casting 291
Computation 291
Conditionals 292
Flow Control 293
Assignment 294
Argument Passing 295
Return Values 295
Function Calls 296
Files 296
Errors Due to Implicit Type Conversions 297
Errors Due to Loss of “Precision” in Return Values 298
Loop Checklist 299
Copyright Notices 299
Test Procedure Inspection Checklist 300

Contents XVii

Appendix E:
Attributes of Good Requirements Specifications 301

Appendix F:

Sample Criteria for Selecting Modules for

Code Inspection 303

Appendix G:

Sample Software Development Process Based

on the Waterfall Model 305
G.1 Requirements Analysis Phase 305
G.2 Requirements Definition Phase 307
G.3 Design Phase 308
G4 Coding Phase 310
G.5 Testing Phase 312
G.6 Maintenance Phase 313

Appendix H:

Document Qutlines 315
H.1 Product Concept Document 316
H.2 Software Requirements Specification (SRS) 316
H.3 Software Design Description (SDD) 318
H.4 Software Development Plan 319
H.5 Software Quality Assurance Plan 323
H.6 Software Validation Test Plan 324
H.7 Software Validation Test Procedure 326
H.8 Software Validation Test Report 326
H.9 Software Validation Test Script 327

H.10 Software Configuration Management Plan 328

Xviif Software Verification and Validation for Practitioners and Managers

J1
]2
13
14
15
1.6

K1

K.2

K3

K.4
K.5
K.6
K.7
K.8
K9

Software Release Procedure 330
Appendix I: Test Cases for the Triangle Program 331
Reference 332
Appendix J:

Software Reliability Models 333
Jelinski-Moranda Model 333
Geometric Model 334
Schick-Wolverton Model 335
Goel-Okumoto Nonhomogeneous Poisson Process 335
Generalized Poisson Model 336
Brooks-Motley Model 336
Appendix K:

The Yellow Sticky Method 339
Start with a Complete Software Requirements
Specification 340
Group Requirements into “Must Haves”

and “Wants” 340
Commit to Deliver Only the Must Haves, Not

the Wants 341
Yellow Sticky Estimating Rules 341
Identifying Tasks and Creating Initial Estimates 342
Building the Schedule Going Forward 343
Negotiate Based on Factual Information 345
Manage the Project to the Schedule 346
Benefits 346
Appendix L:

Software Development Best Practices 347

Contents

XiX

L.1
L2
L.3
L.4
L.5
L.6

L7

Define Requirements First 349
Binary Quality Gates at the Inch-Pebble Level 354
Risk Management 357
Peer Reviews 357
Project-wide Visibility of Project Plan 357
Defect Tracking Against Quality Targets 357
People-Aware Management 360
References 361
Appendix M:

Software Quality Best Practices 363
Selected Bibliography 366
Appendix N:

Project Postmortems 367
Appendix 0:

Root-Cause Analysis n
Reference 374
About the Author 375
Index 377

Preface to the Second Edition

This book contains a reasonable set of basic software verification and valida-
tion (V&V) activities. From firsthand experience working with many com-
panies in several industries, I have found that basic software V&V activities
are not well understood and are applied inconsistently. For example, several
companies | worked with recently did not yet have a software quality assur-
ance (QA) group, and a few had not even implemented basic configuration
management (CM) practices. Further, in organizations that did have soft-
ware QA, I found significant differences in effectiveness across the organiza-
tions and even across projects within the same organization. While my
observations are not based on a statistically significant sample, I believe that
my experiences are a fairly accurate reflection of the industry as a whole. In
fact, Yourdon [1] reported recently that, while software quality has improved
overall, the gap between those companies producing the best software and
those producing the worst software has increased dramatically over the past
decade.

As a consultant, I am frequently asked to help companies with “quality
problems.” Studying clients that experienced such problems, I found a com-
mon theme—they all behaved in an unpredictable manner. For example, it
was not possible for these organizations to determine when major events,
such as code freeze or first customer ship, would happen. (In some cases, it
was not even possible to know if they would happen.) Because these organi-
zations were unpredictable, marketing was unable to plan product rollout
events, development and QA were unable to make effective use of expensive,

XXi

XXii Software Verification and Validation for Practitioners and Managers

scarce resources, and software V&V activities were not nearly as effective as
they could be.

Len Race, a consultant and friend, observed that in order for businesses
to become more efficient, they must learn how to behave in a more predict-
able manner. For me, this was a revelation. The connection between poor
performance and unpredictable behavior became crystal clear. Unpredictable
organizations exhibit many of the following symptoms:

¢ They consistently commit to more than they can deliver and consis-
tently deliver less than was committed.

¢ They underestimate tasks and miss almost every schedule.

e People within the organization have goals and objectives that are not
aligned with the overall business goals and objectives.

e There is a lack of accountability throughout the organization.

e There is no notion of using “best practices.” If a written process
exists, it is not followed consistently.

e There is a belief among employees that “we never have time to do
things right but always have time to do things over.”

When I help a company with quality problems, I start with the CEO
and ask, “How are your people measured?” By looking at performance plans
for individuals, you can understand why the organization behaves the way it
does. Without fail, when looking at performance plans in companies with
quality problems, I rarely come across the word “quality.” Since behavior is
directly related to how people are measured, why is it a surprise that these
organizations have “quality problems”?

Once I made the connection between poor performance and unpre-
dictable behavior, I realized that (1) management owns both the problem
and the solution, and (2) to increase the effectiveness of software V&V tech-
niques, organizations must learn to behave in a more predictable manner.

Clearly, management must take a leadership role in helping the organi-
zation behave in a more predictable way. It is for this reason that the
title of this book has been changed to include managers. Soffware Verification
and Validation for Practitioners and Managers includes specific actions that
management can take to help the organization behave in a more predictable
manner.

Preface to the Second Edition XXiii

Who Is This Book For?

As the title states, this book is intended for two groups—practitioners and
managers. Practitioners include software QA engineers, software engineers,
and project managers who need a basic understanding of software V&V
techniques.

Unfortunately, very little in the way of formal training in software
V&V is offered in schools. As a result, there is a gap between the skills that
many software quality practitioners have and the skills that are needed to
produce high-quality software. This book is intended for those who have
been given responsibility for performing software V&V tasks but who have
not had the luxury of receiving training in this subject. Parts I through III are
intended primarily for practitioners.

Managers include software QA managers, development managers,
project managers, vice presidents of engineering and development, directors
of quality, and CEOs. Management has the ability to change the behavior of
the organization, by providing the leadership necessary to meet business
goals and by aligning the way people are measured with those same business
goals. Every management employee, from the CEO to first-line managers,
must recognize that meeting business goals is easier when the organization is
more predictable. Part IV of this book was written to provide managers and
executives at all levels with specific strategies that they can use to help their
organization behave in a more predictable manner.

To What Kinds of Software Are V&V Activities Applicable?

The software V&V activities described in this book are applicable to a wide
range of software, a wide variety of products, and a wide range of industries.
The best way to answer this question is with another question: “Is there a
compelling business reason to develop good quality software and deliver it on
time?” If the answer is yes, then many of the activities are applicable.

How Is the Book Organized and What Is New in This Edition?

Part I provides an introduction to software development and an overview of
the software development process. Several software development life cycle
models are presented in Chapter 2. The importance of a written software
development process is outlined in Chapter 3. Economic motivation for
many software V&V activities is discussed in Chapter 4.

XXiv Software Verification and Validation for Practitioners and Managers

In Chapter 1, a discussion of the international standard on life cycle
models, ISO 12207, has been added. In Chapter 2, information on the
Rational Unified Process has been included. References to software standards
have been updated throughout Part I.

Part II provides an overview of software verification activities. Chapter
5 and 6 (along with Appendices A-D) provide details on the formal inspec-
tion process. Chapter 7 focuses on verification measures, and Chapter 8 con-
tains an overview of configuration management.

Chapter 6 has been reorganized slightly to remove some redundant
information. References to software standards have been updated through-
out Part II.

Part III provides an overview of software validation activities. Chapter 9
provides an overview of testing. Testing measures are included in Chapter 10,
and an introduction to software reliability growth is presented in Chapter 11.

Chapter 9 has been rewritten to include more details about types of
tests that can be written and now includes information on the concurrent
testing/development model, test planning, and test estimation techniques.
Chapter 10 has been reworked to focus more specifically on validation
measures.

Part IV is new and is focused on providing management with specific
strategies that can be used to help the organization behave in a more predict-
able manner, thus significantly improving the effectiveness of software V&V
activities. Chapter 12 provides an introduction and economic motivation.
The topic of balancing quality, features, and schedule is discussed in Chapter
13. Chapter 14 presents the yellow sticky method—a technique for estimat-
ing tasks and building realistic schedules. Chapter 15 discusses issues related
to balancing the needs of people, process, and product. Techniques for man-
aging commitment and risk are discussed in Chapter 16.

In addition to Part IV, five new appendixes have been added.

Reference

[11 Yourdon, E., Rise and Resurrection of the American Programmer, Upper Saddle River,
NJ: Prentice-Hall PTR, 1998.

Acknowledgments

The notion of Predictable Software Development evolved from discussions
I've had with my friend and colleague Len Race. His insight into business
processes and his ability to “get things done” is simply uncanny.

I would also like to acknowledge the staff at Artech House. I am
indebted to Tim Pitts, Ruth Young, Judi Stone, Jen Kelland, and others
unbeknownst to me for helping me through the publishing process. They
have provided a constant source of patience and encouragement.

Steven R. Rakitin
Upton, Massachusetts
July 2001

XXV

Part |
Introduction

The objective of Part I is to provide context for the situation that many soft-
ware organizations find themselves in. Chapter 1 provides an overview of the
so-called software crisis, and what has been and is being done about it. Chap-
ter 1 also introduces a topic intended primarily for managers and execu-
tives—understanding the nature of software development. This topic is
covered in depth in Part IV.

In Chapter 2, several life-cycle models are discussed. The objective of
this discussion is to provide an overall framework for understanding how
software V&V activities can be woven into the software development
process.

The importance of having a written software development process is
discussed in Chapter 3.

As with any business activity, verification and validation must be justi-
fied from an economic perspective. Chapter 4 concludes Part I with an eco-
nomic justification of software V&V.

Software in Perspective

We rely on software, and sometimes it fails us. Some of those failures are
nuisances; some are disasters. It is not news that technology presents
unique risks. Adding software to a system may make the service it pro-
vides cheaper, more generally available, or more adaptable to change,
but it will not make it more reliable. [1]

In the twentieth century we witnessed an explosion of technology based on
advanced hardware and exotic software. From implantable pacemakers to
Mars probes, this combination of hardware and software has led to some of
the most astonishing accomplishments and stunning failures over the past
half-century.

But has our seemingly insatiable appetite for technologically advanced
products outpaced our ability to produce such products? If so, how did this
happen and what has the software industry done to mitigate the conse-
quences of the situation?

1.1 The Software Crisis

The term “software crisis” was first used during the mid-1970s. The so-called
crisis was an acknowledgment that we had exceeded our capacity to develop
large, complex software-based systems with the software development tech-
nology of the time.

4 Software Verification and Validation for Practitioners and Managers

It was during the mid-1970s that, for the first time, the cost of soft-
ware maintenance activities exceeded that of new software development. It
was also during this time period that we saw the beginnings of what would
become significant trends in later years: hardware costs declined dramati-
cally while software costs continued to rise, and the number of projects that
failed because of software grew substantially.

During this time, many people thought that if we only had better
programming languages, we could pull ourselves out of the crisis. And so,
the popularity of programming languages such as PL/1, Jovial, and APL
increased. But still the failures persisted.

For example, there was the error in the navigation software used
in the F-16 that caused the plane to flip over when it crossed the
equator. There was the minuscule timing change made to the space shut-
tle software that caused the launch to abort in 1981 even after thou-
sands of hours of testing by the most advanced software engineering team
in the world. And sadly, there were at least two deaths from radiation
overdoses directly attributable to a software bug in the Therac-25 Linear
Accelerator [2].

In an attempt to avoid the problems associated with incorrectly trans-
lating requirements written in English into programs, much research was
focused on formal languages for specifying requirements.

Formal specification languages (such as HAL/S) were developed to
enable the creation of natural-language—based specifications. The idea
was to develop requirements in the formal language and then feed the for-
mal specification to a compiler, which would translate the formal specifica-
tions directly into a traditional programming language. Much of the
software originally developed for the space shuttle orbiter was written in
HAL/S.

Highly structured multitasking programming languages (such as
Modula and Ada) were also developed to deal with those applications that
had real-time, multitasking requirements.

In practice, the impact that programming languages have on overall
software reliability is relatively small as compared with other factors. Pro-
gramming languages such as PL/1, Jovial, and APL are not extensively used
in commercial applications. Today, some of the most widely used program-
ming languages include C, C , and COBOL. Web applications are
frequently developed using Java, Visual Basic, and variations of HTML.
None of these languages were developed to address software reliability
issues.

Software in Perspective 5

1.2 The Elusive Silver Bullet

By 1985, software engineering had come to be recognized as an engineering
discipline unto itself. Many companies realized that they had to make signifi-
cant improvements in the process they used to develop software if they were
to remain competitive. By the mid-1980s, software had become an
over-$300-billion industry.

Hardware costs continued to decline dramatically. New and powerful
workstations were developed. These workstations and the networks of which
they were a part provided the platform needed to commercialize computer-
aided software engineering (CASE) tools. CASE tools implement a specific
software development process (such as Yourdon’s structured design, Ward-
Mellor, or Hatley-Pirbhai). These tools provided software engineers with the
ability to represent software designs in a graphical manner that is easy to
maintain, cross-check, and most importantly, understand.

Many people thought that CASE tools were the silver bullet that would
rescue the software industry from the software crisis. What happened instead
was that many companies spent large sums of money on tools that were
infrequently used. These tools implemented a process that frequently was
not understood or was not consistent with the organization’s software design
process. We learned the hard way that there is no such thing as a silver

bullet [3].

1.3 Other Attempts to Resolve the Crisis

There have been other attempts to resolve the software crisis, most of which
have met with little or moderate success.

1.3.1 Formal Proof of Correctness

Formal proofs of correctness were an attempt to use mathematics to prove
that programs were correct. By viewing a program as a mathematical object,
it would be possible to demonstrate that a program was correct in a mathe-
matical sense. This is possible since programming languages are based on rig-
orous rules of syntax and semantics.

This approach was most interesting to mathematicians. While it
sounded good on paper, in practice its value was limited, because a formal

6 Software Verification and Validation for Practitioners and Managers

proof cannot be applied until after the code is written. By then, it is usually
too late. It was also very difficult to develop proofs for large programs.

1.3.2 Independent Verification and Validation

NASA and the U.S. Department of Defense (DoD) pioneered the use of an
independent third party (usually a separate company) to review the software
development work of the prime contractor on mission-critical projects. The
independent verification and validation (IV&V) contractor reports directly
to the customer, as does the prime contractor, and usually performs a variety
of tasks, such as requirements analysis, requirements tracing, architecture
review, design review, code inspections, and validation testing.

IV&YV can be very effective, but it is prohibitively expensive on all but
the most critical of applications, such as the flight control software for the
space shuttle and software for implantable pacemakers.

1.3.3 Software Quality Assurance

For most software, it is not possible to justify the cost of an independent
IV&YV contractor. Many companies have established a software quality assur-
ance (SQA) function as a sort of internal IV&V group. SQA groups typically
perform many of the same types of activities performed as part of an [IV&V
effort.

SQA has been widely accepted as a practical, cost-effective way to
improve software quality. Internal SQA groups have been shown to be effec-
tive in improving quality when SQA is viewed more broadly than as just a
testing function. However, there is inconsistency in how SQA is imple-
mented across companies, which has resulted in inconclusive results.

1.3.4 Cleanroom Process

Dr. Harlan Mills, formerly of IBM Federal Systems Division and a software
process visionary, developed the cleanroom process. This process [4] com-
bines formal program verification with statistical process control (SPC).
Using this methodology, the first priority is defect prevention using mathe-
matical proofs of correctness instead of debugging. Mean time between fail-
ures (MTBF) is used as a measure of software quality.

The cleanroom process is relatively new and has not yet gained wide
acceptance. It requires significant changes in management and technical

Software in Perspective 7

aspects of software development (specifically, knowledge of SPC as applied
to software), which will further delay its acceptance.

1.4 Understanding the Nature of Software

The prevailing attitude that seems to exist in the executive ranks of many
software organizations goes something like this: “We have been very success-
ful (financially) by developing software the way we do. Why should we
change? And besides, quality doesn’t sell product. Features do.”

As you may recall, automotive industry executives during the 1960s
and 1970s had a similar attitude about their products. And we all know what
happened in that industry.

[A]chieving high software quality levels is one of the most effective busi-
ness strategies that a company can follow. High quality will benefit
user-satisfaction, employee morale, costs, schedules, and competitive-
ness. Nothing else is so pervasive. Conversely, poor quality is a drain on
expenses, damages worker performance, annoys or alienates clients, and
in extreme conditions can lead to litigation, bankruptcy, or both. [5]

The trend to increase productivity and quality in software development
has begun to take hold—especially in those countries seeking to establish
themselves as cost-effective alternatives to developing software in the United
States. For example, Ed Yourdon reports that a division of Motorola in Ban-
galore, India, was one of the first organizations to achieve Level 5 on the
Software Engineering Institute’s (SEI) Capabilitcy Maturity Model
(CMM™). Further, he reports that “[w}hile there have been good and bad
software organizations in every corner of the world all along, many of the
ambitious software organizations in countries like India are eager to obtain
international recognition for their high-quality work so they can compete
more effectively” [6].

Within the typical software organization, most senior executives do not
fully understand how good software should be developed. More important,
most senior executives and managers don’t understand how the project team
views the quality of the product they build. As described by DeMarco and

Lister:

We managers tend to think of quality as just another attribute of the
product, something that may be supplied in varying degrees according
to the needs of the marketplace.

8 Software Verification and Validation for Practitioners and Managers

The builders” view of quality, on the other hand, is very different. Since
their self-esteem is strongly tied to the quality of the product, they tend
to impose quality standards of their own. The minimum that will satisfy
them is more or less the best quality they have achieved in the past. This
is invariably a higher standard than what the market requires and is will-
ing to pay for. [7]

As managers, we must rethink the importance of product quality and
time to market. Quality is not only vitally important to our customers but it
is important to employees as well as to the bottom line. Yes, features do sell
products, but only if they actually work!

1.5 Software Process Improvement Initiatives

There have been significant strides made in improving software quality and
reliability. Several initiatives aimed at improving the process of developing
software are beginning to show positive results. Some of these initiatives are

described here.

15.1 SEl Capability Maturity Model (CMM®™)

SM . . - . .

The CMM™" provides a basis for appraising and improving software develop-
. SM .

ment. Through appraisals and assessments, the CMM™" provides a model

that organizations can use to improve their software development practices.

The CMM supports measurement of the software process by providing
a framework for performing reliable and consistent appraisals. Although
humans cannot be removed from the appraisal process, the CMM pro-
vides a basis for objectivity.

The CMM builds upon a set of processes and practices that have been
developed in .Ocollaboration with a broad selection of practitioners.

Basing improvement efforts on a model is not without its risks, how-
ever. In the words of George Box, “All models are wrong; some models
are useful.” Models are simplifications of the real world they represent,
and the CMM is not an exhaustive description of the software develop-
ment process. It is not comprehensive; it only touches on other, non-
process factors, such as people and technology, that affect the success of
software projects. [8]

Recognizing the need to address people-issues within the context of
software development, Watts Humphrey [9] published his landmark work

Software in Perspective 9

on the personal software process (PSP) and the SEI developed the Team
Software Process (TSPSM). In addition, the SEI has compared the CMM™ to
the ISO-9000 series of standards [10], and has reported on commonly
applied methods for software process improvement [11].

1.5.2 IS0 SPICE

The ISO SPICE project [12, 13] is an international collaboration involving
14 nations. The objective is to produce a standard for software process assess-
ment based on rapid development program and industry trials.

The standard, ISO/IEC TR 15504, consists of nine parts and was pub-
lished by the International Standards Organization (ISO) in July 1998/May
1999 as a technical report (type 2). It has since been adopted as a national
standard by a number of countries, including the United Kingdom and Aus-
tralia. Translations into French and Spanish have been published, and a
translation into Japanese is in progress.

The standard provides a structure approach for the assessment of soft-
ware processes for the following purposes:

a) by or on behalf of an organization with the objective of understanding the
state of its own processes for process improvement

b) by or on behalf of an organization with the objective of determining the
suitability of its own processes for a particular requirement or class of
requirements

¢) by or on behalf of an organization with the objective of determining the
suitability of another organization’s processes for a particular contract or
class of contracts.

The framework for process assessment:

a) encourages self-assessment
b) takes into account the context in which the assessed processes operate

¢) produces a set of process ratings (a process profile) rather than a pass/fail
result

d) through the generic practices, addresses the adequacy of the management
of the assessed processes

e) isappropriate across all application domains and sizes of organizations. [9]

10 Software Verification and Validation for Practitioners and Managers

1.5.3 Bootstrap

The Bootstrap project [14] is a European initiative aimed at overcoming the
deficiencies in the SET CMM®. The Bootstrap approach analyzes the cur-
rent state of software technology used in industry and provides motivation
for accepting new contexts for software engineering.

The Bootstrap methodology is fully aligned with ISO-9000 and is con-
sistent with the SET CMM®™". However, it provides important profiles detail-
ing the maturity of each major aspect of software development both at an
organization and individual project level.

Bootstrap was designed to accommodate diversity in approaches and
methods used by software organizations in different industries. It provides a
framework for evaluation based on the priorities, type, and objectives of the
organization, and provides a detailed plan for improving the development
processes and overall software quality.

The focus of Bootstrap and the supported goals of the method are:

e Valuation of the capability level on the software producing unit
(SPU) and project level;

o Comparison of capability levels between the projects and the SPU;
e Benchmarking the capability level against the European mean value;
e Identifying the main strengths and weaknesses of the company;

e Support for defining adequate business goals;

¢ Defining and implementing an improvement plan.

The main characteristics of the method are:

e It is suitable for small and big enterprises;

e Itis supported by experienced assessors and adequate tools;

e Assessor qualification and knowledge is controlled by the Bootstrap
Institute;

e Benchmarking is conducted against other companies in the same
business sector;

e There is support in using the results to start with the process
improvement.

Software in Perspective 11

To support efficient software process improvement, the Bootstrap
methodology includes two major models to realize the assessment and the
improvement process: (1) assessment scheme, and (2) process model. One
result of a Bootstrap assessment is a detailed analysis of the capability level of
the company and the projects. Based on this detailed analysis, the assessment
generates the first-draft version of an improvement plan, which can be used
to plan and realize the process improvement steps toward higher maturity.

1.5.4 1S0 12207

ISO 12207 is an international standard on software lifecycle processes. The
purpose of the standard is to establish a “common framework for software
life-cycle processes, with well-defined terminology, that can be referenced by
the software industry” [15].

The standard identifies three groups of processes: Primary Life-cycle
Processes, Supporting Life-cycle Processes, and Organizational Life-cycle
Processes, as illustrated in Table 1.1.

The standard provides definitions of terminology and a process that
can be used to define, control, and improve software life-cycle processes.

155 Trillium

Trillium [16] is a software assessment model developed by Bell Canada to
assess the software product development processes of potential software sup-
pliers in order to minimize risks and ensure timely delivery.

Table 1.1
ISO 12207 Life-cycle Processes [15]

Primary life-cycle Supporting life-cycle Organizational
processes processes life-cycle processes
Acquisition Documentation Management
Supply Configuration Management Infrastructure
Development Quality Assurance Improvement
Operation Verification Training
Maintenance Validation

Joint Review

Audit

Problem Resolution

12 Software Verification and Validation for Practitioners and Managers

This model and its accompanying tools are not in themselves a product
development process or life-cycle model. Rather, the Trillium model pro-
vides key industry practices that can be used to improve an existing process
or life cycle.

The practices in the Trillium model are derived from a benchmarking
exercise focused on all practices that would contribute to an organization’s
product development and support capability. Trillium:

¢ Has a telecommunications orientation;

e Provides a customer focus;

e Provides a product perspective;

e Covers ISO, Bellcore, Malcolm Baldrige, IEEE, and IEC standards;
e Includes technological maturity;

e Includes additional Trillium-specific practices;

e Provides a road map approach, which sequences improvements by
maturity.

These are a few of the numerous software process improvement initia-

tives that are reshaping software engineering. Additional information on all
of these initiatives can be found on the World Wide Web.

1.6 Summary

Now that the Software Crisis will soon celebrate its silver anniversary,
it’s time we recognized that this is not a crisis, it’s a situation: software
has bugs. It is in its nature to have bugs, and that fact is unlikely to
change soon. [1]

The experience of the last 25 or so years has resulted in an overemphasis
on programming skills to the detriment of such critical skills as require-
ments analysis and definition, architecture and design, and software verifica-
tion and validation. What the software industry has (it is hoped) learned
as a result of the software crisis is that the key to developing higher-quality
software lies in a focus on the process. As observed by Dr. Edwards Deming,
“The quality of a product is directly related to the quality of the process used
to create it” [17].

Software in Perspective 13

References

Weiner, L. R., Digital Woes: Why We Should Not Depend on Software, Reading, MA:
Addison-Wesley, 1993, pp. 4-15.

Leveson, N. G, and C. S. Turner, “An Investigation of the Therac-25 Accidents,” JEEE
Computer, July 1993, pp. 18—41.

Brooks, F. P., “No Silver Bullet: Essence and Accidents of Software Engineering,” JEEE
Computer, April 1987, pp. 10-19.

Dyer, M., The Cleanroom Approach to Quality Software Development, New York: Wiley,
1992.

Jones, C., Software Quality: Analysis and Guidelines for Success, Boston, MA: Interna-
tional Thomson Computer Press, 1997.

Yourdon, E., Rise and Resurrection of the American Programmer, Upper Saddle River,
NJ: Prentice-Hall PTR, 1998.

Marco, T., and T. Lister, Peopleware: Productive Projects and Teams, New York: Dorset
House, 1977.

Paulk, M. C,, et al., The Capability Maturity Model: Guidelines for Improving the Soft-
ware Process, Reading, MA: Addison-Wesley, 1995.

Humphrey, W., A Discipline for Software Engineering, Reading, MA: Addison-Wesley,
1995.

Paulk, M. C., “A Comparison of ISO 9001 and the Capability Maturity Model for
Software,” CMU/SEI-94-TR-12, SEI, 1994.

Austin, R., and D. Paulish, “A Survey of Commonly Applied Methods for Software
Improvement,” CMU/SEI-93-TR-27, SEI, 1993.

Dorling, A., “SPICE: Software Process Improvement and Capability Determination,”
Software Quality Journal, Vol. 2, 1993, pp. 209-224.

SPICE Consolidated Product, Software Process Assessment, Part 1: Concepts and
Introductory Guide, Version 1.00.

Haase, V., et al., “Bootstrap: Fine-tuning Process Assessment,” IEEE Software, July
1994, pp. 25-35.

International Standard ISO/IEC 12207:1995, Information Technology—Software
Life-cycle Processes, 1995.

Coallier, F., “TRILLIUM: A Model for the Assessment of Telecom Product Develop-
ment and Support Capability,” JEEE TCSE Software Process Newsletter, Winter 1995.

Deming, W. E., Out of the Crisis, Cambridge, MA: MIT Center for Advanced Engi-
neering Study, 1982.

14 Software Verification and Validation for Practitioners and Managers

Web Resources

ISO SPICE Standard

For the most up-to-date information on SPICE and related topics, visit the following SPICE
Web sites:

o http://www.sasqag.org/spice/index.html
o htep://www.sgi.gu.edu.au/spice
o htep://www.spiceworld.hm/

The nine parts of the SPICE standard are:

e ISO/IEC TR 15504-1:1998 Information technology—Software process assessment
Part 1: Concepts and introductory guide;

e ISO/IEC TR 15504-2:1998 Information technology—Software process assessment
Part 2: A reference model for processes and process capability;

e ISO/IEC TR 15504-3:1998 Information technology—Software process assessment
Part 3: Performing an assessment;

e ISO/IEC TR 15504-4:1998 Information technology—Software process assessment

Part 4: Guide to performing assessments;

e ISO/IEC TR 15504-5:1998 Information technology—Software process assessment
Part 5: assessment model and indicator guidance;

e ISO/IEC TR 15504-6:1998 Information technology—Software process assessment
Part 6: Guide to competency of assessors;

e ISO/IEC TR 15504-7:1998 Information technology—Software process assessment
Part 7: Guide for use in process improvement;

e ISO/IEC TR 15504-8:1998 Information technology—Software process assessment
Part 8: Guide for use in determining supplier process capability;

e ISO/IEC TR 15504-9:1998 Information technology—Software process assessment
Part 9: Vocabulary.

Bootstrap Methodology
Visit the Bootstrap Institute Web site at:

o http://www.bootstrap-institute.com

TRILLIUM Model
Visit the TRILLIUM Web site at:

e htep://www2.umassd.edu/swpi/BellCanada/trillium-html/trillium.html

Software in Perspective

Personal Software Process or Team Software Process
Visit the SEI Web site at:

o http://www.sel.cmu.edu/tsp/

Note: URLs cited were accurate as of April 2001.

Software Development Life-Cycle
Models

Software development organizations all follow some process when develop-
ing a software product. In immature organizations, the process is usually
dependent on a few individuals, it is not written down, or if it is written
down, it is not followed. In more mature organizations, the process is written
down, it is followed, and it is actively managed. Actively managing a process
means that the process is dynamic rather than static, that its effectiveness is
measured on a regular basis, and that the results of process effectiveness
measures are used to drive process improvements. As discussed further in
Chapter 15, a written software development process that is consistently fol-
lowed and actively managed is a key component of predictable software
development, a topic that is the focus of Part IV.

Selecting a life-cycle model is the most important aspect of creating a
software development process. The life-cycle model selected has a significant
impact on quality, time to market, initial development cost, and long-term
support cost. Large applications can take hundreds of person-years of effort
to develop and may remain in active use by customers for several years. As a
result, costs incurred by the organization responsible for maintenance and
support will be directly related to the robustness of the design and complete-
ness of the documentation.

For the new generation of Web applications being developed on Inter-
net time (weeks and months as opposed to months and years), the need for

17

18 Software Verification and Validation for Practitioners and Managers

the software development process is just as important as for large applica-
tions. As noted by Pressman:

About every 10 years or so, a major new software-related technology
captures the industry’s consciousness. Avant garde software folks claim
it as their own, and in so doing, become the darlings of the technologi-
cal scene. High salaries, considerable prestige, and no small amount of
hubris are sure to follow. The corps of avant garde adherents argue that
the new technology is truly different, requiring a new paradigm. The
ways of the past simply don’t apply. In fact, the old ways can’t possibly
be adapted to a new set of business rules and technological realities. As a
result, the avant garde reject the disciplines of the generation that pre-
ceded them, but ironically, adopt approaches that failed miserably a few
generations back. The Internet and the vast array of applications that it
has spawned are undoubtedly a major new software-related technology.
I won’t bore you with the obvious cliches; suffice it to say that the Inter-
net and the WebApps that populate it are big—very big—and that their
impact is profound. What worries me is that this major new technology
has become a breeding ground for important WebApps that are hacked
in much the same way as important application software was hacked a
few generations back—in the 1960s and 1970s. [1]

In this chapter we will review several software development life-cycle
models as a way of providing the context for software V&V activities and
also to highlight some of the strengths and weaknesses of each model.

2.1 The Waterfall Model

The waterfall model, shown in Figure 2.1, is the most familiar model. Dur-
ing the requirements analysis phase, basic market research is performed and
potential customer requirements are identified, evaluated, and refined. The
result of this phase of the process is usually a marketing requirement or prod-
uct concept specification (hereafter referred to as a concept specification).
This document is usually prepared by product marketing with some partici-
pation from software engineering. Requirements in the concept specification
are usually stated in the customer’s language.

The concept specification is usually written at a very high level and
requires further refinement and definition for it to be useful for software
development. This is the focus of the requirements definition phase of the
waterfall model. Requirements in the concept specification are reviewed and

Software Development Life-Cycle Models 19

Requirements
Analysis N
Requirements
Definition Documentation
Design X
Coding w
Testing w

Maintenance

Reviews and
Inspections

Figure 2.1 The waterfall life-cycle model.

analyzed by software engineers in order to more fully develop and refine the
requirements contained in the concept specification.

Requirements from the concept specification must be restated in the
software developer’s language. For example, a requirement that frequently
appears in concept specifications is that the “software must be user-friendly.”
This requirement must be restated into measurable terms meaningful to soft-
ware engineers. It might be restated as: “An untrained user must be able to
successfully perform [some function the software provides] within [some
number of] minutes.” The requirements definition phase results in a docu-
ment called the software requirements specification (SRS) [2].

Once the SRS is developed, software engineers should have a complete
description of the requirements the software must implement. This enables
software engineers to begin the design phase. It is during this phase that
the overall software architecture is defined and the high-level and detailed
design work is performed. This work is documented in the software design

description (SDD) [3].

20 Software Verification and Validation for Practitioners and Managers

The information contained in the SDD should be sufficient to begin to
the coding phase. During this phase, the design is transformed or imple-
mented in code. If the SDD is complete, the coding phase proceeds
smoothly, since all of the information needed by software engineers is con-
tained in the SDD.

According to the waterfall model, the testing phase begins when the
coding phase is completed. Tests are developed based on information con-
tained in the SRS and the SDD. These tests determine if the software meets
defined requirements. A software validation test plan [4] is written which
defines the overall validation testing process. Individual test procedures are
developed based on a logical breakdown of requirements. The results of the
testing activities are usually documented in a software validation test report.
Following the successful completion of software validation testing, the prod-
uct may be shipped to customers.

Once the product is being shipped, the maintenance phase begins. This
phase lasts until the support for the product is discontinued. Many of the
same activities performed during the development phases are also performed
during the maintenance phase. It is a good idea to write a software mainte-
nance plan to describe how these activities will be performed.

Some of the advantages of the waterfall model are:

e Itis easy to understand.
e It is widely used.

e It reinforces the notions of define-before-design and design-before-
code.

e It identifies when deliverables are produced and when reviews and
inspections are held.

Some of the disadvantages of the waterfall model are:

e In reality, few projects ever follow the model.
e It does not reflect the iterative nature of software development.

e It is unrealistic to expect complete and accurate requirements early
in the process.

e Working software is not available until relatively late in the process,
thus delaying discovery of serious errors.

e It does not incorporate any kind of risk assessment.

Software Development Life-Cycle Models 2

2.2 Concurrent Development Model

The concurrent development model, shown in Figure 2.2, is well suited for
rapid, flexible development. This model shares some attributes with the
synchronize-and-stabilize [5] model that has evolved from companies such as
Microsoft and Netscape.

In this model, the SRS is the starting point for development of both
software and tests. Developers and software QA engineers work concurrently
to develop and test the software. In the synchronize-and-stabilize model, the
project team begins with the product vision, a vague description of what the
product should do. An SRS evolves over the course of the project from this
product vision.

The key attribute of this model is that developers and QA work con-
currently. As bits of the product are developed, they are immediately tested
and feedback is provided to developers. In the synchronize-and-stabilize
model, this usually occurs about three times during the project. In the model
illustrated in Figure 2.2, it can occur as many times as appropriate, deter-
mined by the project team. Also, the model illustrated in Figure 2.2 has
something that the synchronize-and-stabilize model doesn’t—the formal
validation phase. During this phase, all of the tests that were run during the
informal validation phase are repeated one more time on the completed
product. The main difference between the informal and formal validation
phases has to do with changes. During informal validation, developers are
free to change whatever is required to meet the SRS. During formal valida-
tion, the only changes that are permitted are changes in response to bugs
reported. No new features are allowed during this time. Why? Because add-
ing new features at such a late stage would essentially invalidate all of the test-
ing that was performed previously.

Software Readiness ompletion
development review criteria

|Incrementa| releases|

k\\ N

\ \ Formal

| Informal validation | validation

Test
development

Figure 2.2 Concurrent development life-cycle model.

22 Software Verification and Validation for Practitioners and Managers

Another difference between the model illustrated in Figure 2.2 and the
synchronize-and-stabilize model has to do with having objective criteria
defined for starting formal validation testing and for completing formal vali-
dation testing.

Some of the more important differences between this model and the
waterfall model are that:

e Development and testing are performed concurrently rather than
sequentially.

e Multiple baselines are included as part of the process.

e There are defined criteria for starting and stopping formal validation
testing.

Some of the advantages of the concurrent model are:

e It is flexible—the project team can decide when and how many
incremental releases to create and test.

¢ Feedback from testing is immediate.
e No new features are added at the last minute.

e Formal validation testing is uneventful and predictable, since most
of the bugs have already been found and fixed.

Some of the disadvantages of this model are:

e It requires that an SRS be written and maintained as the product
features evolve.

e It requires discipline to ensure that features are not added late into
the project.

2.3 The Rapid Prototyping Model

In many instances, companies build software for customers who are not
exactly sure of what they want or need. By using a prototyping approach
similar to that shown in Figure 2.3, the customer can assess the prototype
and provide feedback as to its suitability for a particular application. The
prototype can range from a paper schematic all the way to a working system
that includes both hardware and software.

Software Development Life-Cycle Models 23

| Requirements gathering and refinement |

| Quick design |

|

->| Build/Refine prototypes |

|

Customer evaluates prototype and
provides feedback

No

Accept?

Yes

Customer approves prototypes
and requirements refined

A

Prototypes thrown away and traditional
product development begins

Figure 2.3 Rapid prototyping life-cycle model.

The rapid prototyping model begins with a requirements-gathering
stage whereby the developers collect and refine product requirements based
on whatever information or sources are available. Then, a rapid prototype is
developed. This prototype is intended to be used for requirements explora-
tion only. It is not intended to be the product. Little or no documentation
may be produced for this prototype. Customers can then evaluate and cri-
tique the prototype, providing the developers with insight into what they
really want. Based on this evaluation, the prototype may be refined and
evaluated again. This process continues until the customer and developers
agree that they have a good definition of the requirements.

The next step in the process requires that the prototype be thrown
away; once the requirements are understood, the product can be developed
using a more traditional, structured approach, such as the waterfall model.

24

Software Verification and Validation for Practitioners and Managers

Some of the advantages of this model are:

Users own the requirements; this reduces the likelihood of misun-
derstanding or misinterpretation.

It instills confidence that you are building the right product.

For those situations where customers do not know exactly what they
need, this model provides a means for requirements discovery.

Some of the disadvantages of this model are:

Typically, instead of the prototype being thrown away, it becomes
the product. Depending on how the prototype was developed, this
can result in major problems for long-term support and mainte-
nance of the product.

This model requires extensive participation and involvement of cus-
tomers, which isn’t always possible.

Software validation can be difficult, since requirements are not usu-
ally well documented.

24 The Spiral Model

The spiral model attempts to build on the benefits of the rapid prototyping
and traditional structured development models, such as the waterfall model.
Dr. Barry Boechm developed the model, shown in Figure 2.4. The spiral
model adds two new concepts to software development models—risk analy-
sis and cost.

The model can be viewed as consisting of four basic activities that cor-
respond to the four quadrants of Figure 2.4. These are:

Planning;
Risk analysis;
Development;

Assessment.

The radial dimension of Figure 2.4 represents increasing costs. Each
path around the spiral is indicative of increased costs. Also, many of the same
activities are repeated during each trip around the spiral, which reflects the
iterative nature of software development.

Software Development Life-Cycle Models 25

Determine
objectives,
alternatives,
constraints

100mmitment

Cumulative
cost

A
Il
Progress
through
steps

Evaluate alternatives;
identify, resolve risks

Risk analysis (RA)

Risk analysis

Risk analysis

- -
Prototype 2
A Prototype 1

Review\ Partition \ Rqts. plan
life-cycle

plan

Development
plan

Integration
and test

Plan
next phases

v

Models

Concept of Simulations
operation -

Detailed
design

Software
rqts.

Software
product
design

Requirements

validation 'Code

Unit :
test
|
|

Design validation
and verification

 Integration
| andtest |

IAcceptancd !
1 test
Implementationi :
|

Develop, verify

next-level product
11

Figure 2.4 Spiral life-cycle model. (Source: [6] © 1988, IEEE. Reprinted with permission.)

During the first trip around the spiral, planning is performed, risks
are analyzed, prototypes are built, and customers evaluate the prototype.
Table 2.1 includes a summary by Boehm of the most commonly encoun-
tered risks and suggested risk-management techniques [6]. Risk management
is discussed in more detail in Chapter 16.

26 Software Verification and Validation for Practitioners and Managers

Table 2.1

Commonly Encountered Risks and Risk-Management Techniques [6]

Risk

Risk-Management Technique

Personnel shortfalls

Unrealistic schedules
and budgets

Developing the wrong
software functions

Developing the wrong
user interface

Gold plating

Continuing stream of
requirement changes

Shortfalls in externally
furnished components

Shortfalls in externally
performed tasks

Real-time performance
shortfalls

Straining computer-
science capabilities

Staffing with top talent; job matching; team building; cross-training;
prescheduling; key people; morale building

Detailed, multisource cost and schedule estimation; design to cost;
incremental development; software reuse; requirements scrubbing

Organization analysis; mission analysis; operational-concept formula-
tion; user surveys; prototyping; early users’ manuals

Task analysis; prototyping; scenarios; user characterization (function-
ality, style, workload)

Requirements scrubbing; prototyping; cost-benefit analysis; design
to cost

High change threshold; information hiding; incremental development
(defer changes to later increments)

Benchmarking; inspections; reference checking; compatibility analysis

Reference checking; preaward audits; award-fee contracts; competi-
tive design or prototyping; team building

Simulation; benchmarking; modeling; prototyping; instrumentation;
tuning

Technical analysis; cost-benefit analysis; prototyping; reference
checking

During the second trip around, a more refined prototype is built,
requirements are documented and validated, and customers are involved in
assessing the new prototype. By the time the third trip around begins, risks
are known, and a somewhat more traditional development approach is taken.

Some of the advantages of this model are:

e It incorporates the iterative nature of software development, and
therefore it represents the most realistic approach.

e It incorporates all of the advantages of both the waterfall model and
the rapid prototyping model.

Some of the disadvantages are:

Software Development Life-Cycle Models 27

e It requires expertise in risk analysis.
e Ifasignificant risk is overlooked, major problems could result.

e It is not well understood by nontechnical management and has not
been widely used.

25 Hybrid Models

Hybrid models are based on combining aspects of two or more models.
Many hybrid models, such as the one shown in Figure 2.5, are based on
using so-called fourth-generation techniques (4GT), which consist of a wide
array of tools that enable software engineers to depict software characteristics
at a very high level.

In those instances where requirements are reasonably well known,
developers can follow the left-most path of the model. Where requirements
are not well known, developers can employ the rapid prototyping tech-
niques. The hybrid model allows the flexibility to pick and choose the devel-
opment model that best suits the particular situation.

Some of the advantages of this model are:

e Itenables developers to choose the model that best fits the situation.

e It has all of the advantages of each model it encompasses.

Some of the disadvantages are:

e It is not widely understood or recognized.

e It has all of the disadvantages of each model it encompasses.

26 Model-Based Development

Several model-based development approaches have recently been introduced
to help design and implement client/server and Graphical User Interface or
GUI-based applications. An example of model-based development is shown
in Figure 2.6. This approach is most applicable to a wide variety of business
or information systems (IS) software.

Some of the advantages of this approach are:

e Itis closely tied to specific business processes.

28 Software Verification and Validation for Practitioners and Managers

Preliminary requirements gathering

A

Y

0

perational system

\

Y

Maintenance

Requirements Prototyping 4GT Spiral model
analysis f yy
Design 4GT
Lo
’ Prototyping Spiral model
_ nth iteration nth iteration
Coding
4GT
Y
Testing |

Figure 2.5 Fourth-generation life-cycle model. (Source: [7], used with permission.)

o It clearly delineates client and server applications.

e Tools are available to support the use of these models.

e Itincludes a style guide

Some of the disadvantages

for the GUL.

are:

Software Development Life-Cycle Models 29

Business objects

Busi — Graphical User

usiness

Data definitions olicies usmness Interface (GUI)
p processes quidelines

Figure 2.6 Model-based development.

e It does not include a structured development approach.

e It does not reference specific documents, deliverables, or reviews.

Further information on model-based development is available from the

SEI [8].

2.7 Object-Oriented Models

When object-oriented (OO) techniques first appeared, the emphasis was on
programming languages, followed by design and, later, analysis. Recently,
attention has focused on OO lifecycle methodologies. While this work is still
evolving, there are a few OO methodologies that are currently being used.
Most of these methodologies emphasize the incremental, iterative, and con-
current nature of software development. Since classes and objects are used
throughout the OO software development lifecycle, the process is “often
referred to as seamless, meaning there is no conceptual gap between the
phases as is often the case with other software development methodologies,
such as the analysis (using Data Flow Diagrams) to design (structure charts)
to programming gaps found in traditional structured analysis and design.
Seamlessness together with naturalness is a big advantage for consistency”[9].

30 Software Verification and Validation for Practitioners and Managers

An example of a recently developed OO methodology is the Rational
Unified Process (RUP). RUP is a product process developed by Rational
Software Corporation [10] that provides project teams with a guide to more
effective use of the industry-standard Unified Modeling Language (UML).
RUP also provides software-engineering best practices through templates,
guidelines, and tools. Most of the tools are, as you might guess, also provided
by Rational. The RUP is based on four consecutive phases, as shown in
Figure 2.7.

The purpose of the inception phase is to establish the business case for
the project. This is done by creating several high-level use case diagrams,
defining success criteria, risk assessment, resource estimate, and an overall
plan showing the four phases and their approximate time frames. Some deliv-
erables the inception phase might include are:

e A vision statement;

e An initial set of use cases;
e An initial business case;

e An initial risk assessment;
e An initial project plan;

e Prototypes.

The purpose of the elaboration phase is to analyze the problem
domain, establish the overall product architecture, eliminate the highest
risks, and refine the project plan. Evolutionary prototypes (as well as throw-
away prototypes) are developed to mitigate risks and address technical issues
and business concerns (such as investors or key customers). Some key deliver-
ables this phase might include are:

Time

v

Figure 2.7 Rational Unified Process model.

Software Development Life-Cycle Models 31

A relatively complete use case model supplemented with text as
appropriate;

o Architecture description;

e Revised risk assessment;

e Revised project plan;

e Initial development plan;

e Initial user manual;

During the construction phase, the remaining components are devel-
oped, integrated, and thoroughly tested. Key deliverables from this phase
include:

e Software product operating on target platform;
e Revised user manual;

e Complete description of current release.

The purpose of the transition phase is to transition the product from
development to the user community. Activities that would typically be per-
formed include:

Beta testing by users;

e Conversion of existing information to new environment;

Training of users;

Product rollout.

In addition to these four phases, the RUP also incorporates the follow-
ing six best practices:

[terative software development;
Requirements management;
Component-based architectures;
Visual software modeling;

Software quality verification;

NN i e

Change control.

32 Software Verification and Validation for Practitioners and Managers

Not surprisingly, several of these best practices are tightly coupled with
tools developed by Rational.
Some of the advantages of this approach are:

e Itincorporates an iterative development model.
e [t incorporates requirements management and change control.

e It is based on industry-standard UML and component-based
modeling.

Some of the disadvantages are:

e Training in risk assessment and mitigation techniques is required to
reap the benefits of iterative development.

e To take full advantage of the model, Rational’s software develop-
ment tools must be used.

2.8 Summary

Choosing a software life-cycle model is a difficult task. The life-cycle model
can have far-reaching implications that go well beyond the software develop-
ment process and extend into the product support and maintenance phase.
Recall that the lifetime of a typical software product can be from two to five
times as long as the development time. The ability of your maintenance and
support organization to provide cost-effective software updates and feature
enhancements is directly related to the life-cycle model and the software
development process used to develop the product.

References

[1] Pressman, R. E., “What a Tangled Web We Weave,” IEEE Software, January/February
2000, pp. 18-21.

[2] ANSI/IEEE Standard 830-1998, IEEE Recommended Practice for Software Require-
ments Specifications.

[3] ANSI/IEEE Standard 1016-1998, IEEE Recommended Practice for Software Design
Descriptions.

[4] ANSI/IEEE Standard 1012-1998, IEEE Standard for Software Verification and Valida-

tion Plans.

Software Development Life-Cycle Models 3

[5] Cusumano, M. A,, and D. B. Yoffe, “Software Development on Internet Time,” JEEE
Computer, October 1999, pp. 60-69.

[6] Boehm, B., “A Spiral Model for Software Development and Enhancement,” /EEE
Computer, Vol. 21, 1988, pp. 61-72.

[7] Pressman, R., Software Engineering: A Practitioner’s Approach, New York: McGraw-
Hill, 3rd ed., 1992.

[8] Withey, J. V. “Implementing Model Based Software Engineering in your Organization:
An Approach to Domain Engineering,” CMU/SEI-94-TR-01, Carnegie-Mellon Uni-
versity, Pittsburgh, PA, Software Engineering Institute, 1994.

[9] Object-orientation FAQ, available on the World Wide Web at http://www.cyberdyne-
object-sys.com/oofaq2/index.htm (accessed February 2001).

[10] “Rational Unified Process: Best Practices for Software Development Teams,” Rational
Software Corp. White Paper, available at http://www.rational.com/products/whitepa-
pers (accessed February 2001).

Note: URLs cited were accurate as of April 2001.

Software Development Process

For a manufacturing company, the key to improving quality is controlling
variation. Controlling variation is achieved by having well-defined processes
and by collecting data on actual variation. An example of a manufacturing
parameter that can vary is tolerance. To control tolerance to an acceptable
level, limits are established. If the tolerance exceeds established limits, a
root-cause analysis is performed to determine why the limits were exceeded.
As a result of the root-cause analysis, corrective action is implemented which
changes the process or adjusts the limits. The key points are: (1) the process is
defined, (2) it is followed, and (3) products are constantly evaluated to
ensure that they conform to established requirements.

Results of evaluations are used to drive process improvement. This con-
cept is known as the Shewhart cycle, shown in Figure 3.1. It was developed
by Walter Shewhart in the 1920s and put into practice as a result of the work
of Dr. W. Edwards Deming [1, 2].

For software companies, the key to improving quality lies in applying
the principles of the Shewhart cycle. Controlling variation—in the work per-
formed by software engineers—is a challenge faced by most software devel-
opment organizations. Software development organizations known for the
high quality of their products (such as HP and Motorola) have learned how
to measure and control variation. These organizations all have well-defined
software development processes.

Issues regarding the software development process and its signifi-
cance in improving software are presented in this chapter by way of a list of

35

36 Software Verification and Validation for Practitioners and Managers

’ 1. Plan

Apply Plan a
4. Act the change, change or
or abandon it, a test, aimed
or run through the atimprovement,
cycle again under collect data, and
different conditions. establish a timetable.

Study the results Implement
of your actions. the change or
What did you tests on a small 2.Do

learn? scale.

3. Check

Figure 3.1 The Shewhart cycle.

frequently asked questions (FAQs). An example of a software develop-
ment process based on the waterfall model is included in Appendix G. Out-
lines of some of the deliverables called out by this process are included in
Appendix H.

3.1 Software Development Process FAQs

Why Must the Process Be Written?

A key attribute of a good process is that it is written. If the process is written,
it can then be read, understood, questioned, communicated, and modified,
and most importantly, improved. It is not possible to do all this when the
process exists in someone’s head. Writing down your process makes good
business sense.

Much of the recent work in software quality and software process
improvement has been focused on capability assessments (SEI CMM™ [3]

Software Development Process 37

and SPICE [4]), supplier capabilities (ISO [5], TickIT [6], and Trillium [7]),
and software process improvement (ISO 12207 [8] and Bootstrap [9]). A
written development process is a common thread that appears throughout all
of these initiatives.

Won't a Written Process Stifle Creativity?

This concern is unfounded and stems from a lack of understanding of what a
process is. A written process defines the mechanics of developing software. It
does not define how software engineers do what they do. In fact, it can be
argued that a good process allows software engineers more time to be crea-
tive, since they don’t have to spend time thinking about the more mundane
aspects of their job (like what information needs to be included in a software
design description document).

In every other engineering discipline, processes and procedures have
been developed based on good engineering practice and years of experience.
These processes and procedures enable engineers to focus more of their time
on developing creative and innovative products in a manner that ensures that
the product can be successfully developed, manufactured, supported, and
maintained. Written processes and procedures used in other engineering dis-
ciplines haven’t stifled creativity.

As experience is gained from developing products, this experience can
be factored into the process so that you can learn from past mistakes and
achieve continuous process improvement. A written software development
process provides a mechanism for building upon past experiences and avoid-
ing making the same costly mistakes. A written process is a characteristic of
mature software organizations and can have a significant effect on quality,
development cost, schedule, and time to market.

Our Process Was Never Written Down, but It Seems to Work—Why Change It?

If you have an unwritten process that seems to work, then by all
means—write it down! Putting a process on paper in no way changes your
process. Writing the process down will make it easier to:

e Train new people in how your organization develops software;

e Improve product quality by making process improvements based on
past mistakes and experience;

e Identify those areas where improvements are needed;

¢ Achieve predictable software development.

38 Software Verification and Validation for Practitioners and Managers

How Can the Software Engineering Manager Be Persuaded to Follow a Written
Procedure?

Some managers like working in an environment where the process is unde-
fined and undocumented. Unfortunately, this often leads to inefficiency and,
many times, less than stellar product quality. So how do you convince some-
one that they should follow a written process? They can cither come to this
realization on their own or they can be directed to do this by their manage-
ment. The latter case is discussed in detail in Part IV.

One way to help someone come to this realization is to build a case
based on cost. Collect data from past projects that shows how much time and
effort were spent developing, testing, and debugging the software. Some
examples of metrics to collect are:

e Total lines of source code developed;

e Total software engineering person-hours spent;

e Number of bugs identified prerelease;

e Number of bugs identified postrelease;

e Total effort spent developing and executing tests;
e Find/fix time for bugs found prerelease;

¢ Find/fix time for bugs found postrelease.

Then propose that the software engineering manager and someone
who represents software quality work together on developing a flexible
process that could be used on the next project. The goal would be to make
improvements based on the metrics you collected from past projects. The key
is to work collaboratively and to remain flexible. Compromise is often the
best solution.

How Can a Written Process Improve Software Quality?

By itself, a written software development process won’t improve quality. The
process must (1) be followed by everyone, (2) be flexible and changeable, (3)
include metrics that measure process effectiveness and form the basis for
changes to the process, and (4) be actively managed.

Once a software development process is in place, some of the intangible
benefits that can be realized are:

Software Development Process 39

1. It helps connect software engineering to other engineering disci-
plines within the R&D organization.

2. It helps establish a corporate memory on software development so
that the organization can learn from past mistakes.

3. It helps improve the use of valuable resources by:

a. Reinforcing the principles of predictable software develop-
ment (discussed in Part IV);

b. Providing a mechanism for learning from others;

c. Allowing software engineers to spend more time solving prob-
lems requiring their creative energy;

d. Reducing rework and allowing software engineers to move
ONto new projects sooner;

e. Providing a training tool for new software engineers.

4. It can help increase the likelihood of successfully introducing new

technology.
It provides consistency and lowers overall costs.

It provides a framework for continuous process improvement (the

Shewhart cycle).

An extensive list of resources related to software process improvement
can be found in the Software Process Newsletter [10] published by the IEEE
Technical Council on Software Engineering, as well as the SEI’s home page

on the World Wide Web.

We Don’t Have (or Don’t Follow) a Written Procedure, and the Quality of Qur
Software Isn't Too Bad—Why Should We Change?

Customers will tolerate software that “isn’t too bad” for just so long. Compa-
nies that develop leading-edge technology typically have a group of custom-
ers who are called early adopters. These customers are willing to accept lower
quality software but only for a relatively short time. As the leading-edge tech-
nology becomes more widely accepted and integrated into competitors’
products, the early adopters become mainstream customers. Product quality
is a key factor in retaining the base of mainstream customers.

From experience, we as consumers know that we tend to tell many
more people about an unhappy experience with a product than we tell about
a happy one. The same holds for software.

40 Software Verification and Validation for Practitioners and Managers

What Is Software Quality Anyway?

Some of the many definitions of software quality that have been suggested
are included in Section 13.1. Regardless of which definition you ascribe to,
knowing your customers, what they need, and how they use your products
are all part of the intangible attributes that collectively lead to software
quality.

As we will see in Chapter 9, knowing your customers and how they use
your products can play a key role in helping you test your software. Further-
more, tradeoffs between quality, features, and schedule represents one of the
most important decisions that organizations typically make when developing
software. This issue is discussed in detail in Chapter 13.

For a thorough discussion of software quality measures, refer to the SEI
report on software quality measurement [11].

What Do We Do After We Write Down Our Current Process?

That depends on your organization. Are you satisfied with the quality (how-
ever you define quality) of the software you produce? More importantly, are
your customers satisfied? If they aren’t, how would you know? Do you typi-
cally have a large number of customer-reported bugs during the first few
months following the release of a new software product or version? Are your
products perceived to be significantly better than competitors’ products?
Based on the answers to these questions, you may need to look at ways you
can improve the perceived quality of your product. Having a written process
will help you do this. You can collect some process and product data that
documents where you are now product-quality-wise, then make some
process changes (for example, require that a software design description be
written before coding begins, or institute code inspections), and see how the
changes affect product quality.

How Can the Process Be Tailored to Suit the Needs of the Project Team?

Your software development process should be viewed as a framework. As
part of each project, a software development project plan should be written.
The purpose of this plan is to define in detail the specific tasks, activities,
deliverables, and tools that will be required for the project. In this way, the
software development process can be tailored to meet the specific needs of
each project.

Deviations from the software development process need to be justified
based on using good engineering judgment. Management, the product

Software Development Process 4

support organization, and the quality organization should be required to
agree to all deviations from the software development process. In this way,
you can provide flexibility in a manner that still retains appropriate checks
and balances.

How Can Information Collected from Using the Process Be Used to Improve the
Process?

By carefully selecting a set of appropriate process and product metrics (see
Chapter 7), this data can be used to improve process and product quality.
For example, data collected on the types of defects found during code inspec-
tions is an example of a process metric that could be used to improve your
coding standards. Once common problems have been reflected back into the
coding standards, they are much less likely to occur in the future. Similarly,
data collected on the types of problems reported by customers is an example
of a product metric that can be used to improve the software validation test
suite to be more representative of actual customer use of the product. Includ-
ing such tests in the test suite will increase the likelihood that similar types of
problems will be caught and corrected before the product is released.

Who Is Responsible for Enforcing the Process?

Ideally, there should be no need for enforcement. Everyone should under-
stand the value to the company derived by following the process. When the
process is owned by the software development organization (meaning that
software engineers were actively involved in developing the process), enforce-
ment is not an issue. When software engineers are not involved in developing
the process, enforcement is an issue.

Project managers should bear most of the responsibility of ensuring
that the process is followed. The quality organization may have some over-
sight in this area, but viewing the quality organization as the enforcer dimin-
ishes its effectiveness in achieving the company’s overall quality objectives.

Who Should Be the Keeper of the Process?

It is important that the mechanism for changing the software development
process be clearly defined. Ideally, this responsibility should be shared by
those who are bound to follow it in a manner that allows for input, discus-
sion, assessment, and revision in a timely and controlled manner. Ownership
is key.

42 Software Verification and Validation for Practitioners and Managers

3.2 Summary

A written software development process is essential to make significant
improvements in software quality. The process needs to be written so that it
can be read, understood, communicated, followed, and most importantly,
improved. Having a written software development process enables software
V&V activities to become woven into the fabric that defines a company’s
software development culture. A written software development process is a
required element for predictable software development.

Ownership of the process by the software development organization is
vitally important. Ownership will go a long way in ensuring that the process
is followed. Measuring the effectiveness of the software development process
should be standard practice. Use the data collected to drive improvements to
the process. This approach is based on the principles of statistical process
control, which have been successfully applied in many other engineering and
manufacturing disciplines.

References

[1]1 Shewhart, W., Statistical Methods from the Viewpoint of Quality Control, Washington,
D.C.: U.S. Dept. of Agriculture, 1939; New York: Dover, 1968.

[2] Deming, W. E., Out of the Crisis, Cambridge, MA: MIT Center for Advanced Engi-
neering Study, 1982.

[3] Paulk, M. C,, et al., The Capability Maturity Model: Guidelines for Improving the Sofi-
ware Process, Reading, MA: Addison-Wesley, 1995.

[4] Dorling, A., “SPICE: Software Process Improvement and Capability dEtermination,”
Software Quality Journal, Vol. 2, 1993, pp. 209-224.

[5] ANSI/ISO/ASQ Q-9000-3-1997, Guidelines for the Application of ANSI/ISO/ASQ
Q-9001-1994 to the Development, Supply, and Maintenance of Software, ASQC,
1997.

[6] A Guide to Software Quality Management System Construction and Certification to
ISO-9001 (TickIT Guide), Issue 4.0, January 1998, British Standards Institute, 1995.

[71 Coallier, F., “TRILLIUM: A Model for the Assessment of Telecom Product Develop-
ment and Support Capability,” IEEE TCSE Software Process Newsletter, Winter 1995.

[8] International Standard ISO/IEC 12207:1995, Information Technology—Software =

lifecycle processes.

[9] Haase, V., et al., “Bootstrap: Fine-Tuning Process Assessment,” [EEE Software, July
1994, pp. 25-35.

Software Development Process 43

[10] El Emam, K., ed., Soffware Process Newsletter, published by IEEE TCSE, No. 2, winter
1995.

[11] Florac, W., “Software Quality Measurement: A Framework for Counting Problems and
Defects,” CMU/SEI-TR-92-022, SEI, 1992.

Economic Justification

Good Enough [quality] has nothing to do with mediocrity. It has to do

with rational choices as opposed to compulsive behavior. [1]

In most organizations, the pressure to get products to market as quickly as
possible is intense. Application development time frames that once took
years are now compressed to months. In some markets, software products are
refreshed every two to three months. For Web applications, the advent of
Internet time has led to development cycles measured in days and weeks. As a
result, many organizations are looking for ways to streamline the develop-
ment process in order to meet increasing market pressures. And whether they
recognize it or not, many organizations are making decisions related to prod-
uct quality based on some notion that the product is good enough.

In today’s highly competitive global economy, successful organizations
have learned to make tradeoffs between time to market and time to profit.
Time to market is a well-understood concept. Time to profit is not as well
understood. This concept is illustrated by Figure 4.1.

Time to profit represents the time from when a product is released to
the break-even point—the point at which the revenue stream generated
by sales of the product exceeds the cost of maintaining and supporting the
product.

When the software development organization is focused solely on
time-to-market goals, the quality of the product frequently suffers. Releasing
a low-quality product usually results in higher maintenance and support

45

46 Software Verification and Validation for Practitioners and Managers

Revenue

Cost

Support cost

> Time

;|

Time-to-market |

v

Time-to-profit

(a)

Revenue

Cost

Support cost

Vs

Time-to-market

Time-to-profit

B\

> Time

A

(b)

Figure 4.1 (a) Time-to-market approach and (b) Time-to-profit approach. (From: [2].)

costs and unhappy customers. The break-even point occurs much later (if
at all).

Alternatively, if the software development organization is geared
toward achieving time-to-profit goals, the quality of the product is usually

Economic Justification 47

much better, thus reducing overall maintenance and support costs. Lower
maintenance and support costs means happier customers. The break-even
point occurs much sooner, which means higher profits. In a highly competi-
tive marketplace, organizations need to make informed decisions regarding
the balance between achieving time-to-market and time-to-profit goals.

In this chapter, we discuss the economic justification for performing
software V&V activities. Understanding the economics of software V&V is
crucial to understanding how your organization can make these tradeoffs.

41 Economic Justification

Organizations perform specific tasks as part of the software development
process because management believes such tasks are economically justified.
For example, organizations may send software engineers to training courses
to learn new programming techniques, such as object-oriented design
(OOD), or to learn how to use tools that support OOD. These training costs
(both the cost of the training and the time spent at training sessions) can be
economically justified by management based on the return that it is likely to
provide in terms of improved product design, lower development and main-
tenance costs, and so on.

Organizations may spend considerable amounts of time and money
performing tasks that will (it is hoped) identify customer requirements with a
high degree of certainty. Tasks such as rapid prototyping, conjoint analysis
[3], and quality function deployment (QFD) [4-6] all have a measurable
cost. For all of these tasks, management must be convinced that they will
yield a positive return on investment. Software engineers learn new skills that
help them produce better products in less time. Marketing people learn what
the customer really wants. And customers get a higher quality product that
meets their needs in the time frame that they require.

Like any other activity, there is a cost associated with performing soft-
ware V&V tasks. Obviously, the benefits must be greater than the costs.
However, with software V&V tasks, there is also a cost associated with not
performing these activities. The question is which cost is greater.

Several studies have been performed to try to answer this question. A
landmark study performed by Dr. Barry Boehm [7] reported that the cost to
find and fix defects found during the software development process increased
significantly the later the defect was found. As illustrated in Figure 4.2, the
relative cost to find and fix a defect increases dramatically the longer the
defect remains in the product. For example, the cost of finding and fixing a

48 Software Verification and Validation for Practitioners and Managers

Requirements

analysis %M
Requirements

definition 35
Design

$20
Coding
$50

Testing
$100
@I Maintenance

Figure 4.2 Relative cost factor to find and fix defects. (Source: [7].)

defect found during the requirements definition phase increases by a factor
of 50 if the defect is not found until the testing phase and by a factor
of 100 if the defect is not found until after the product is shipped. Other cost
data summarized by Humphrey [8] are consistent with that reported by
Boehm.

Costs associated with software quality are typically incurred as a result
of software V&V activities that may include defect detection, removal, and
prevention activities. The costs associated with performing these activities are
relatively straightforward and easy to measure. For example, costs associated
with performing requirements, design and code inspections, developing and
executing software validation tests, and other similar software V&V tasks are
relatively simple to determine by tracking person-hours.

Costs resulting from not performing these activities are a little more
difficult to identify. For example, as a result of not doing inspections, the
testing cycle extends longer than originally planned, thereby delaying prod-
uct release by several weeks. As a result of not doing validation testing, the
product is released with many defects that customers find. This creates a sig-
nificant increase in call volume to your customer support center. A patch
release may be required, diverting resources from other projects.

Economic Justification 49

While it may be difficult to identify these costs, it is important to col-
lect this information so that organizations can make informed decisions
regarding specific software V&V activities to perform. Once these costs are
identified and measured, they can be used to help drive process improve-
ments, which can lead to lower development costs, shorter time to market,
and higher customer satisfaction.

4.2 Software Defect Cost Models

Developing a software defect cost model can help identify the costs associ-
ated with software defects. The model should identify costs associated with
such things as software development, documentation, and testing prior to
release to customers (prerelease), as well as costs incurred after the software is
released (postrelease). An example of such a model is illustrated in Figure 4.3.
In this model, factors that affect the cost of software defects are identified.
Note that the upper branch of the fishbone diagram shown in Figure 4.3
depicts an often-ignored component of the cost of software defects. This
component is lost sales due to the product being late to market as a direct
result of quality problems that are identified during product development.

Another way to look at costs associated with software defects is the
defect removal cycle. This cycle represents the activities associated with find-
ing and fixing defects both prerelease and postrelease. Typical defect removal
cycles are shown in Figures 4.4 and 4.5. Activities are identified based on the
tasks that are performed when a defect is found in the product, usually as a
result of testing. Modeling the defect removal process and measuring the
time it actually takes to perform the tasks identified is important for justify-
ing software V&V activities.

Once you collect the data for your organization, you can compare it to
that shown in Tables 4.1 and 4.2. Some of the assumptions made are:

e Empirical data supports a find-fix cycle time of 10-30 hours per
defect prerelease [8, 10] and 20-60 hours per defect postrelease.
These time estimates include all the activities shown in Figures 4.4

and 4.5.

e Cost of labor of $100 per hour is an average for software engineers
and is fully loaded, meaning that the cost includes salary plus bene-
fits and overhead. Substitute your actual labor cost.

50 Software Verification and Validation for Practitioners and Managers

Postrelease

Prerelease

Profit loss due
to schedule slip

Rework cost

Software design /
Design inspections
Implementation
Code inspections
Integration testing
Software validation

Software
defect cost

Update documentation

Figure 4.3 Software defect cost model. (Source:[9].)

e The number of defects to be removed varies from project to project
and from company to company. Substitute actual numbers that you
have observed from past projects.

e The postrelease find-fix cycle time is higher because of the addi-
tional tasks required (refer to Figure 4.5). These costs do not include
the costs associated with scrapping inventory of a defective product
and reissuing an updated software release to customers.

Pressman [11] suggests that the cost of performing software V&V
activities can be economically justified if:

Economic Justification 51

Software validation
test uncovers a defect

v

Problem reported to
Software Development

|

Software Development Group
investigates and verifies defect

:

Software Development Group
develops corrective action and
performs some testing

/ ~

Software Development Group SQA Group evaluates
releases new version to corrective action
SQA Group
v

SQA Group reviews code
changes and develops
additional tests, if needed

/

SQA Group validates new
version and performs
regression testing as required

Figure 4.4 Prerelease find-fix cycle.

C, C, C, (4.1)

where:

C;s cost of defects without software V&V activity. Estimate C; using
historical data from previous projects that didn’t have software V&V.

C; actual costs of software V&V activities. Estimate C, using the cost
of people and equipment on similar projects that did have software V&V.

C, cost of defects not found by software V&V. Estimate C, using the
postrelease defect removal model and counting the number of defects found
by customers.

52 Software Verification and Validation for Practitioners and Managers

Software validation

A\ 4

test uncovers a defect

v

Problem reported to
Software Development

{

Software Development Group
investigates and verifies defect

A

Software Development Group
develops corrective action and

performs some testing

N\

Software Development Group
determines upgrade procedure

SQA Group evaluates
corrective action

!

!

Software Development Group
releases new version to
SQA Group

SQA Group reviews code
changes and develops
additional tests, if needed

Software Development Group
corrects problem and tests fix

h

N

/

SQA Group validates new
version and preforms
regression testing as required

Yes

Bugs?

No

Appropriate documentation updated

!

New version of software
released to Manufacturing

!

New version of software
distributed to customers

|

Customers install new

version of software

Figure 4.5 Postrelease find-fix cycle.

Economic Justification 53

Table 4.1
Typical Prerelease Defect Removal Costs
Average Average cost of [If the number of Then the defect
find/ffixtime labor, fully defects to be removal cost
(hours/defect) loaded ($/hr) removed is... is...
10 $100 125 $125,000
30 $100 250 $750,000
Table 4.2
Typical Postrelease Defect Removal Costs
Average Average cost of If the number of Then the defect
find/fix time labor, fully defects to be removal cost
(hours/defect) loaded ($/hr) removed is... is...
20 $100 25 $50,000
60 $100 100 $600,000

4.3 Measuring the Cost of Quality

Juran has described the cost-of-quality measure as a way to “quantify the size
of the quality problem in language that will have impact on upper manage-
ment” [12]. The cost-of-quality measurement is composed of the following
three activities:

1. Detection. Detection activities are focused on tasks that help find
defects.

2. Prevention. Prevention activities are centered on tasks that help pre-
vent defects from occurring in the first place.

3. Removal. Removal activities include a variety of tasks related to
isolating, correcting, and verifying bug fixes as well as costs associ-
ated with preparing distribution media and redistributing
software.

Examples of prevention, detection, and removal tasks are shown in

Table 4.3.

54 Software Verification and Validation for Practitioners and Managers

Table 4.3
Examples of Prevention, Detection, and Removal Tasks

Prevention Detection Removal
Training Inspections Fault Isolation
Planning Testing Fault Analysis
Simulation Auditing Root-Cause Analysis
Modeling Monitoring Software Modifications
Consulting Measuring Document Modifications
Qualifying Verification Test Modifications
Certifying Validation Regression Testing
Process Improvements Requirements Tracing Rework Inspections
Configuration Management Problem Tracking

Scrap and rework of media

Duplication/Distribution

The motivation for measuring the cost of quality is to use this informa-
tion to convince management that it is more cost-effective to spend time and
effort on defect detection and prevention-related activities than on defect-
removal activities.

4.4 Summary

The evidence overwhelmingly indicates that the sooner defects in require-
ments, design, and code are found, the easier and less expensive they are to
fix. Software V&V activities are focused on helping to find defects as soon in
the development process as possible. It is always cheaper to do it right the
first time than to do it over and over again. The economic motivation for
software V&YV is discussed further in Chapter 12.

Additional references on software economics can be found in the SEI’s
Annotated Bibliography on the World Wide Web, at http://www.sei.cmu.
edu. Several of these are included in the Selected Bibliography for this
chapter.

Economic Justification 55

References

Bach, J., “Good Enough Quality: Beyond the Buzzwords,” IEEE Compurer, August
1997, pp. 96-98.

Fujimura, A., “Software Engineering Needs a Zero Defect Culture,” Computer Design,
September 1993, pp. 78-79.

Cattin, P., and R. R. Wittink, “Commercial Use of Conjoint Analysis: A Survey,” Jour-
nal of Marketing, Vol. 46, No. 3, 1982, pp. 44-53.

Hauser, J. R., and D. Clausing, “The House of Quality,” Harvard Business Review, No.
3, May—June 1988, pp. 63-73.

Lamia, W. M., “Integrating QFD with Object Oriented Software Design Methodolo-
gies,” Transactions from the Seventh Symposium on Quality Function Deployment, June
1995, pp. 417-434.

Zultner, R. E., “Quality Function Deployment (QFD) for Software: Structured
Requirements Exploration,” in G. G. Schulmeyer and J. I. McManus (eds.), Zozal
Quality Management for Software, New York: Van Nostrand Reinhold, 1992.

Boehm, B. W., Software Engineering Economics, Englewood Cliffs, NJ: Prentice-Hall,
1981.

Humphrey, W. S., A Discipline for Software Engineering, Reading, MA: Addison-
Wesley, 1995, pp. 275-277.

Ward, J., “Calculating the Real Cost of Software Defects,” Assoc. for the Advancement of
Medical Instrumentation (AAMI) 27th Annual Conference Proceedings, 1992, p. 90.

Humphrey, W. S., Managing the Software Process, Reading, MA: Addison-Wesley,
1989, p. 12.

Pressman, R., Software Engineering: A Practitioner’s Approach, 3rd ed., New York:
McGraw-Hill, 1992, pp. 587-588.

Juran, J. M., and F. M. Gryna, Juran’s Quality Control Handbook, 4th ed., New York:
McGraw-Hill, 1988.

Selected Bibliography

Boehm, B., and P. Papaccio, “Understanding and Controlling Software Costs,” IEEE Trans-
actions on Software Engineering, Vol. 14, No. 10, October 1988, pp. 1462-1477.

Geringer, P., and W. Hutzler, Analytical Methods in Software Engineering Economics, New
York: Springer-Verlag, 1994.

Wellman, F., Software Costing, Englewood Cliffs, NJ: Prentice-Hall, 1992.

Part Il
Overview of Software Verification
Activities

“Verification” and “validation” refer to two distinctly different sets of activi-
ties, yet the terms are often used interchangeably. Let us clarify what is meant
by these terms.

“Verification” is “[t]he process of evaluating a system or component to
determine whether the products of a given development phase satisty condi-
tions imposed at the start of that phase” [1]. Verification activities are in-
process activities performed concurrently with software development.
Another way to view verification activities is that verification helps answer
the question “Are we building the product right?”

Verification activities are discussed in detail in Chapters 5-8.

“Validation” is “[t]he process of evaluating a system or component dur-
ing or at the end of the development process to determine whether it satisfies
specified requirements” [1]. Validation activities are performed after the soft-
ware is developed to determine if the software correctly implements the
requirements. Another way to view validation activities is that validation
helps answer the question “Did we build the right product?”

Validation activities are discussed in detail in Part III, Chapters 9-11.

Verification activities are defined around three basic processes: inspec-
tion, measurement, and configuration management. In Chapters 5 and 6, we
introduce the inspection process and describe how it can be applied to

57

58 Software Verification and Validation for Practitioners and Managers

perform requirements, design, code, and test inspections. An extensive col-
lection of supporting materials for the inspection process is included in
Appendixes A-F.

In Chapter 7, the measurement process is introduced. The process of
implementing a software measurement program is discussed, along with
examples of specific metrics that support software V&V activities.

In Chapter 8, the configuration management process is covered. Tasks
related to identification, baseline management, and auditing and reporting
are discussed.

Reference

[1] IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology, © 1990.

The Inspection Process

An inspection is a powerful tool that can help achieve significant improve-
ments in software quality.

Defect-removal efficiency is a measure of the relative number of defects
found by customers as compared with the number found by the company
that developed the software. Capers Jones [1] identified several companies
that have managed to achieve defect-removal efficiencies that exceed 99%.
Defect-removal efficiency is calculated as:

Number of defects found prior to releasing a product

: 100%
Number found prior to release, plus the number reported by

customers during the first » months of actual use

In these companies, formal inspections are an important factor contrib-
uting to high defect-removal efficiencies. In fact, in his continuing study of
software development practices at hundreds of companies, Jones has found
that formal inspection is one of the common practices performed by those
companies considered to be “Best in Class” [2]. (See Chapter 15 for more
information on common practices performed by best-in-class companies.)

To understand why formal inspections are such an important part of
the software development process, consider the following:

59

60 Software Verification and Validation for Practitioners and Managers

e Requirements are the most common source of problems in the soft-
ware development process.

e Requirements are written in English, by people who typically have
little or no training in writing requirements for software.

e The English language is imprecise, ambiguous, and nondeterminis-
tic, whereas software is precise, unambiguous, and deterministic.

Make a photocopy of the page containing the text in Figure 5.1 and
give it to 10 of your colleagues. Ask them to follow the directions and answer
the question. No further information should be provided and people should
complete this task by themselves.

In practice, if 10 people try this exercise, you will likely get 10 different
answers to what seems to be a very simple question. However, the ambiguity
of English becomes apparent when you ask people how they arrived at their
answers. Some say, “I counted all the ¢'s on the page, even the ones outside
the box.” Some say, “I interpreted the instructions to mean only count the ¢'s
in the box.” Still others say, “I only counted the ¢s within the quoted text.”
Imagine the confusion and misinterpretation when you are talking about
complex technical requirements for software.

This chapter introduces the inspection process. Chapter 6 includes a
discussion of how the inspection process can be applied to the different deliv-
erables produced during the software development process.

Directions: Count the number of occurrences of the letter ¢ on this
page and write your answer in the space provided.

While inspections will not solve all problems, they are enormously
effective. [Inspections] have been demonstrated to improve both qual-
ity and productivity by impressive factors. Inspections are not magic
and they should not be considered a replacement for testing, but all
software organizations should use inspections or similar technical
review methods in all major aspects of their work. This includes
requirements, design, implementation, test, maintenance, and docu-
mentation. [3]

Answer: The letter eappears times.

Figure 5.1 Inspection exercise.

The Inspection Process 61

The inspection process is presented by using a collection of FAQs. To
supplement the answers to the FAQs, an extensive collection of reference
material is included in the Appendices.

5.1 Inspection Process FAQs

What Is an Inspection?

An inspection is a formal, rigorous, in-depth technical review designed to
identify problems as close to their point of origin as possible. Michael
Fagan [4] developed the inspection process while he was at IBM in the
1970s. Inspections have not changed much since first described by Fagan.
What has changed is the realization that this process can make a significant
impact on software quality. There have been numerous studies [5-7] done
over the past 20 years to document the economic benefit of inspections on
quality.

The objectives of the inspection process are to:

¢ Find problems at the earliest possible point in the software develop-
ment process;

e Ensure that agreement is reached on rework that may need to be
done;

e Verify that any rework done meets predefined criteria.

In addition to these objectives, inspections:

Provide data on product quality and process effectiveness;

Build technical knowledge among team members;

Increase the effectiveness of software validation testing;

Raise the standard of excellence for software engineers.

Why Is an Inspection Considered Formal?

Inspections are called formal because there are defined roles and responsibili-
ties for each of the participants. There is also a defined process that is fol-
lowed in the weeks leading up to the inspection meeting, during the
inspection meeting, and in follow-up activities after the meeting. Having a

62 Software Verification and Validation for Practitioners and Managers

formal process ensures that the objectives of the inspection will be met.
However, at most inspections, black tie is optional!

Who Participates in an Inspection?

An inspection typically requires five to seven people. Each person is assigned
a specific role and each role has specific responsibilities associated with it.
The roles are:

Moderator: Coordinates the inspection and leads the discussion
Producer: Responsible for the work being inspected

Reader: Paraphrases the work inspected at the inspection meeting
Inspector: Inspects the product

Recorder: Records problems discussed at the inspection meeting

Manager: Supervises the producer

What Are the Roles and Responsibilities of the Participants?

Well-defined roles and responsibilities are a key attribute of the inspection
process. The roles and responsibilities of the moderator, producer, reader,
inspector, recorder, and manager are defined in Appendix A.

Throughout the software development process for a given project, peo-
ple may be asked to fill several different roles. You may play the role of an
inspector at one inspection and be the producer for another. As the producer,
you receive the benefits of having a talented group of people help you
improve the quality of your work. They, in return, will expect the same of
you.

Do Managers Attend the Inspection Meeting?

Equally important as who participates in inspections is who does not partici-
pate. The manager participates in the inspection process but does not attend
the inspection meeting. Experience has shown that the inclusion of managers
at the inspection meeting changes the inspection. Regardless of the mana-
ger’s behavior at the meeting, the focus consciously or unconsciously shifts
from the product to the producer. It is for this reason that managers do not
attend inspection meetings.

The Inspection Process 63

Why Is the Producer Present?

The producer’s responsibilities at the inspection meeting are to clarify, not
justify. The producer answers questions, but does not attempt to explain
why—only what and how. The moderator ensures that comments and criti-
cisms are directed at the product and not the producer.

How Are Inspections Different from Walk-throughs?

Inspections are different from walk-throughs in several key areas, as shown in

Table 5.1.

What Are the Key Attributes of the Inspection Process?

The first attribute of the inspection process is the well-defined roles and

responsibilities of the inspection team members. These are listed in
Appendix A.

Table 5.1
Inspections Versus Walk-Throughs

Attribute Inspection Walk-through
Objectives Find problems. Find problems.
Verify rework that is done. Discuss alternative solutions.
Focus is on whether the Focus is on demonstrating
product as written meets how the product meets all
all requirements. requirements.
Decision making Inspection team makes all Producer makes all decisions.
decisions based on consensus.
Leadership Trained moderator. Usually the producer.
Attendance Peers with documented Peers and technical
attendance. managers. Attendance not
documented.
Presentation of material Material presented by reader. Material presented by
producer.
Metrics Formally required. Optional.
Procedures Formally documented. Informal.

Training Required for all participants. ~ No training required.

64 Software Verification and Validation for Practitioners and Managers

The second attribute is documentation. An example of a documented
inspection process is included in Appendix B. The information in
Appendices A through D can be used to develop an inspection process for
your organization.

The third attribute is the collection of product and process metrics.
Product and process metrics are collected in order to improve both the soft-
ware development process and the inspection process. One example of how
you could use product metrics to improve your product is to perform a
Pareto analysis of the defect data collected from several code inspections. The
purpose of Pareto analysis is to “separate the vital few from the trivial many.”
It has been said that 80% of the defects come from 20% of the causes. This
data-analysis method helps to direct your work where the most improvement
can be made.

A Pareto analysis would indicate the most common coding errors that
software engineers have made. This information can then be used to revise
the coding standards so that this type of defect is less likely to occur in the
future. Similarly, an analysis of process metrics (such as how many errors are
found versus how many defects are found) can be used to improve the
inspection process.

The Inspection Problem Report Form and the Inspection Summary
Form shown in Appendix C illustrate the types of metrics to collect.

The fourth attribute of the inspection process is inspecting against
“that which came before.” A basic principle of the inspection process is that
you inspect a document or code against previous documentation. In addi-
tion, there may be company or project standards (such as coding conven-
tions) that are relevant for use during the inspection.

The fifth attribute is supporting infrastructure. The success of the
inspection process depends on the support of management. To be effective,
inspection training is required for all people who are to be involved. This
training can be completed in a few hours and can be based on the informa-
tion contained in the Appendices. Training is required to ensure that each
participant is aware of the roles and responsibilities that they may be asked to
fulfill.

Because inspections are very different from the types of meetings soft-
ware engineers usually participate in, training in how to behave at an inspec-
tion is essential. Participants need to learn how to direct their criticism at the
product and not the producer. They need to learn the types of questions to
ask (such as, “What does this section of code do?”) and more importantly,
what questions to not ask (“Why did you do it that way?”). For many soft-
ware engineers, the temptation to roll up their sleeves and get into problem

The Inspection Process 65

solving is very great. This behavior needs to be changed during an inspection.
A good idea for a company implementing inspections is to have a few prac-
tice inspections to allow people to become familiar with the process and the
group dynamics.

In addition to the commitment to training, project managers need to
plan for inspections by including them on project schedules. If inspections
are not part of the schedule, they are less likely to occur, even with the best of
intentions.

Lastly, to be successful, inspections require the support of managers
and supervisors. Managers and supervisors need to allow people to partici-
pate on inspection teams. This requires a time commitment that sometimes
will conflict with other priorities.

Who Decides What Is to Be Inspected?

Deciding what to inspect is not easy. Inspections require a considerable time
commitment and therefore selecting what to inspect needs to be done judi-
ciously. Usually, a producer and the producer’s manager decide on the need
for an inspection. It is important to note that the producer’s manager is
involved only in the decision to conduct the inspection, and not in the
inspection itself. Potential producers should view inspections as a positive
step taken to improve product quality and reduce rework.

Developing criteria such as the following, used for selecting code mod-
ules for inspection, is a useful way to help make the decision.

e A module performs functions that are critical to the correct opera-
tion of the product.

e A module is determined to be relatively more complex than other
modules based on objective evaluation with industry standard com-
plexity metrics such as McCabe Cyclomatic Complexity [8] and
Halstead Software Science [9]. (See Sections 7.3.1.1 and 7.3.1.2 for
an overview of these metrics.)

e In the past, there have been a relatively high number of errors found
in modules that perform similar functions.

e A relatively new or inexperienced software engineer wrote the
module.

Similar criteria should be developed for each type of product that is
inspected.

66 Software Verification and Validation for Practitioners and Managers

How Do You Know If You're Ready to Perform an Inspection?

Being ready to perform an inspection means that the necessary documenta-
tion is prepared and in order. It also means that the required inspection
training has been performed and that there is support from management.
Table 5.2 illustrates the required documentation needed for an inspection.

What Material Is Required to Conduct an Inspection?

The materials needed to conduct the inspection are shown in Table 5.2.

Many companies have developed their own internal coding standards
and conventions. For consistency, improved readability, and maintainability,
it is important that such documents be included in code inspections.

Prompting checklists can be used for all types of inspections. These
checklists should address common problems observed in the information
being inspected and should be updated frequently based on the product and
process data collected during inspections. Examples of checklists are included
in Appendix D.

How Is This Material Disseminated?

The producer is responsible for providing the required materials to the mod-
erator in a timely manner. The moderator is responsible for distributing the
materials to the inspection team. This can be done at the overview meeting
(if one is scheduled). The moderator ensures that the inspection team
receives the material at least five working days prior to the inspection
meeting,.

What If the Inspection Team Does Not Have Five Working Days to Review
Materials?

Remember the Boy Scouts’ motto, “Be Prepared!”? Well, that is the motto of
the inspection team also. Experience has shown that five working days are the
minimum required to adequately prepare for an inspection. The moderator
is responsible for ensuring that the team has adequate time to prepare. There
is no point conducting the inspection if the team is not prepared. If the team
is not prepared, the moderator postpones the inspection meeting.

The Inspection Process

67

Table 5.2
Ready for Inspection?

The SRS has been inspected
and all outstanding issues
have been resolved.

Type of Item Being Ready to Materials Required for In-
Inspection Inspected Inspectlf... spection Team
Requirements SRS Inspection training performed. SRS and product concept speci-
Product Concept (or the docu- fication (or the document that
ment that precedes the SRS) Precedes the SRS).
has been reviewed and Requirements checklist.”
approved.
Design SDD Inspection training performed. SRS and the SDD design check-
The SRS has been inspected 1St
and all outstanding issues
have been resolved.
Code Source code Inspection training performed. Line-numbered source code
modules The SDD has been inspected listing, the SDD, and company
and all outstanding issues coding standards.
have been resolved. Coding checklist.*
Modules selected for inspec-
tion based on defined
criteria.”
The source code has been
compiled with no errors.
Validation Test Inspection training performed. Test procedures and the SRS.
Tests Procedures Test checklist *

* Examples of these items are included in Appendix D.

We're Having Our First Inspection and | Am One of the Inspectors. What Should

I Do to Prepare?

First, know your role and responsibilities (see Appendix A). Next, based on

the information you received, familiarize yourself with the document you are
inspecting. Review this document against the “document that came before,”
using the prompting checklists and standards as reminders of things to

check. Now go back to the document you are inspecting and look for poten-

tial problems—places where the requirements defined in the earlier docu-

ment are not being met; or places where the standards and conventions are

not being followed.

68 Software Verification and Validation for Practitioners and Managers

Each time you find a potential problem, record it on an Inspection
Problem Report Form. Continue until you’ve gone through the entire docu-
ment being inspected. If, during your preparation, you have questions that
deal with understanding what is being done (not why it is being done), ask
the moderator or producer for clarification before the inspection meeting,.

Remember that your objective is to find problems—not solve them.
Last, keep track of your preparation time.

Who Decides What Is a Problem?

The inspection team reaches consensus on each issue raised and decides what
issues are to be recorded as errors or defects.

What Is an Error?

An error is a problem in which the software or its documentation does not
meet defined requirements and is found at the point of origin. For example, a
coding problem found during a code inspection is an example of an error.

What Is a Defect?

A defect is a problem in which the software or its documentation does not
meet defined requirements and is found beyond the point of origin. For
example, a requirements problem found during a code inspection is an exam-
ple of a defect.

What if the Producer Does Not Agree?

The producer doesn’t get a vote! The inspection team decides which prob-
lems are recorded as errors or defects. The producer does not participate in
making this decision.

I'm an Inspector and I've Completed My Preparation. It's Time for the Inspection
Meeting. What Happens Now?

The moderator calls the meeting to order and determines if the inspectors are
prepared. If the moderator is satisfied that the team is adequately prepared,
the inspection begins. The reader starts by paraphrasing the first chunk of
information from the work product. (Note that a reader is usually required
only for code inspection.)

The Inspection Process 69

The moderator then goes around the table and solicits any potential
errors or defects from the team. Each potential error or defect is discussed
and the team reaches consensus as to whether a potential problem should be
recorded as an error or defect. The producer is asked to clarify issues as
needed.

Each potential problem is recorded on an Inspection Problem Report
form. The recorder ensures that the information entered on the problem
report forms is complete and accurate and reflects any team discussions and
clarifications.

After the reader has completed paraphrasing the whole work product,
the moderator asks the recorder to read back all of the problem reports to
ensure that they were recorded correctly. The team decides if the severity of
the problems found warrants another inspection or if the moderator can
review the corrective action without another inspection meeting. The
recorder records the meeting duration information on the Inspection Sum-
mary Form.

If another meeting is required, the moderator schedules the next meet-
ing. The moderator then adjourns the meeting.

How Does the Moderator Know If the Inspectors Are Prepared?

One way of determining if the team is prepared is to ask each inspector to
write down how much time he or she spent preparing for the meeting. If, in
the moderator’s opinion, the team is not adequately prepared, the moderator
postpones the meeting. Alternatively, the moderator can meet with the
inspectors before the meeting to see if they are prepared.

How Does the Moderator Keep the Meeting Focused?

It isn’t always easy. Selection of an effective moderator is crucial to the suc-
cess of the inspection. An ineffective moderator can be detrimental to the
inspection process. The person selected must have the ability and skills to
keep the meeting focused and deflect criticism from the producer and onto
the product being inspected. A good moderator intervenes as little as possible
but as much as necessary. Training and practice are key.

What Happens If the Producer Becomes Defensive?

The moderator needs to take control and reassure the producer that the com-
ments are directed at the product and not at him or her. The moderator

70 Software Verification and Validation for Practitioners and Managers

needs to reinforce the objectives of the inspection, which is to find problems,
not fix them—and remind everyone to stay focused on this objective.

How Do You Justify the Preparation Time Required?

The preparation time is justified by the following:

e Have a large group of inspectors to select from, and limit each per-
son’s preparation time during any given year.

e Be very selective in what you choose to inspect.

¢ Document the problems found by the team and compare the effort
required to find these problems with the effort required to find the
same problems other ways (i.e., by testing).

¢ Document the amount of time actually spent in an inspection.

Why Are Inspection Meetings Limited to Two Hours, and What Happens If the
Meeting Runs Over?

Inspection meetings require intense concentration and focus. Experience has
shown that after two hours, most people’s ability to concentrate and remain
focused decreases. If the meeting runs over, the moderator schedules a con-
tinuation meeting on another day.

What Information (If Any) Should Be Made Public Regarding Inspections?

This is very controversial, because most people are averse to having what is
perceived as their competence (or incompetence, as the case may be) posted
for all to see. Rather than posting results of individual inspections, consider
posting only summary results after completing half a dozen or so inspections.
In that way, people will see that there is management support and quality
improvement but without personalizing it.

When Is the Inspection Officially Completed?

The inspection is officially completed when the moderator closes out the
rework section on the Inspection Problem Report Form for all problems

identified.

The Inspection Process Al

52 Summary

All the best-in-class companies that are pushing or exceeding 99%
[defect-removal] efficiency levels use formal inspections, quality assur-
ance groups, and trained testing specialists. Of course, high defect-
removal efficiency does not guarantee success. A company can have
unhappy or dissatisfied customers for other reasons. However, high lev-
els of customer satisfaction strongly correlate with high levels of defect-
removal efficiency. Conversely, software firms whose defect-removal
efficiency levels sag below 85% almost never have really happy clients
because their software is too unreliable. [1]

References
Jones, C., “Software Defect-Removal Efficiency,” IEEE Computer, Vol. 29, No. 4,
April 1996, pp. 94-95.

Jones, C., Software Quality: Analysis and Guidelines for Success, Boston, MA: Interna-
tional Thomson Computer Press, 1997.

Humphrey, W. S., Managing the Software Process, Reading, MA: Addison-Wesley,
1989, p. 172.

Fagan, M., “Design and Code Inspections to Reduce Errors and Improve Program
Development,” IBM Systems Journal, No. 3, 1976, pp. 182-210.

Humphrey, W. S., Managing the Software Process, Reading, MA: Addison-Wesley,
1989, pp. 186-187.

Grady, R. B, and T. Van Slack, “Key Lessons in Achieving Widespread Inspection
Use,” IEEE Software, July 1994, pp. 46-57.

Banard, J., and A. Price, “Managing Code Inspection Information,” /EEE Software,
March 1994, pp. 59-69.

McCabe, T. J., “A Software Complexity Measure,” IEEE Transactions on Software Engi-
neering, Vol. 2, 1976.

Halstead, H. M., Elements of Software Science, New York: North-Holland, 1977.

Selected Bibliography

Fagan, M. E., “Advances in Software Inspections,” IEEE Transactions on Software Engineer-
ing, Vol. SE-12, 1986, pp. 774-751.

72 Software Verification and Validation for Practitioners and Managers

Friedman, D. P., and G. M. Weinberg, Walkthroughs, Inspections, and Technical Reviews, 3rd
ed., New York: Dorset House, 1990.

Gilb, T., and D. Graham, Soffware Inspection, Reading, MA: Addison-Wesley, 1993.

Hatton, L., “Static Inspection: Tapping the Wheels of Software,” IEEE Software, Vol. 12,
1995, pp. 85-87.

Wheeler, D., B. Brykezynski, and R. Meeson, Jr., (eds.), Soffware Inspection: An Industry Best
Practice, Los Alamitos, CA: IEEE Computer Society Press, 1996.

Web Resources

The Software Inspection and Review Organization (SIRO) home page is available at:
http://www.ics.hawaii.edu/~siro/. SIRO is a voluntary organization devoted to the exchange
of information about group-based examination of software work products. The scope of
SIRO includes, but is not restricted to:

® Promoting exchange of ideas and information on the state of practice;
e Facilitating emerging inspection and review techniques;
e Providing a clearinghouse for support resources;

® Surveying and reporting on industry use of techniques and metrics.

SIRO maintains an extensive bibliography of materials related to inspections, formal techni-
cal reviews, and walk-throughs.

Note: URLs cited were accurate as of April 2001.

Applying the Inspection Process

To be most effective, inspections must be an integral part of the software
development process. The inspection process can be easily adapted and
applied to a variety of deliverables associated with the software development
process, including the software requirements specification (SRS), the soft-
ware design description (SDD), the source code, and the test scripts.

Before discussing how to adapt and apply the inspection process, we
need to review issues related to integrating inspections into the software
development process and, more importantly, into a company’s culture. The
goal is for inspections to become institutionalized.

6.1 Attributes of a Good Process

The SEI has done an extensive amount of research into issues that affect an
organization’s ability to consistently develop high-quality software. As you
would expect, the software development process is a key element in deliver-
ing high-quality software. The SEI has identified the following key attributes

of a good process:

e The process is written.
e The process is flexible and can be changed.

¢ Everyone agrees to follow the process.

73

74 Software Verification and Validation for Practitioners and Managers

e The process includes metrics, which are used to measure process
effectiveness.

e Metrics are the basis for changing the process.

e The process is actively managed.

These attributes, while applicable to almost any process, are particu-
larly relevant for software-related processes and are indicators of process
maturity. In a highly competitive global economy, those organizations that
exhibit higher levels of process maturity will produce higher quality products
and will be more productive, efficient, and profitable.

To help introduce inspections into your organization, an example of an
inspection process is included in Appendixes A through E. This material can
be used to document your inspection process and form the basis for inspec-
tion training materials.

6.1.1 |Institutionalizing Inspections

Making inspections part of your company’s culture can be a difficult task.
Management may question the cost savings that can be realized by judicious
use of inspections and may ask for an economic justification. You should be
prepared to provide such a justification. As discussed earlier, there is consid-
erable economic data available to justify the use of inspections.

Surprisingly, some software engineers and project managers may be
reluctant to accept inspections. Some software engineers fear peer reviews
and have legitimate concerns regarding the use of such reviews as part of per-
formance reviews. Some project managers may be reluctant to incorporate
inspections into project schedules because of a lack of understanding of the
benefits and a focus on short-term objectives (e.g., meeting a schedule) at the
expense of long-term goals (e.g., increasing customer satisfaction). Under-
standing the root causes of this reluctance is essential to overcoming resis-
tance to institutionalizing inspections. Some of the key issues that need to be
addressed are:

1. Management

a. Does management understand and support the objectives of
the inspection process?

b. Is management willing to commit the resources necessary to
train inspectors?

c. Is management willing to include inspections in project schedules?

Applying the Inspection Process 75

2. Software development process

a. Is there a written software development process? If not, could
one be developed?

b. Is there management support for preparing a software devel-
opment process?

c. If one exists, can it be modified to include inspections at ap-
propriate points in the process?

d. Is the software development process being actively managed?

e. Does the software engineering organization support the in-
spection process?

f. Can you identify potential obstacles (such as those mentioned
above)?

g. Are resources available to train people in the inspection pro-
cess and is there a commitment to provide this training over
time as new employees are hired?

3. Inspection Metrics

a. Is there a definition of what product and process metrics will
be collected from inspections and how this data will be used?

b. Is a continuous improvement process in place that identifies
improvements to the inspection process based on collected data?

6.1.2 Real-Life Experiences

Many companies have successfully institutionalized inspections. Hewlett-
Packard (HP) has used inspections successfully for over 15 years. The results
of widespread adoption of the inspection process at HP have been
reported [1]. Based on this experience, HP has standardized the use of
inspections across the company. Key parts of the plan are:

e Proactively support inspection champions and sponsors.

e Reinforce management awareness with economic justification for
inspections.

e Build an infrastructure strong enough to achieve and hold software
core competence.

e Measure the extent to which the process is used.

76 Software Verification and Validation for Practitioners and Managers

HP’s standardization plan is not an attempt to regulate the inspection
process, but rather to ensure that the process is applied in a manner that is
most effective for the organizations using it.

Lucent Technologies (formerly Bell Labs) has been measuring the
effectiveness of its formal inspections since 1986 [2]. By applying a set of
metrics to over two dozen software projects, the cost of removing defects
with code inspections was reduced by 300% when compared with testing
alone.

Further information regarding experiences with the inspection process
can be found on the World Wide Web at the Software Inspection and
Review Organization (SIRO) home page.

6.2 Requirements Inspections

If you can only afford to do one inspection on a project, you will get the big-
gest return on investment from a requirements inspection. A requirements
inspection should be the one inspection that is never skipped.

As we saw earlier, requirements are frequently subject to misinterpreta-
tion. Misinterpretation is usually the result of poorly written, incomplete,
inconsistent, and ambiguous requirements. An obvious question is: “Why
can’t we write better requirements?” Unfortunately, there’s no simple solu-
tion for this problem. Many people with different backgrounds and skill sets
are typically involved in the requirements-writing process and most of these
people are not aware of the impact that poorly written requirements can have
on a software development project. There are a couple of things you can do,
however, to teach people how to write good requirements.

First, you can provide an example of a well-written requirements docu-
ment. If you can’t find one, you can define some attributes for good require-
ments documents. Examples of such attributes are included in Appendix E.
Second, you can develop a Requirements Inspection Checklist, similar to the
one included in Appendix D, that is specific to your products and organiza-
tion. The key to making checklists effective is to update them frequently
with new information gleaned from inspections performed at your company.
By doing this, you'll avoid making the same mistakes twice.

Once you have identified an example of a well-written requirements
document, attributes for good requirements, and a Requirements Inspection
Checklist, call a meeting with the folks who usually write requirements and
review this material with them. Let them know that the requirements they
write will be measured against these standards. Stress the importance of

Applying the Inspection Process 77

writing good requirements in terms of the economic impact to the company.
Recall that studies have shown that an error that cost $350 to find and fix in
the requirements definition phase of a project can cost more than $12,000
(more than 34 times as much) to find and fix if is not found until the valida-
tion testing phase [3].

6.2.1 Objectives and Prerequisites

The objectives and prerequisites for a requirements inspection are summarized

in Table 6.1.

6.2.2 Requirements Inspection Process

6.2.2.1 Planning Phase

During the planning phase, the moderator and the inspection team are
selected. For a requirements inspection, the moderator should select inspec-
tors from a wide range of disciplines in the organization. For example, the
inspection team should include representatives from software engineering,
software QA, marketing, customer support, technical publications, manufac-
turing, and other relevant groups within your organization. Selecting inspec-
tors from several disciplines and functions will result in a much better
inspection of the SRS because the product will be inspected from many dif-
ferent points of view.

Table 6.1
Requirements Inspection Objectives and Prerequisites

Objectives Prerequisites

Is each requirement in the SRS consis- All inspection team members received in-
tent with and traceable to the document spection process training. (Note: This prereg-
that preceded the SRS? uisite applies to all types of inspections and
Is each requirement in the SRS clear for the sake of brevity, will not be repeated.)
concise, internally consistent, unambi- The document that preceded the SRS has
guous, and most important, testable? been reviewed and approved.

Are we building the right product? The SRS has been internally reviewed.

A Requirements Inspection Checklist is
available. (Note: An example of a require-
ments checklist is included in Appendix D.)

78 Software Verification and Validation for Practitioners and Managers

The moderator and the producer identify relevant inspection materials,
including:

SRS to be inspected;

Document that preceded the SRS;

e Requirements Inspection Checklist (refer to Appendix D);

Attributes of Good Requirements Specifications (refer to Appendix E).

Each member of the inspection team must make a commitment to
devote the necessary time to the inspection process. In the case of a require-
ments inspection, preparation time will vary based on familiarity with the
product and the product’s complexity. As a rule of thumb, preparation time
can be estimated at about 10 pages per hour. Of course, this estimate can
vary significantly based on many factors. The duration of the inspection
meeting should be based on an inspection rate of about 10 to 20 pages per
hour. As your organization gains experience with the inspection process, you
can revise these estimates accordingly.

The moderator sets the date, time, and location for the inspection
meeting and distributes the inspection materials at least five working days
prior to the meeting. The moderator should record the total planning time
on the Inspection Summary Form.

6.2.2.2 Preparation Phase

During the preparation phase, each member of the inspection team prepares
for the inspection meeting by reviewing the inspection materials and noting
potential discrepancies in the SRS. The Requirements Checklist should be
used to focus attention on specific areas that there have been problems with
previously. Inspectors should record each potential discrepancy on an
Inspection Problem Report Form (see Appendix C) so that page numbers,
questions, and other references can be recorded ahead of time. This will save
time during the inspection meeting.

Inspectors are encouraged to ask questions of the producer during the
preparation phase. Such questions should be aimed at providing understand-
ing and clarification, and not justification.

Members of the inspection team keep track of their preparation time.
The moderator records the total preparation time of the whole team on the
Inspection Summary Form.

Applying the Inspection Process 79

6.2.2.3 Inspection Meeting Phase

At the inspection meeting, the moderator must first determine if the inspec-
tion team is adequately prepared. One way to do this is to ask each member
of the team to write down how much time they spent preparing. Another
way to judge preparedness is to ask to see the Inspection Problem Report
Forms. A third way is for the moderator to meet with the inspectors indi-
vidually before the meeting to assess preparedness. The moderator uses his or
her best judgment to decide if the team is prepared. Remember that the
moderator has to be willing (and able) to postpone the inspection meeting if,
in the moderator’s judgment, the team is not adequately prepared. By taking
this action, the moderator reinforces the need for preparation.

If the team is prepared, the moderator begins the inspection by review-
ing the ground rules (outlined in Appendix B). The moderator then goes
around the table and asks for potential discrepancies on the SRS on a
paragraph-by-paragraph basis. Each potential discrepancy is discussed. As the
team reaches consensus on each potential discrepancy, it is so noted on the
Inspection Problem Report Form. After all potential discrepancies have been
discussed, the moderator will recap and ask the team if they feel a follow-up
inspection is warranted. If not, the moderator will work with the producer to
ensure corrective action is completed.

The moderator records the duration of the meeting and completes the
Inspection Summary Form (refer to Appendix C). Two working days after
the meeting, the moderator distributes meeting minutes.

6.2.2.4 Follow-up Phase

The moderator works with the producer to resolve discrepancies raised at the
meeting. Upon successful completion, the moderator will complete the Cor-
rective Action portion of the Inspection Summary Form to indicate that the
inspection has been completed.

6.3 Design Inspection

Finally, there are those systems in which the design errors prove so gross
that no system test is ever reached—the system collapses of its own
developmental weight before integration is achieved. How many of
these does it take to justify the institution of design reviews? [4]

Most every software engineer can relate to the above observation made by
Friedman. Unfortunately, we continue to deceive ourselves into believing

80 Software Verification and Validation for Practitioners and Managers

that we are capable of designing very complex systems without the benefit
of design inspections. More often than not, these projects are not
successful and organizations spend enormous sums of money correcting
problems that should have never occurred in the first place. In a business cli-
mate that is constantly looking for cost savings and improved productivity,
this is one activity that could result in significant savings, if only it was

applied.

6.3.1 Objectives and Prerequisites

The objectives and prerequisites are shown in Table 6.2

6.3.2 Design Inspection Process

Design inspections should be performed on those aspects of the product
design that warrant an inspection. How do you decide what warrants an
inspection? You need to use good engineering judgment. Every aspect of the
design cannot be inspected, so you need to be selective in what you inspect.

Table 6.2
Design Inspection Objectives and Prerequisites

Objectives

Does the design, as expressed in the
SDD, address all of the requirements
of the SRS?

Are all design elements traceable to
specific requirements contained in the
SRS?

Does the design conform to project
and company standards?

Are we building the product correctly?

Prerequisites

The SRS has been inspected and all
follow-up actions completed.

The SDD has been internally reviewed.

A Design Inspection Checklist is avail-
able. (Note: An example of a high-level
design and a detailed design checklist
are included in Appendix D.)

If the design is done using CASE tools,
relevant reports and diagrams (such as
data dictionaries, data flow diagrams,
and entity-relationship diagrams) from
such tools should be made available.

Applying the Inspection Process 81

Those aspects of the design that are new, that have been troublesome in the
past, and that are crucial to the proper functioning of the product are all
appropriate criteria to use in deciding what to inspect.

In addition, software design is sometimes done in two stages: high-level
design and detailed design. If this is the case in your company, planning the
design inspection should take this into account.

6.3.2.1 Planning Phase

During the planning phase, the moderator and producer select the inspec-
tion team. Given the nature of the SDD, inspection team members should
be selected from software engineering, software QA, and other functions as
appropriate. For example, if the design being inspected is for software that
interfaces to some hardware your company develops, include an engineer
from the hardware group on the inspection team.

Again, the moderator needs to get commitments from the inspection
team members that they can take the time needed to prepare for the inspec-
tion meeting. A design inspection may require more preparation time than a
requirements inspection because the information is more complex and
abstract. As a rule of thumb, preparation time should be based on about five
pages per hour. The inspection meeting should be based on an inspection
rate of about 5-10 pages per hour.

The moderator and the producer together decide if an optional over-
view meeting is needed, based on (1) the inspection team’s familiarity with
the product, (2) the complexity of the SDD, and (3) the amount and com-
plexity of the inspection materials.

If an overview meeting is needed, the moderator and producer deter-
mine what material to present at the overview meeting. The producer is
responsible for presenting this information. The moderator arranges to dis-
tribute the inspection materials at the overview meeting.

The moderator sets the date, time, and location for the overview meet-
ing (if needed) and the inspection meeting and distributes the inspection
materials at least five working days prior to the inspection meeting. If an
overview meeting is held, the moderator distributes the inspection materials
at that time.

The moderator records the total planning time and time spent on an
overview meeting on the Inspection Summary Form.

6.3.2.2 Overview Meeting Phase

The purpose of the overview meeting is to familiarize the inspection team
with the product and the inspection materials in order to facilitate

82 Software Verification and Validation for Practitioners and Managers

understanding. At the meeting, the producer will present an overview of the
product, in an attempt to show how this piece fits into the big picture. The
producer should also review the organization and content of the inspection
materials so that the team becomes familiar with what is included.

Inspection team members are free to ask questions at the overview
meeting as long as the questions are aimed at gaining an understanding of the
material being presented. The moderator ensures that questions from the
team are along these lines. The moderator will record the time spent prepar-
ing for the overview meeting, as well as the total time spent by the team at
the meeting, on the Inspection Summary Form.

6.3.2.3 Preparation Phase

During the preparation phase for a design inspection, team members should
become very familiar with the inspection materials, the SDD, and the appro-
priate Design Checklist (high-level design or detailed design). The Design
Checklist (examples included in Appendix D) is used to focus the inspectors’
attention on those areas that are known problem areas.

Each inspector should record any discrepancies on an Inspection Prob-
lem Report Form and should keep track of their preparation time. The mod-
erator records the total preparation time on the Inspection Summary Form.

6.3.2.4 Inspection Meeting Phase

At the inspection meeting, the moderator must first determine if the inspec-
tion team is adequately prepared and reviews the ground rules described in
Appendix B.

The moderator begins the inspection by asking the team for potential
discrepancies on each paragraph in the SDD. Comments on other parts of
the SDD are held until the team gets to that part.

The team must reach consensus on each potential discrepancy and also
decide how to categorize each discrepancy they do agree on. This informa-
tion is recorded on the Inspection Problem Report Form and is used later on
as the basis for making improvements to the Design Checklist.

After all of the sections have been discussed, the moderator will recap
the discrepancies the team has agreed on and ask if the team wants to sched-
ule a follow-up inspection. If not, the moderator is responsible for working
with the producer and reviewing the corrective actions. If the team wants a
follow-up inspection, the moderator schedules it.

The moderator records the duration of the inspection meeting on the
Inspection Summary Form and adjourns the meeting. The moderator dis-
tributes meeting minutes within two working days of the meeting.

Applying the Inspection Process 83

6.3.25 Follow-Up Phase

As requested by the team, the moderator works with the producer to resolve
discrepancies raised at the meeting. Upon successful completion, the mod-
erator will complete the Corrective Action portion of the Inspection Sum-
mary Form to indicate that the inspection has been completed.

6.4 Code Inspection

We didn’t mean to, but in software we have created the first artifact that
exhibits the human duality of body and soul. The soul of software is
invisible, intangible, silent, weightless, deaf, mute, blind, paralyzed.
Like a soul, too, it is complex and hard to understand. It is a structure of
logical symbols organized in a framework according to someone’s model
of some aspect of the world. How do you visualize the invisible? How
do you grasp the intangible? How do you hear the silent? 5]

Most software engineers have at least one story of a bug that they introduced
into some product that probably could have been caught if the code was
inspected. The cost of finding and fixing that one bug can range from 10 to
100 times the cost of finding and fixing the bug at a code inspection. This is
why code inspections should become part of the software development
process.

6.4.1 Objectives and Prerequisites

The objectives and prerequisites are shown in Table 6.3.

6.4.2 Code Inspection Process

Code inspections are the most frequently used type of inspection. This is
probably due to the fact that we tend to focus a lot of attention on the coding
phase of the software development process, to the detriment of the earlier
phases. A key aspect of code inspections is deciding what to inspect. Code
inspections require much more preparation and concentration than do
requirements inspections and even design inspections. Therefore, judiciously
choosing what to inspect is important to maximize the benefit. You should
develop criteria similar to that shown in Appendix F to help make this
decision.

84 Software Verification and Validation for Practitioners and Managers

Table 6.3
Code Inspection Objectives and Prerequisites

Objectives Prerequisites

Is the code consistent with the design The SDD has been inspected and all
as expressed in the SDD? follow-up actions completed.

Is the code traceable to specific re- The code has been compiled with no
quirements identified in the SDD? errors. A tool such as Lint can be used

Does the code conform to project and to identify other potential coding errors.\

company coding standards? A Code Inspection Checklist is available.
(Note: Examples of checklists for C and

Are we building the product correctly? ‘ i :
C areincluded in Appendix D.)

6.4.2.1 Planning Phase

The moderator and the producer should jointly identify the members of the
inspection team. Team members should be selected based on their expertise
in software engineering, their familiarity with the product, and their involve-
ment with the project. People from groups other than software engineering
(i.e., user interface, software QA, hardware engineering) should be consid-
ered if they are able to understand and evaluate the material being inspected
(that is, that they have at least a reading knowledge of the language the soft-
ware is written in).

Again, the moderator needs to get a commitment from inspection team
members that they can take the time needed to prepare for the inspection. A
code inspection will require more preparation time than a design inspection
because the information is more complex and abstract. As a rule of thumb,
preparation time should be based on about 50 lines of C source code per
hour. The inspection meeting should be based on an inspection rate of about
100-200 lines of C source code per hour. (Note: A line of C source code is
not well defined.)

The moderator and the producer together decide if an optional over-
view meeting is needed based on (1) the inspection team’s familiarity with
the product, (2) the complexity of the module being inspected, and (3) the
complexity of the inspection materials.

If an overview meeting is needed, the moderator and producer deter-
mine what material to present at the overview meeting. The producer is
responsible for presenting this information. The moderator sets the date,
time, and location for the overview meeting (if needed) and the inspection

Applying the Inspection Process 85

meeting and distributes the inspection materials at least five working days
prior to the inspection meeting.

The inspection materials should include the SDD (the document that
precedes the code), a line-numbered source listing of the code (to facilitate
references to specific lines of code), and the Coding Checklist (similar to that
included in Appendix D).

The moderator records the total planning time and time spent on an
overview meeting on the Inspection Summary Form.

6.4.2.2 Overview Meeting Phase

The purpose of the overview meeting is to familiarize the inspection team
with the product and the inspection materials in order to facilitate under-
standing. At the meeting, the producer will present an overview of the prod-
uct and explain how this module fits into the big picture. The producer
should also review the organization and content of the inspection materials
so that the team becomes familiar with what is included.

Inspection team members are free to ask questions at the overview
meeting as long as the questions are aimed at gaining an understanding of the
material being presented. The moderator ensures that questions from the
team are along these lines.

6.4.2.3 Preparation Phase

To prepare for the inspection meeting, each inspector becomes very familiar
with the module being inspected, the SDD, and the Coding Checklist. Each
inspector reviews the module’s source listing and looks for potential discrep-
ancies between the code and the SDD. The Coding Checklist helps focus
attention on areas known to be problems. Each discrepancy is noted on an
Inspection Problem Report Form, identifying the relevant line numbers in
the source listing and SDD paragraph references.

In addition to preparing as described above, the reader must also be
able to paraphrase sections or chunks of the source code so that the modera-
tor can focus the team’s attention on one chunk at a time.

6.4.2.4 Inspection Meeting Phase

At the inspection meeting, the moderator must first determine if the inspec-
tion team is adequately prepared and reviews the ground rules as described in
Appendix B.

The moderator begins the inspection by asking the reader to paraphrase
the first chunk from the module source listing. The reader does this, and the
moderator then asks the team for potential discrepancies on that chunk.

86 Software Verification and Validation for Practitioners and Managers

Comments on other parts of the code are held until the reader gets to the
appropriate chunk.

The team must reach consensus on each potential discrepancy and also
decide how to categorize each discrepancy that they do agree on. This infor-
mation is recorded on the Inspection Problem Report Form and is used later
on as the basis for making improvements to the Coding Checklist.

After all of the chunks have been discussed, the moderator will recap
the discrepancies the team has agreed on and ask if the team wants to sched-
ule a follow-up inspection. If not, the moderator is responsible for working
with the producer and reviewing the corrective actions. If the team wants a
follow-up inspection, the moderator schedules it.

The moderator records the duration of the inspection meeting on the
Inspection Summary Form and adjourns the meeting. The moderator dis-
tributes meeting minutes within two working days of the meeting.

6.4.25 Follow-Up Phase

As requested by the team, the moderator works with the producer to resolve
discrepancies raised at the meeting. Upon successful completion, the mod-
erator will complete the Corrective Action portion of the Inspection Sum-
mary Form to indicate that the inspection has been completed.

6.5 Test Script Inspection

Like all other deliverables produced during the software development process,
tests are subject to misunderstanding and can benefit from selective inspection.
The primary benefit to be gained by applying the inspection process to test
procedures is that it can help identify potential misunderstandings between the
software engineers and the software validation test engineers. Identifying and
correcting such misunderstandings before the validation testing phase begins
results in a more effective and efficient testing process.

6.5.1 Objectives and Prerequisites

The objectives and prerequisites are shown in Table 6.4.

6.5.2 TestProcedure Inspection Process

6.5.2.1 Planning Phase

The moderator and the producer should jointly identify the members of the
inspection team. Team members should be selected based on their expertise

Applying the Inspection Process 87

Table 6.4

Test Script Inspection Objectives and Prerequisites
Objectives Prerequisites
Do the validation tests accurately re- The tests have been reviewed internally
flect requirements defined in the SRS? and executed at least once.
Have validation tests taken advantage A Test Procedure Inspection Checklist is
of knowledge of the design where available. (Note: An example is included
appropriate? in Appendix D.)
Is the project ready to enter the valida- Every test has an expected result.
tion testing phase?

in software engineering, their familiarity with product requirements, and
their involvement with the features that are being tested. In most cases, an
overview meeting is not required.

The moderator and the producer identify relevant inspection materials,
including (1) SRS, (2) test procedures to be inspected, and (3) Test Proce-
dure Inspection Checklist (refer to Appendix D). As for all inspections, com-
mitment from the team members is essential.

The moderator sets the date, time, and location for the inspection
meeting and distributes the inspection materials at least five working days
prior to the meeting. The moderator should record the total planning time
on the Inspection Summary Form.

6.5.2.2 Preparation Phase

To prepare for the inspection meeting, each inspector becomes very familiar
with the test procedures being inspected, the SRS, and the Test Procedure
Inspection Checklist. Each inspector reviews the test procedures and looks
for potential discrepancies between the test and the SRS. The checklist helps
focus attention on areas known to be problems. Each discrepancy is noted on
an Inspection Problem Report Form, identifying the relevant locations in the
Test Procedure and SRS paragraph references.

6.5.2.3 Inspection Meeting Phase

At the inspection meeting, the moderator must first determine if the inspec-
tion team is adequately prepared and reviews the ground rules as described in
Appendix B.

88 Software Verification and Validation for Practitioners and Managers

The moderator begins the inspection by asking the team for potential
discrepancies on the first test.

The team must reach consensus on each potential discrepancy and also
decide how to categorize each discrepancy that they do agree on. This infor-
mation is recorded on the Inspection Problem Report Form and is used later
on as the basis for making improvements to the Test Procedure Inspection
Checklist.

After all of the tests have been discussed, the moderator will recap the
discrepancies the team has agreed on and ask if the team wants to schedule a
follow-up inspection. If not, the moderator is responsible for working with
the producer and reviewing the corrective actions. If the team wants a
follow-up inspection, the moderator schedules it.

The moderator records the duration of the inspection meeting on the
Inspection Summary Form and adjourns the meeting. The moderator dis-
tributes meeting minutes within two working days of the meeting.

6.5.2.4 Follow-Up Phase

As requested by the team, the moderator works with the producer to resolve
discrepancies raised at the meeting. Upon successful completion, the mod-
erator will complete the Corrective Action portion of the Inspection Sum-
mary Form to indicate that the inspection has been completed.

6.6 Summary

In this chapter, we have discussed how to apply the same inspection process
to several different deliverables produced as part of the software development
process. By applying the inspection process and by collecting data resulting
from performing inspections, you can expect to achieve significant improve-
ments both in the product and in your process.

References
[1] Grady, R. B., and T. VanSlack, “Key Lessons in Achieving Widespread Inspection
Use,” IEEE Software, July 1994, pp. 46-57.

[2] Banard, J., and A. Price, “Managing Code Inspection Information,” IEEE Software,
Vol. 11, March 1994, pp. 59-69.

[3] Good, D. L., “Cost-Effectiveness,” ACM Software Engineering Notes, April 1986, p. 82.

Applying the Inspection Process 89

Friedman, D. P., and G. M. Weinberg, Walkthroughs, Inspections, and Technical
Reviews, 3rd ed., New York: Dorset House, 1990, p. 310.

Weiner, L. R., Digital Woes: Why We Should Not Depend on Software, Reading, MA:
Addison-Wesley, 1993, p. 38.

Software Quality Metrics

Lord Kelvin observed, “When you can measure what you are speaking about,
and express it in numbers, you know something about it; but when you can-
not measure it, when you cannot express it in numbers, your knowledge is of
a meager and unsatisfactory kind; it may be the beginning of knowledge, but
you have scarcely in your thoughts advanced to the stage of science” [1]. We
might loosely translate this as, “To measure is to know.”

Recall the last product that your organization released. See if you can
answer the following questions about that product:

e How large was the product (as measured by lines of source code or
megabytes of memory)?

e What was the overall productivity of the software engineering group
on the product (as measured per thousand lines of code or KLOC
per person-hour)?

¢ How many bugs were found in the product before it was released?

e How many bugs did customers find in the first three months after
release?

e Was the overall quality of this product better or worse than the pre-
viously released product?

For many software organizations, this type of basic information is not
known. In other industries, such information is routinely collected and used

91

92 Software Verification and Validation for Practitioners and Managers

by management to make decisions that drive process improvement. In the
software industry, however, relatively few organizations routinely collect and
use this type of information to improve the software development process.

Size, productivity, number of defects, and relative quality are key indi-
cators that are extremely important for any organization that is serious about
quality improvement.

In this chapter, a process for identifying and collecting software metrics
that support software quality and software V&V activities is discussed. Iden-
tifying and collecting software process and product metrics allows you to:

e Make objective assessments as software is being developed as to
whether the software quality requirements are being met;

e Provide a quantitative assessment of software quality that can pro-
vide the basis for decisions regarding the software’s fitness for use;

e Make objective assessments of the effectiveness of the software devel-
opment process.

There are excellent books and articles written on software metrics. One
of the best is the book by Grady and Caswell [1]. Their book describes their
experience in implementing a company-wide software metrics program at
HP. Another excellent resource for helping to establish a software metrics
program is the IEEE standard for a software quality metrics methodology,
IEEE-Standard 1061-1998 [2]. In addition to defining a framework for
identifying and collecting software quality metrics, the standard provides
numerous examples and an exhaustive annotated bibliography.

These two sources will be used for presenting a process for implement-
ing a software metrics program. The purpose of the software metrics program
is to identify both process and product metrics. Additionally, specific metrics
related to software V&V activities are identified here and in Chapter 10.

7.1 Strategy for Implementing a Software Metrics Program

The motivation for a software metrics program comes from the fact that
the more attributes of software we can measure, the more control we can
exert over changing those attributes in a way that will result in process
improvement.

Grady and Caswell’s experience in implementing a software metrics
program at HP has resulted in valuable information that can be used to help

Software Quality Metrics 93

start a software metrics program in your organization. Grady and Caswell [1]
have identified 10 steps that will lead to implementation of a software met-
rics program:

. Define the objectives for the software metrics program.
. Assign responsibility.

. Do research.

. Define initial metrics to collect.

. Sell the initial collection of these metrics.

. Get tools for automatic data collection and analysis.

. Establish training in software metrics.

. Publicize success stories.

. Create a metrics database.

S O 00 NN O Nk N~

—_

. Establish a way for improving the process in an orderly way.

Defining clear objectives is crucial for success. These objectives should
address the expected costs and cost savings that are possible, as well as
expected improvements in quality. Remember that quality improvements
have both a cost and cost savings. The costs are associated with identifying
and collecting metrics. The cost savings derive from lower support costs after
product release, fewer maintenance releases, higher customer satisfaction,
and as a result, increased sales.

Another key lesson we should learn from Grady and Caswell is that the
metrics program should be “only a part of an overall strategy for software
development process improvement” [1]. Without an overall program for
process improvement, metrics are of little value.

1.2 Software Quality Metrics Framework

IEEE Standard 1061-1998 [2] addresses steps 3, 4, and 6 of HP’s 10-step
process and provides a process for answering the two most difficult questions
to answer when considering a software metrics program: “What to measure?”
and “How to measure it?”

Grady and Caswell suggest starting with three simple metrics: size,
defects, and effort. While these three metrics are a good starting place, IEEE
Standard 1061-1998 [2] defines an approach, in the form of a plan, for iden-
tifying and collecting those metrics that relate to quality requirements.

94 Software Verification and Validation for Practitioners and Managers

7121 Definitions

IEEE Standard 1061-1998 [2] defines a methodology for establishing a soft-
ware quality metrics framework. The standard includes many definitions, a
few of which are repeated in Table 7.1.

7.22 The Framework

The software quality metrics framework is shown in Figure 7.1. The frame-
work is a hierarchy that consists of four levels. At the topmost level are qual-
ity requirements that the software product must meet. These requirements
are usually expressed in the customer’s terms. For example:

e The product will work on the platforms and operating systems cur-
rently used in our organization.

e The product will be reliable and will provide mechanisms to prevent
loss of data.

e The product will provide the necessary functionality required for
accomplishing some task.

e The product will be easy to use.

Quality of a
Software Product

Factor Factor
Direct Metric(s) \ Direct Metric(s)

Subfactor | Subfactor |

Factor
Direct Metric(s)

Subfactor

| Metric | | Metric | | Metric |

Figure 7.1 Software quality metrics framework. (Source: [2] © 1998, IEEE. Reprinted with
permission.)

Software Quality Metrics 95

Table 7.1
Definitions from IEEE Standard 1061-1998

metrics framework A decision aid used for organizing, selecting, communicating, and evalu-
ating the required quality attributes for a software system. A hierarchi-
cal breakdown of factors, subfactors, and metrics for a software system.

quality factor A management-oriented attribute of software that contributes to its
quality.

quality subfactor A decomposition of a quality factor to its technical components.

direct metric A metric that does not depend upon the measure of any other attribute.

predictive metric A metric applied during development and used to predict the values of a

software quality factor.

software quality metric A function whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to which software
possesses a given attribute that affects its quality.

process metric A metric used to measure characteristics of the methods, techniques,
and tools employed in developing, implementing, and maintaining the
software system.

product metric A metric used to measure that characteristic of any intermediate or final
product of the software development process.

From: |EEE Standard 1061-1998 [2]. © 1998, IEEE. Reprinted with permission.

The second level of the framework represents specific quality factors
that relate to the overall quality requirements. Quality factors are an interpre-
tation of the customer’s quality requirements and are shown in Table 7.2.

The third level of the framework represents quality subfactors that are
obtained by decomposing each quality factor into measurable attributes.
Quality subfactors are expressed in terms meaningful to software engineers
and are independent of any one quality factor. Quality subfactors associated
with the quality factors listed in Table 7.2 are shown in Table 7.3.

At the fourth level are direct metrics. At least one direct metric is associ-
ated with each quality factor. Direct metrics serve as the quantitative represen-
tation of a quality factor. Examples of direct metrics are shown in Table 7.4.

If we put all the information on quality requirements, quality factors,
subfactors, and direct metrics together, we have the information shown in

Table 7.5.

71.23 Applying the Software Quality Metrics Methodology

This part of the IEEE Software Metrics Methodology answers the “What to
measure?” question and can be implemented using a five-step process [2]:

96 Software Verification and Validation for Practitioners and Managers

Table 7.2

Quality Factors Associated with Quality Requirements

Quality Requirement

Quality Factor

Description

platforms and operating systems
currently being used in our
organization.

The product will be reliable
and will provide mechanisms to
prevent loss of data.

The product will provide the
necessary functionality required
to accomplish some task.

The product will be easy to use.

The product will work on multiple Portability

Reliability

Functionality

Usability

An attribute that bears on the ability
of software to be transferred from
one environment to another.

An attribute that bears on the capabil-
ity of software to maintain its level of
performance under stated conditions
for a stated period of time.

An attribute that bears on the exis-
tence of certain properties and func-
tions that satisfy stated or implied
needs of users.

An attribute that bears on the effort
needed for use (including preparation
for use and evaluation of results) and
on the individual assessment of such
use by users.

From: |EEE Standard 1061-1992. © 1992, IEEE. Reprinted with permission.

DA

Identify software quality metrics.

Analyze the software metrics results.

Establish software quality requirements.
Implement the software quality metrics.

Validate the software quality metrics.

7.2.3.1 Establish Software Quality Requirements

By far, the most difficult part of this process is establishing quality require-
ments. There are some hurdles that need to be overcome before the process
of identifying quality requirements can begin in earnest. Typically, these

hurdles are related to the following questions:

e What group is empowered to define software quality requirements?

e How should customers provide input?

e How are requirements conflicts resolved?

Software Quality Metrics 97

Table 7.3

Quality Subfactors Associated with Quality Factors

Quality Quality
Factor Subfactors

Description

Portability Hardware
independence

Software
independence
Installability

Reusability

Reliability Nondeficiency

Error tolerance

Availability

Functionality ~Completeness

Correctness

Security

Compatibility

Interoperability

Usability Understandability
Ease of learning

Operability

Communicative-
ness

The degree to which software does not depend on specific
hardware environments.

The degree to which software does not depend on specific
software environments.

The effort required for adjusting software to a new environ-
ment.

The degree to which software can be reused in applications
other than the original application.

The degree to which software does not contain undetected errors.

The degree to which software will continue to work without a
system failure that would cause damage to users. Also, the
degree to which software includes degraded operation and
recovery functions.

The degree to which software remains operable in the pres-
ence of system failures.

The degree to which software possesses necessary and
sufficient functions to satisfy user needs.

The degree to which all software functions are specified.

The degree to which software can detect and prevent
information leak, information loss, illegal use, and system
resource destruction.

The degree to which new software can be installed without
changing environments and conditions that were prepared for
the replaced software.

The degree to which software can be connected easily with
other systems and operated.

The amount of effort required to understand software.

The degree to which user effort required to understand soft-
ware is minimized.

The degree to which the operation of software matches the
purpose, environment, and physiological characteristics of
users, including ergonomic factors such as color, shape, and
sound.

The degree to which software is designed in accordance with
the psychological characteristics of users.

From: |EEE Standard 1061-1992. © 1992, IEEE. Reprinted with permission.

98 Software Verification and Validation for Practitioners and Managers

Table 7.4

Examples of Direct Metrics

Quality Subfactors

Direct Metrics

Description

Hardware independence
Software independence
Installability

Reusability

Nondeficiency

Error tolerance

Availability

Completeness

Correctness

Security

Compatibility

Interoperability

Understandabhility

Hardware dependencies
Software dependencies
Installation time

Other applications software
can be used in

Test coverage
Inspection coverage

Data integrity

Data recovery

Percentage of time software
is available for use

Test coverage

Defect density

Data integrity

User security

Environmental changes

Operability in mixed

application environments

Learning time

Count hardware dependencies
Count software dependencies
Measure installation time

Count number of other applica-
tions software can be or has
been used in

Measure test coverage

Count modules that have had
code inspection

Count situations where user
data becomes corrupted

Measure ability to recover
corrupted data

Time software available for
use divided by total time soft-
ware could be available for use
(expressed as a percentage)

Call pair measure or branch
coverage measure

Count defects discovered in
each version of software prior
to release

Count situations where user
data becomes corrupted

Number of illegal users who
are not prevented from using
software

Number of environmental vari-
ables that must be changed
after software is installed

Number of mixed application
environments the software
can work in correctly

Time for new user to learn
software features

Software Quality Metrics 99

Table 7.4 (continued)

Quality Subfactors Direct Metrics Description

Ease of learning Learning time Time for new user to learn how
to perform basic functions of
software

Operability Human factors Number of negative comments

from new users regarding er-
gonomics, human factors, etc.
Communicativeness Human factors Number of negative comments
from new users regarding er-
gonomics, human factors, etc.

From: |EEE Standard 1061-1992. © 1992, IEEE. Reprinted with permission.

The first hurdle requires that a team be empowered to define software
quality requirements. Forming a team that represents all points of view and is
acknowledged to be the group that will define software quality requirements
is essential for success.

Getting customer input can also be tricky. Customers more often tell
you what they don’t want rather than what they do want. For example, cus-
tomers might make statements such as, “I don’t want the software to cause
my system to lockup as frequently as the current system does” or, “I don’t
like they way the user interface works on this application” or, “I don’t mind
if the system crashes once in a while, as long as I don’t lose any data.”
Customers are sophisticated when it comes to software products. Customers
realize that they can’t afford defect-free software, nor are they willing to wait
for it.

So how do you define software quality requirements that are represen-
tative of what customers expect? First, talk to your customers. Conduct a
quality survey or a focus group. Gather information about the quality of your
current products. Find out how good the competitor’s products are relative
to yours. Do some side-by-side comparisons. And try to put yourself in your
customer’s shoes. Ask what you would expect if you were buying your prod-
ucts. Survey people in functional groups within the organization that typi-
cally deal with customers (such as technical support personnel, application
engineers, and sales reps) and get input on what customers tell them about
your products.

Next you need to associate each of the software quality requirements
with a quality factor. This step requires an understanding of what the soft-
ware quality requirements are and what the quality factors represent.

100 Software Verification and Validation for Practitioners and Managers

Table 7.5

Quality Requirements, Quality Factors, Subfactors, and Direct Metrics

Quality Requirement

Quality Factor Quality Subfactors Direct Metrics

The product will work on
multiple platforms and
operating systems currently
being used in our
organization.

Portability

The product will be reliable
and will provide mechanisms
to prevent loss of data.

Reliability

The product will provide the
necessary functionality
required to accomplish
[some task description].

Functionality

The product will be easy
to use.

Usability

Hardware
independence

Software
independence

Installability
Reusability

Nondeficiency

Error tolerance

Availability

Completeness

Correctness
Security

Compatibility

Interoperability
Understandability

Ease of learning
Operability

Communicativeness

Hardware dependencies

Software dependencies

Installation time

Other applications soft-
ware can be used in

Test coverage
Inspection coverage

Data integrity
Data recovery

Percentage of time soft-
ware is available for use

Test coverage

Defect density

Data integrity

User security
Environmental changes

Operability in mixed
application environments

Learning time

Learning time
Human factors

Human factors

From: |EEE Standard 1061-1992. © 1992, IEEE. Reprinted with permission.

Software Quality Metrics 101

Once the association is completed, the quality factors must be ranked
in order of importance. It is at this time that the team must assess technical
feasibility, resolve requirements conflicts, and establish priorities. This may
take a bit of negotiating and compromising, as some software quality require-
ments will impact cost, schedule, and functionality. Once you have identi-
fied the set of quality factors, you need to get buy-in from the rest of the
organization.

7.2.3.2 ldentify Direct Metrics

One or more direct metric is associated with each quality factor. Remember
that the direct metrics are quantitative measures that reflect the quality fac-
tors they are associated with. Each direct metric is assigned target value. In
this way, you can measure the degree to which the product possesses the
attributes associated with the quality factors.

For example, if one of the quality factors selected was usability, a direct
metric that could be associated with that factor might be the time it takes for
an untrained user to learn how to the use the software and perform some spe-
cific task. The target value for this metric might be 10 minutes. The set of
direct metrics and their target values should be reviewed and approved as well.

Each direct metric selected should be documented. IEEE Standard-
1061-1998 [2] suggests a format similar to that summarized in Table 7.6.

Table 7.7 shows an example of how a direct metric might be
documented.

Table 7.6
Documenting Direct Metrics

Item Description
Name Name of the metric
Costs Costs associated with using this metric

Target Value Numerical value to be achieved to meet quality requirement

Tools Software/hardware tools required to help compute metric
value

Application Description of how metric result is to be used
Data Items Data required as input to compute metric value
Computation Steps required to compute metric

From: |EEE Standard 1061-1998 [2]. ©1998, IEEE. Reprinted with permission.

102 Software Verification and Validation for Practitioners and Managers

Table 7.7
Documenting a Direct Metric

Item Description
Name Number of defects detected in selected modules
Costs Minimal; data can be obtained from bug-tracking tool

Target Value 5
Tools Spreadsheet

Application Metric is used for relative comparison to values obtained for
other modules

Data Items Count defects detected at code inspections

Computation Sum number of defects reported against specific modules
From: |EEE Standard 1061-1998 [2]. © 1998, IEEE. Reprinted with permission.

7.2.3.3 Implement the Direct Metrics

The third step of the five-step process is to implement the direct metrics by
defining the data collection procedures and associated tools to collect the
data needed for the metrics. Each data item required to compute a direct
metric should be documented. The IEEE Standard 1061-1998 [2] suggests a
format for documenting data items, which is summarized in Table 7.8.

Table 7.8
Documenting Data Items Required for Direct Metrics

Item Description

Name Name given to a data item

Metrics Metrics associated with the data item
Definition Straightforward description of the data item
Source Location of where the data originates
Procedures Procedures (manual or automated) for

collecting the data

Representation Manner in which data is represented; for
example, precision, format, units, etc.

Storage Location of where the data is stored
From: |EEE Standard 1061-1998 [2]. ©1998, IEEE. Reprinted with permission.

Software Quality Metrics 103

7.2.3.4 Analyze Software Quality Metric Results

Once the data collection is underway, the results need to be analyzed within
the context of the project’s overall software quality requirements. Any met-
rics that fall outside of their respective targets should be identified for further
analysis. Depending on the results of the analysis, some redesign, or recod-
ing, may be required. Some additional documentation may be required, or
some additional testing may be needed. In some cases, no changes at all may
be the outcome where metrics only slightly exceed their target ranges and are
deemed not critical.

It is important to understand what the metrics represent and not just
accept them at face value. Understanding, insight, and confidence in the
results can be achieved by delving into the conditions and circumstances that
lead to the results reflected by metrics.

7.2.35 Validate the Software Quality Metrics

The purpose of validating the metrics is to gain confidence that the numbers
reflect reality and eventually to begin to use certain metrics as predictors of
those quality attributes (such as reliability) that cannot be measured during
software development.

Validation of metric values is based on assessing the statistical signifi-
cance of the metrics to the quality factors it represents. The details of this
process are beyond the scope of this book. The reader is encouraged to refer
to IEEE Standard 1061-1998 [2] (as well as the earlier edition IEEE Stan-
dard 1061-1992), which contain a thorough description of this process.

1.3 Metrics That Support Software Verification Activities

There are a number of metrics that support the software verification activities
described in this book. A few examples are discussed here. Metrics that sup-
port software validation activities are discussed in Chapter 10.

131 Complexity

Through experience, we have learned that the more complex code is, the more
difficult it is to maintain, understand, document, test, and support [3-5].
Complexity is a direct metric that can be associated with the quality subfactor
correctability and the quality factor maintainability, as shown in Table 7.9.

By applying a complexity measure to a wide sample of the code pro-
duced by your organization, you can establish a complexity baseline. This

104 Software Verification and Validation for Practitioners and Managers

Table 7.9
Complexity as a Direct Metric

Quality Factor Quality Subfactor Direct Metric

Maintainability Correctability Complexity

An attribute that bears The degree of effort required to
on the effort needed for correct errors in software and
specific modifications. cope with user complaints.

From: |EEE Standard 1061-1998 [2]. © 1998, IEEE. Reprinted with permission.

baseline represents the norm for your organization. The norm for your
organization may be very different from the norm for other organizations.
Once established, this norm can then be used to identify:

Candidate modules for code inspections;

Areas where redesign may be appropriate;

Areas where additional documentation is required;

Areas where additional testing may be required.

Complexity measures can also be used for a product baseline, which
will be discussed in Chapter 8. In this way, you can see how the complexity
of the entire product changes as the product evolves throughout the software
development process.

Now that we have discussed ways in which complexity measures can be
used, let’s look at how complexity can be measured.

7.3.1.1 McCabe Cyclomatic Complexity Metric

The McCabe Cyclomatic Complexity metric [6] uses the control flow struc-
ture of a program as a relative measure of its complexity. The Cyclomatic
complexity is computed as:

Cyclomatic complexity E N 2P
where:
E number of edges (or transfers of control)

P number of control paths into the program

Software Quality Metrics 105

N number of nodes (sequential groups of state-
ments containing only one transfer of control)

Use this metric to establish a complexity baseline by measuring com-
plexity on as much of your organization’s code as possible. Once you have
established a baseline, look for individual modules whose Cyclomatic com-
plexity falls outside your baseline.

There are several commercially available tools that compute Cyclo-
matic complexity. (Refer to the References section at the end of this chapter.)

7.3.1.2 Halstead’s Software Science

Rather than use a program’s structure to compute complexity, Halstead [7]

developed an algorithm for measuring complexity based on a program’s size

expressed in terms of the number of unique operators and operands used.
Given the following parameters about a program:

n, number of distinct operators
1, number of distinct operands

N, number of occurrences of operators

N,

. number of occurrences of operands

The results produced include:
n program vocabulary 7, 7,

There are several commercially available tools that compute Halstead’s
Software Science complexity metric.

71.3.2 Defect Metrics

Defect metrics are collected from Inspection Summary Reports. Categoriz-
ing these metrics by defect type (i.e., logic, interface, data definition, docu-
mentation), origin, and severity will identify areas of the software
development process that need improvement.

Defect metrics support software V&V activities by allowing for the
tracking of defects by module. This can identify modules that may be candi-
dates for redesign or require additional testing. This can also potentially
identify software engineers who may need additional training in good soft-
ware engineering practices.

106 Software Verification and Validation for Practitioners and Managers

71.3.3 Product Metrics

Product metrics are measures that represent the product your organization
has developed. These measurements are essential for software V&V activities
and adjusting some of these activities accordingly.

Examples of some key product metrics to collect during the develop-
ment phase include:

e Number and type of defects found during requirements, design,
code, and test inspections;

e Number of pages of documentation delivered;

e Number of new source lines of code created;

e Number of source lines modified;

e Total number of source lines of code delivered;

¢ Average complexity of all modules delivered;

e Average size of modules;

e Total number of modules;

e Total number of bugs found as a result of unit testing;

e Total number of bugs found as a result of integration testing;
e Total number of bugs found as a result of validation testing;

¢ Productivity, as measured by KLOC per person-hour.

For example, you may want to adjust the nature and type of regression
testing performed based on the number of source lines modified. You may
need to add additional tests based on the average complexity of the code.

Tying these measures to product baselines (discussed in Chapter 8) can
provide insights into the nature of your product and your software develop-
ment process. This information can be used to help drive further process
improvements.

71.3.4 Process Metrics

Process metrics are intended to reflect the effectiveness of your processes. By
collecting these measures and analyzing the results over several projects, you
can identify trends that should lead to process improvements.

Examples of some key process metrics to collect include:

e Average find-fix cycle time;

Software Quality Metrics 107

e Number of person-hours per inspection;

e Number of person-hours per KLOC;

¢ Average number of defects found per inspection;

e Number of defects found during inspections in each defect category;
e Average amount of rework time;

e DPercentage of modules that were inspected.

For example, by analyzing the defects found during code inspections,
you may find that the same type of defect occurs frequently. To remedy this
problem, you can develop a new coding standard that would help prevent
this defect from occurring on future projects. The defect-correction time can
be used as leverage to institute more effective defect-detection and preven-
tion techniques on future projects.

74 Summary

When instituting a measurement program, the following set of attributes,
suggested by Humphrey [8], should be considered:

e The measures should be robust.
e The measures should suggest a norm.

e The measures should relate to specific product and process
properties.

¢ The measures should suggest an improvement strategy.

e The measures should be a natural result of the software development
process.

e The measures should be simple.
e The measures should be predictable and trackable.

e The measures should not be used as part of a person’s performance
evaluation.

Measurements support basic software quality improvement principles.
Measurements can provide the leverage to drive software process improve-
ments. However, unless you establish aggressive quality improvement plans

108 Software Verification and Validation for Practitioners and Managers

and goals, nothing will change. Most importantly, these goals must be quan-
titative.

It is very important to recognize the difference between changing and
improving. Improving is based on measurement, while changing is based on
perception. The way you know that a change is an improvement is through
measurement.

References
[1]1 Grady, R. B., and D. L. Caswell, Software Metrics: Establishing a Company-wide Pro-
gram, Englewood Cliffs, NJ: Prentice-Hall, 1987.

[2] IEEE Standard 1061-1998, IEEE Standard for a Software Quality Metrics Methodol-
ogy, © 1998 by IEEE, Inc.

[3] McCabe, T. J., and C. W. Butler, “Design Complexity Measurement and Testing,”
Communications of the ACM, Vol. 32, No. 12, 1989, pp. 1415-1425.

[4] Walsh, T. I, “Software Readability Study Using a Complexity Measure,” Proc. National
Computer Conference, New York: AFIPS, 1979.

[5] Ward, W. T., “Software Defect Prevention Using McCabe’s Cyclomatic Complexity
Metric,” Hewlett Packard Journal, April 1989, pp. 64-69.

[6] McCabe, T.]., “Complexity Measure,” IEEE Transactions on Software Engineering, Vol.
SE-2, No. 4, 1976, pp. 308-320.

[71 Halstead, H. M., Elements of Software Science, New York: North-Holland, 1977.

[8] Humphrey, W. S., Managing the Software Process, Reading, MA: Addison-Wesley,
1989, pp. 308.

Web References
Information on commercially available tools for measuring complexity can be found on the
World Wide Web at:
e McCabe & Associates home page at http://www.mccabe.com;
e Setlabs, Inc. home page at http://www.molalla.net/ -setlabs.

See also Brian Marick’s list published periodically in the Usenet discussion group: comp.soft-
ware.testing.

It is not the intention of the author to recommend or endorse the tools listed here.

Note: URLs cited were accurate as of April 2001.

Configuration Management

The most frustrating software problems are often caused by poor con-
figuration management. The problems are frustrating because they take
time to fix, they often happen at the worst time, and they are totally
unnecessary. [1]

The Verazanno Narrows Bridge, connecting Staten Island to Brooklyn, New
York, is the longest suspension bridge in the world, with a center span of
4,260 feet. The $325 million project was started in 1959 and scheduled for
completion in 1965. The project was actually completed in November
1964—under budget and ahead of schedule.

Why is it that over 35 years ago we were able to complete such an
incredible engineering feat on time and under budget, but today we have dif-
ficulty delivering software to customers on time and with features customers
want?

What can we learn from building bridges that can be applied to build-
ing software? We know that:

e Software is conceptual and intangible, whereas bridges are physical
and very tangible.

e In order to build a bridge, you need a well-defined and documented
process.

e The process identifies all of the parts needed, usually in the form of a
bill of materials and also includes a detailed assembly procedure.

109

110 Software Verification and Validation for Practitioners and Managers

The assembly procedure usually includes an exploded parts diagram.
This diagram shows how all the parts fit together.

Many people have a hard time understanding why software is so diffi-
cult to build. This lack of understanding often leads to:

e Lack of control;
e Lack of monitoring;
o Lack of traceability;

e Uncontrolled changes.

When more than two people work on the same software project, there
is a real potential their work will conflict. These conflicts can be in one or
more of the following areas [2]:

o Simultaneous update. How can you prevent one person from inad-
vertently undoing the changes of another?

o Shared and common code. How do you ensure that when a bug is
fixed in code shared by several people, all of them are notified? How
do you notify everyone that bugs found in common code have been

fixed?

e Versions. On large projects, there may be several versions of the
product in existence at the same time. When a bug is found and
fixed in one version, how do you determine if the same bug exists in
other versions? How do you ensure that the fix is made to all affected
versions?

To prevent these conflicts, some form of process control is required.
Configuration management can best be described this way:

Applying configuration management to a project is similar to buying
insurance. The amount of money and effort to be spent on configura-
tion management should be based on the value of the product, the per-
ceived risks, and the impact on the product if one of the perceived risks
should actually materialize. The question to be answered for each proj-
ect is then: What is required to obtain a reasonable degree of assurance
that the integrity of the product will be maintained? [3]

Configuration Management m

And lastly, it is important to keep in mind that “[n]Jo matter where you
are in the system lifecycle, the system will change and the desire to change it
will persist throughout the lifecycle” [4].

Because of its importance to project success, configuration manage-
ment is a key software verification activity.

8.1 Software Configuration Managment Basics

Software configuration management (SCM) is a set of management disci-
plines performed within the context of the software development process.
Critical SCM functions include:

e [dentification. The identification functions address a wide range of
issues related to identifying the software configuration items
included in a baseline as well as identifying baselines themselves.
Refer to Section 8.2.

e Buseline management. As software configuration items are built to
form baselines, these baselines must be managed and controlled.
Criteria for defining, building, and managing baselines are all part of
the baseline management function. Refer to Section 8.3

o Auditing and reporting. The auditing and reporting functions
address issues related to ensuring that what we think is included in a
baseline actually is included, as well as providing a level of assurance
that SCM procedures are being followed throughout the project.
Refer to Section 8.4.

SCM provides a common point of integration for all planning, over-
sight, and implementation activities for a product—which usually includes
software, user documentation (both printed and on-line), and various forms
of media including CD-ROM, flash memory, diskette, tape, Electrically Pro-
grammable Read-Only Memory (EPROMs), and printed materials.

There are several excellent references on the subject [1-5]. There are
two ANSI/IEEE standards that address SCM. ANSI/IEEE Standard
828-1998 [6] provides an outline for an SCM Plan. ANSI/IEEE Standard
1042-1987 [7] includes a very thorough overview of SCM as well as exam-
ples of SCM plans that would be appropriate for embedded software applica-
tions, a small experimental software project, and a software maintenance
activity.

112 Software Verification and Validation for Practitioners and Managers

As with any other activity worth doing, SCM activities must be
planned. The two ANSI/IEEE standards mentioned above provide excellent
resources for developing an SCM plan for a given project.

8.1.1 Definitions

Some key SCM terms that are defined in ANSI/IEEE Standard
1042-1987 [7] are presented in Table 8.1.

8.1.2 Example of a Manufacturing Process

In order to manufacture a product, you need a manufacturing process that
includes (1) a bill of material (BOM), (2) a detailed assembly procedure, and
(3) an exploded parts diagram. Examples of a real BOM and an exploded
parts diagram for something we are familiar with (a lawnmower) are shown
in Figures 8.1 and 8.2.

Table 8.1
Definitions from IEEE Standard 1042-1987

Baseline A baseline is a milestone in the software development process marked
by the delivery of one or more software configuration items. A base-
line consists of software configuration item(s) that have been formally
reviewed and agreed upon, and that thereafter serves as the basis for
further development. A baseline can be changed only through formal
change control procedures.

Software Configuration A software configuration item is a collection of software elements

[tem treated as a unit for the purposes of configuration management.

Configuration A configuration is defined as consisting of a parts list and an exploded
parts diagram which defines all of the elements of a baseline and how
they fit together.

Configuration Control The configuration control board (CCB) has responsibility for reviewing

Board and approving changes to baselines. The CCB usually consists of rep-
resentatives of the project team.

Software Software, in the context of configuration management, is defined as
information that is structured with logical and functional properties. It
is created and maintained in many forms and representations over the
course of its development

Version A version is a specific instance of a baseline or a software configura-
tion item.

From: IEEE Standard 1042-1987 [7] © 1988, IEEE. Reprinted with permission.

Configuration Management 113

Rerl ReaT | cooe DESCRIPTION REF.| PART | cope DESCRIPTION
1 | 747-0824 Control Handle Ass’y. (Std.) 34| 736-0452 Bell-Wash. .39" I.D.
647-0004 Control Handle Ass’y. (Deluxe) 35| 710-1055 Hex Bolt 3/8-24 x 1" Lg.
2 | 710-1205 Rope Guide 36 | 742-0621 21" Blade
3 | 720-0279 Handle Knob 1/4-20 Thd. 742-0721 21" Mulching Blade (Optional)
4 [710-1174 Curved Hd. Bolt 5/16-18 x 37 i 736-0169 L-Wash. 3/8" 1.D.*
2"Lg. 38| 712-0241 Hex Nut 3/8-24 Thd.
6 | 720-0276 Hand Knob 39 | 736-0356 Bell-Wash. .39" I.D. x 1.38"
7 | 710-0605 Qval C-Sunk Mach. Scr. 40| 712-0798 Hex Nut 3/8-16 Thd.”
8 | 736-0501 Spr. Wash. 66" |.D. 41| 15261A Height Adj. Plate
9 |712-0324 Hex L-Nut 1/4-20 Thd. 42| 15262B Pivot Bar
10 | 746-0876 Throttle Lever 43| 14832 Spring Lever Ass'y. w/Knob
11 | 749-0538C]| Upper Handle 44 | 738-0507B Shid. Bolt .5" Dia. x .357"
12 | 720-0226 Foam Grip (Optional) 45| 736-0105 Bell-Wash. .38" |.D. x .88" O.D.
13 | 749-0928 Lower Handle 46 | 738-0102 Axle Bolt
14 | 726-0240 Cable Tie 47 | 720-0190 Spring Lever Knob
15 | 764-0310 Rear Catcher Framet 48 | 732-0417A Spring Lever
16 | 746-0550 Control Cabie—33" (410, 412, 49 | 14578 Height Adj. Ass’y. Comp.—R.H.
414, 424) 14579 Height Adj. Ass'y. Comp.—L.H.
746-0737 Control Cable—51" (411, 413, (Not Shown)
423, 425) 50 | 14765 Pivot Bar
746-0553 Control Cable—36" (416, 418, 51 782-5002 Front Baffle
426, 428) 52 | 710-0654 Hex L-Wash. Hd. Scr. 3/8-16 x
17 | 746-0842 Throttle Control Wire—51" 1" Lg.
(410, 412, 414, 424) 53| 782-5003 Rear Baffle
746-0847 Throttle Control Wire—42" 54 | 710-1017 Torx Mach. AB-Tap Scr. 1/4 x
(411, 413, 423, 425) 62, Lg.
746-0843 Throttle Control Wire—55" 55| 710-0892 Hex L-Wash. Hd. AB-Tap Scr.
(416, 418, 426, 428) 1/4 x 62" Lg.
18 | 764-0311 Front Catcher Framet 56 | 682-0516 Handle Brkt. Ass’'y.—R.H.
19 | 764-0309 Grass Bagt 57 | 682-0515 Handle Brkt. Ass’y.—L.H.
764-0457 Grass Bag w/Logot 58| 782-0310 21" R.D. Deck
20 |714-0104 Int. Cotter Pin 5/16" Dia. 59 h Wheel Ass'y. Comp.
21 |732-0678 Door Spring—R.H. 60 > Hub Cap
22 |732-0677 Door Spring—L.H. 61| 764-0433 Grass Bagtt
23 | 782-7000 Rear Discharge Door 62| 731-1322 Hard Top Covertt
24 }751B213146 Cable Clamp 63| 710-0286 Pan Hd. Mach. Scr. 1/4-20 x .5"
7510007755 Casing Clamp (Tec.) Lg.
25 | 646-0875 Throttle Body 64 | 712-0324 Hex Nylon L.-Nut 1/4-20 Thd.tt
26 | 811-00185 Throttle Box Comp. (Incl. Ref. 7, | 65| 782-9011 Mounting Bracketft
8,9, 10, 25) 66 | 782-5007 Mulching Baffle Plug (Optional)
27 — Engine 67 | 782-5004 Mulching Baffle—R.R. (Optional}
28 |710-1237 Hex Wash. Hd. Scr. #10-32 x 68 | 731-1405 Deflector {Optional)
62" Lg. 69 | 711-0996 Rod (Optional)
710-0871 Hex Sems Scr. #10-32 x .3" Lg. 70 | 726-0201 Push Speed Nut (Optional)
Tec.) 71| 710-0192 Truss Scr. #10-24 x .38" Lg.
29 | 735-0639 Spark Plug Boot (Opticnal) 72| 720-0275 Knob
30 | 732-0700 Wire Rod 73| 731-1506 Deck Shroud (Optional)t
31 | 731-1236 Rear Flap 76 | 748-0376 Blade Adapter (416 Only)
32 | 753-0484 Blade Adapter Kit 77 | 736-0524 Btade Bell Support (416 Only)
33 |710-1044 Hex Bolt 3/8-24 x 1.5" Lg.

Figure 8.1 Parts list for a lawnmower.

Look closely at the information that is included here. The BOM in
Figure 8.1 identifies each part with a part number. The exploded parts dia-
gram in Figure 8.2 graphically illustrates how all the parts fit together. With
these facts and a detailed assembly procedure, you have enough information
to assemble the parts and build a lawnmower.

If we apply a manufacturing process to building software, we’ll need a
parts list that represents all of the software parts needed to build the product.
We'll need an exploded parts diagram that shows where the parts are and
how they fit together. Figures 8.3 and 8.4 illustrate an example of a software
parts list and exploded parts diagram. In addition, we need to create a build

114 Software Verification and Validation for Practitioners and Managers

Figure 8.2 Exploded parts diagram for a lawnmower.

procedure that can be used to make the product. A build procedure may be
as simple as a make script or as complicated as a document that describes the
steps required to make the product.

8.2 Identification

Identification includes the functions associated with naming, labeling, and
version control.

Configuration Management 115

@

«/ SRS
«/ SDDs

Q/ Source code

J Library routines

J Executable code

J Script files (e.g., make)

J Build procedures

Figure 8.3 A software parts list.

8.21 Naming and Labeling

Identification determines how all of the parts of the product are identified
and how baselines, which are built from the parts, are identified. The follow-
ing are key points to consider regarding identification:

System
Scripts Documents
p sDo
ake Source Executable Libraries Project Plan
Executable A SQA Plan
Executable B Test Plan
odule A Vode B Executable C Test Procedures
odule odule '
/\ Library A | [Library B | TeStReport
Module C Module D

Figure 8.4 A software exploded parts diagram.

116 Software Verification and Validation for Practitioners and Managers

e Each software configuration item must be identified and uniquely

labeled.

¢ The identification and labeling scheme should reflect the structure
of the product.

e Criteria for identifying and labeling software configuration items

need to be established.

e Ciriteria for identifying and labeling all forms of tests and test data
need to be established.

e Ciriteria for identifying support tools used to build baselines need to
be established. It is important to include the compilers, linkers,
assemblers, make files, and other tools used to translate the software
and build baselines. This ensures that you can always recreate the
exact information produced by those tools long after they have been

changed, replaced, or updated.

e Special attention may be needed for third party or purchased soft-
ware that is incorporated into your company’s product, especially if
there are copyright or royalty issues involved. Criteria for how third
party or purchased software will be integrated into your product in a
manner that will allow this software to be easily removed, replaced,

or updated should be established.

e Special attention may be needed for software that is being reused
from other products or software that is intended to be reused.

e Special attention may be needed for prototype software that is
intended to be replaced.

8.2.2 Version Control

Version control provides support for parallel development by enabling
branching and merging. Parallel development is important because it:

e Allows different projects to use the same source files at the same
time;

e Isolates work that is not ready to be shared by the rest of the project;

e Isolates work that should never be shared (i.e., fixing a bug that
exists only in an older release);

Configuration Management 17

e Allows software engineers to continue development along a branch
even when a line of development is frozen (e.g., during software vali-
dation testing).

To support parallel development, SCM tools must support branching,
file comparison, and merging functions. Branching is an SCM function in
which a configuration item (usually code) evolves simultaneously along two
or more branches, with new versions added independently to each branch.
This concept is illustrated in Figure 8.5.

File comparison is a facility that compares files with the same name in
two or more different branches or baselines and identifies those files that are
different.

Merging is the process of selectively applying changes made to source
files in branches or other baselines to the corresponding source files in the

Main branch

Release 1 Bug fix branch

Checkout
Edit
Checkin

Checkout

Edit 4

Checkin Checkout
Edit
Checkin

Checkout

Eflléckin ° Checkout
Edit
Checkin

Checkout

(E:?]It ki 6 Checkout

eexn Edit

Checkin

Figure 85 Branching and merging.

118 Software Verification and Validation for Practitioners and Managers

main branch. Branching, file comparison, and merging are key functions for
supporting SCM, especially for larger projects.

A version control procedure that provides a mechanism for making
changes to a known baseline in a controlled manner. Key requirements of
this procedure are as follows:

e Proposed changes to baselines must have some level of review.

e The impact (to cost, schedule, software development, and manufac-
turing) of proposed changes must be identified and understood.

e Where appropriate, approval of the CCB, key managers, and project

team members must be obtained;
e Approved changes must be properly implemented.

e Once changes are approved, all affected parties are notified of the
changes.

8.2.3 Software Configuration Items

Examples of software configuration items are shown in Table 8.2.

8.3 Baseline Management

Baseline management applies to the many different types of baselines. It
includes managing the workspace of individual developers, assessing changes
to baselines, managing incomplete versions of software during development,
and managing versions of the product once they are released to customers
(this is also referred to as release engineering). Each of these types of baselines
is discussed below.

Creating and managing baselines is an effective way to allow many peo-
ple to work concurrently. Baseline management basics are discussed below in

the form of FAQ:s.

What Baselines Are Required to Be Defined and Managed?

Baselines are typically aligned with major milestones on projects. It is impor-
tant to apply the baseline concept to documents as well as to code. For exam-
ple, there may be a requirements baseline that represents the approved SRS, a
design baseline, which represents the approved SDD, and several code base-
lines. Each version of software produced by the software engineering group
constitutes a baseline. During the software validation phase, the ability to

Configuration Management

19

Table 8.2
Examples of Software Configuration Items

Items Related Information

Product concept specification
Software project plans Software development plan
Software quality assurance plan

SCM plan
Software V&V plan
Software requirements specification (SRS)
Software design descriptions (SDDs)
Source code Source listings

Executable files
Make files
Libraries
Database descriptions Schema and file description
Initial content
SCM procedures Source tree structure
Daily build procedures
Backup procedures
Software problem reports
Software release process Internal release process
External release process
Release documentation
Software test documents Test plans
Test procedures
Test scripts
Test data
Test reports
User documentation User manuals
On-line help
System administration documentation
Service documents
Maintenance documentation Software maintenance plan
Software problem reports

Change requests

120 Software Verification and Validation for Practitioners and Managers

control changes to code, and thus manage baselines, is extremely important,
as we will see in Chapter 9.

How Is the Current Software Configuration Defined?

The current software configuration can be thought of as a snapshot of every-
thing the project has produced at some point in time. It can include docu-
ments, software (source, object, executables), tests, and user information.
Specifically for software, a configuration is defined in terms of the function-
ality it embodies at the time the snapshot is taken. This functionality changes
over time and should be measured against the requirements defined in the

SRS.

Who Must Approve Changes to Baselines?

In many organizations, a CCB has responsibility and authority for approving
changes to baselines. The CCB consists of people representing a cross-section
of the project and typically include software engineering, software QA, proj-
ect management, technical publications, manufacturing, and other functions
as appropriate. This board is empowered to review and approve changes to
the various baselines defined in the project plan. The CCB also has responsi-
bility for communicating approved changes to the rest of the organization,
thus helping to make software development more visible and tangible.

How and Where Are Baselines Created and Physically Controlled?

Document baselines are created and controlled by using a document control
system. Such a system consists of procedures that define how documents are
reviewed, approved, and changed in a controlled manner. Software tools to
control document baselines may be used if appropriate.

Code baselines are always created using a configuration control tool.
There are many commercially available tools for creating and controlling
changes to code. In addition to tools, procedures are required to reinforce the
tools. Once a baseline is created, software engineers must be prevented from
making unapproved changes.

How Are People Informed of Changes?

Communicating changes is very often a difficult problem. Not everyone is
interested or needs to know details of every change made to the product. One
of the functions of the CCB should be to disseminate approved changes to
the project in an appropriate manner.

Configuration Management 121

How Are Baselines Verified?

Baselines are verified by examination (in the case of document baselines) or
by inspection and testing (in the case of code baselines). If the features that a
baseline is supposed to implement are known, the task of verifying the base-
line against known features is conceptually straightforward.

Are Baselines Tied to Project Milestones?

Many baselines are tied to project milestones. Document baselines are usu-
ally tied to project milestones such as requirements defined or design com-
pleted. But there are also many baselines that may not be tied to a specific
milestone. During the coding phase, there may be many baselines created. A
few may be tied to a specific milestone such as code freeze, but most are not.
As we will see in Chapter 9, during software validation testing, there can be
several baselines created as bugs are fixed and verified.

Baselines that are tied to project milestones should be identified in the
project plan.

What Information Is Required to Process a Change to a Baseline?

The information required to approve a change to a baseline should be
defined by the CCB. For a document baseline, typically the information
required might include a list of all the pages that have changed, a summary of
the changes, and the changed pages, showing the actual changes to the text.

During the course of a software development project, many baselines
are created. One of the most important tasks associated with creating new
baselines is assessing the differences between them. Knowing what has
changed from one baseline is essential. If problems are encountered in a new
baseline, the first question that is asked is what has changed from the previ-
ous baseline.

For software baselines, there are two reasons to make changes to code:
adding functionality and fixing bugs. When adding functionality, identifying
the specific features being added is important when processing a change to
the baseline. When fixing bugs, the specific bugs fixed and the modules that
are affected by the fix should be provided when processing a change to the
baseline.

This becomes especially crucial during the software validation testing
phase of the project. It is during this stage that there must be tight control
over changes to software. Many projects have a code freeze milestone. After
code freeze, the only changes that should be made to the software are changes
in response to bugs reported from testing activities. With this level of

122 Software Verification and Validation for Practitioners and Managers

control, you can associate code changes to bug fixes for purposes of conduct-
ing mini inspections to ensure that bug fixes have not inadvertently intro-
duced new bugs. You can also identify changes to source code by module
from one baseline to the next. By doing this and by then comparing the list
of changed modules to the bug reports that were supposed to have been
fixed, you can determine if there were any unapproved changes made to the
code.

What Tools, Resources, and Training Are Required to Perform Baseline Change
Assessments?

Tools required to perform a baseline change assessment for code baselines are
relatively simple. As mentioned earlier, a file comparison tool that can iden-
tify changes to source code across baselines and provide a list of changed
modules is required. There are many commercially available tools that can
provide this information. Resources and training required to do this assess-
ment will of course vary based on project size and complexity. The group
that is managing baselines should be the group that provides the baseline
change assessment information. It makes sense for the software QA group to
perform the analysis of this information and report the results to the project

team or the CCB.

What Metrics Should Be Used to Assess Changes to a Baseline?

In trying to determine if changes to a software baseline should be accepted, it
is helpful to apply a basic set of metrics to the baseline in order to provide the
CCB or project management team with additional information. Examples of
the kinds of metrics that are useful include:

Complexity;

Average module size;

Number of modules changed;

Number of bugs fixed and verified;

Code coverage.

Additional information on these metrics is included in Chapters 7 and 10.

Configuration Management 123

How Are Unauthorized Changes to Source Code Prevented, Detected, and
Corrected?

It is not possible to prevent unauthorized changes to source code. Software
engineers love nothing more than a technical challenge. Advertising that
your system can prevent unwanted changes presents such a challenge. A
far better approach is to provide software engineers with training and an
understanding of why unapproved changes are not good for the project.
Using a commercially available SCM tool will provide an adequate degree of
security.

The baseline change assessment procedure described above can be used
to detect unauthorized changes to code baselines. These changes should be
presented to the project team and the CCB for resolution.

What Tools, Resources, and Training Are Required To Perform Baseline
Management?

A fully featured software CM tool is an absolute requirement for most every
software development project. There are several commercially available
SCM tools that can provide the level of control required for many types of
projects.

The scope and size of a project will determine the resources required for
SCM functions. In some organizations, the software engineering group per-
forms SCM responsibilities. This approach may work well for small projects,
but quickly falls apart on larger projects where communication and timeli-
ness of information are key. SCM functions can be effectively performed as
part of an SQA group. On larger projects, there may be justification for a
separate SCM group.

Everyone involved with producing documents and software will
require some SCM training. This can range from basic SCM principles to
details of using SCM tools.

8.3.1 Workspace Management

Software engineers need to have a consistent and reproducible workspace
area that they can use for development activity. This workspace area (com-
monly called a play area, or a sandbox) allows developers to develop and
debug their code while sharing those files that need to be shared and shield-
ing the rest of the project from the inherent instability of evolving code.
SCM tools used on most projects need to support this capability.

124 Software Verification and Validation for Practitioners and Managers

8.3.2 Baseline Change Assessment

Another baseline management function that should be supported by the
SCM tools is baseline change assessment. This assessment provides an effec-
tive way to manage changes to software and can be used throughout the
development phase, and especially during the software validation testing
phase.

During development, new modules that are integrated into a baseline
will frequently have undesirable effects. A baseline change assessment helps
identify those modules most recently integrated in order to determine where
the problems are.

During software validation testing, the baseline change assessment is
used to ensure that the only changes that are made to the code are changes
associated with bug fixes. By comparing the source files of the current version
with the previous version, you can identify the modules that have changed. If
you then match the changed modules with the affected modules indicated on
your bug reports, you can determine if only those modules that should have

changed, did change.

8.3.3 Version Management

An essential SCM function is reliably building and re-creating versions of the
product as it evolves and after it is released. During development, incomplete
versions of the product are built and tested on a regular basis. The SCM tools
need to be able to re-create previous versions exactly, since frequently it may
be desired to retreat to a previous version. Once development is completed,
the SCM tools need to manage the versions of software that are released to
customers. All necessary information (including the specific compilers, link-
ers, and other tools used) must be maintained in order to ensure that each
released version of the product can be recreated.

8.4 Auditing and Reporting

Auditing and reporting procedures are intended to provide assurance that the
software product matches the software configuration items (software and
documents). This typically can include such activities as ensuring that the
source code and the software documentation match and that the software
and the user documentation match.

Auditing and reporting helps answer the following questions:

Configuration Management 125

e Are mechanisms in place to provide an audit trail such as change
histories?

e Does there need to be more than one type of audit performed for
each baseline?

e How are subcontractors involved in an audit?

e How are third party software configuration items managed, con-
trolled, and audited?

e [s there a separate audit trail for each baseline; for each component;
for each functional group?

e What are the audit trail requirements imposed by other organiza-
tions, such as customers, regulatory agencies, and corporate policies?

e What tools, resources, and training are required to perform each

type of audit?

e What type of information needs to be maintained after product
development is completed and for how long?

e How is software (in its physical media form) retained?
e Are secure storage facilities required?

e Is media protected from disaster? How?

Auditing and reporting includes tasks associated with auditing, report-
ing, and records collection and retention.

8.41 Auditing

Audits are one way an organization can ensure that the project team has done
all of the required work in a way that satisfies customer requirements and
external obligations. During the course of a software development project,
several different types of audits may be performed. These include in-process
audits, functional audits, physical audits, and quality system audits. Several
attributes of each of these different types of audits are illustrated in Table 8.3.

8.4.2 Configuration Status Accounting

A configuration status accounting procedure consists of mechanisms for cap-
turing status information regarding each configuration item and for report-
ing this status in a timely manner. Configuration status accounting becomes
a critical task as the size and complexity of a project increases. The reports

126 Software Verification and Validation for Practitioners and Managers

that are produced are most frequently used by project management to assess
the current status of a project.
Key requirements of this procedure include:

e Identifying the types of information that project managers need;
e Identifying the degree of control needed by project management;

e Identifying the reports required and the different audiences for each
report;

e Identifying the information required to produce each report.

8.4.3 Reports, Record Collection, and Retention

As each audit is performed, the results are reported and distributed to the
project team. Record-collection procedures identify the specific information
that needs to be collected and retention procedures define how long the
information should be kept.

8.5 Summary

Some of the key points regarding SCM are:

e Change is inevitable.

e Defined procedures are required to manage change effectively with-
out preventing change from occurring.

e Software, since it exists in many different forms, presents many chal-
lenges from a control, management, and tracking perspective.

¢ Knowing what you have and how you got there is very important.

e Being able to re-create exactly what is delivered to customers is
essential.

Maintaining project deliverables throughout the product life cycle
(which can be many years) is a key benefit of SCM. This benefit means that
when (not if) you decide to make changes to your product, you will have the
benefit of all available knowledge of the requirements, design, implementa-
tion, and test.

Configuration Management

127

Table 8.3
Types of Audits

In-Process Functional Audit Physical Audit Quality Systems
Attribute Audit (FA) (PA) Audit
Obiecti Verify the consis- Verify that Verify that the as- Independent as-
Jectives tency of the de- functionalityand built version of sessment of the
signasitevolves performance are software and compliance to the
through the consistent with re- documentation are software QA plan
development quirements defined internally consis- (SQAP).
process. in the SRS. tent and ready for
delivery.
. SRS; SRS; Waivers; SQAP;

Materials)

Required SDDs; Executable code Architecture; All documents as-
Source code waivers; SRS and SDDs: sociated with soft-
waivers; Test programs; . Wware development

Approved changes; activities.
Approved Software V&V re- Acceptance; Test
changes; ports; documentation;
Software In-process audit re- Customer docu-
verification & ports; mentation:
validation plan
'onp Test documenta- Anorove product
(SVVP); tion: o
. | ' labeling;
est results .
Completed tests; software version:
Planned tests. FA reports.
. Hardware and Audit test docu- Audit SRS. Examine quality
Activities . . :
Software inter- ~ mentation against pp reports for program docu-
faces consistent test data. actions taken. ments.
‘é"[')tg SRS and Audit SV&V report. Sample SDDs for Selective compli-
S. :
Ensure results of ~ completeness. ance testing.
Cog(\a/\f/t;)lly tested rgyigws have been Audit customer. Iterview staff.
to . ;) .
_ . incorporated. Manuals for com- Perform in-process
Evolv':ng ‘;%SS'Q” pleteness and con- audits.
matches SRS. ;
_ sistency. Examine FA and PA
que consistent Software delivery reports.
with SDDs. media and controls.
In-process audit ~ FA report recom- PAreport recom- Overall evaluation
Results ; : : ; :
reports noting all mending approval, mending approval, of compliance with
discrepancies. contingent contingent the software
approval, or approval, or quality program.
disapproval. disapproval.

128 Software Verification and Validation for Practitioners and Managers

References

[11 Humphrey, W. S., Managing the Software Process, Reading, MA: Addison-Wesley,
1989.

[2] Babich, W. A., Software Configuration Management: Coordination for Team Productiv-
ity, Reading, MA: Addison-Wesley, 1986.

[3] Buckley, F., Implementing Configuration Management, 2nd ed., Los Alamitos, CA:
IEEE Computer Society Press, 1996.

[4] Bersoff, E. H., et al., Software Configuration Management, Englewood Cliffs, NJ:
Prentice-Hall, 1980.

[5] Bryan, W., et al., Software Configuration Management, Los Alamitos, CA: IEEE Com-
puter Society Press, 1980.

[6] ANSI/IEEE Standard 828-1998, IEEE Standard for Software Configuration Manage-
ment Plans, © 1983 by IEEE, Inc.

[71 ANSI/IEEE Standard 1042-1987, IEEE Guide to Software Configuration Manage-
ment, © 1988 by IEEE, Inc.

Part Il
Overview of Software Validation
Activities

Recall the definitions of “verification” and “validation”: verification is “[t]he
process of evaluating a system or component to determine whether the prod-
ucts of a given development phase satisfy conditions imposed at the start of
that phase” [1]. In other words, “Are we building the product right?” Valida-
tion is “[t]he process of evaluating a system or component during or at the
end of the development process to determine whether it satisfies specified
requirements” [1]. In other words, “Did we build the right product?”

Validation activities are defined around three basic processes: testing,
measurement, and software reliability growth. In Chapter 9 we discuss test-
ing as a validation activity. Different levels of testing and the objectives of
each are discussed. As with any activity, the testing process must be planned.
An outline for a software validation test plan is discussed. References to sev-
eral ANSI/IEEE standards are provided.

In Chapter 10, several measures that enable the planning, scheduling,
and managing of the testing process are discussed. In Chapter 11, the con-
cept of software reliability growth is presented in the context of information
that can be used by management in deciding when to stop testing and release
the product.

129

130 Software Verification and Validation for Practitioners and Managers

Reference

[1] ANSI/IEEE Standard 610.12-1990, IEEE Standard Glossary for Software Engineering
Terminology, © 1990 by IEEE, Inc.

Testing

Testing is the process of executing programs with the intention of find-
ing errors. [1]

Testing can show the presence of bugs but never their absence. [2]

The above observations by Myers and Dijkstra illustrate common miscon-
ceptions about testing. Unfortunately, many people still think that testing
can be used to demonstrate that their software doesn’t have any bugs. Confu-
sion regarding what testing can and cannot do is rampant throughout the
industry. In fact, many people do not understand just how difficult testing is.
Mpyers offers the following example to illustrate how problematic it can be:

A program accepts as input three integer values. The three values repre-
sent the three sides of a triangle. Based on the three values, the program is
to determine whether the triangle is isosceles, scalene, or equilateral. [1]

As an exercise, try writing down the set of test cases that you think
would adequately test this simple program. For example, you would want a
test in which all three integers were zero (an invalid triangle). Myers identi-
fies a set of test cases that would adequately test the program, most of which
were based on actual errors that were detected in various versions of pro-
grams written for this exercise. After you’ve written down the tests that you

131

132 Software Verification and Validation for Practitioners and Managers

think are needed, take a look at Appendix I. Compare your set with the set
presented there. How did you do?

On average, even experienced programmers can think of only slightly
more than half of the test cases needed. The point of this exercise is to illus-
trate just how difficult it is to develop a set of thorough test cases for even a
trivial program. Imagine how many tests would be required for a complex
application.

Consider another trivial program from Humphrey [3] that analyzes
strings of alphabetic characters, 10 at a time. There are 26" possible combi-
nations of inputs this program could expect to see. Would it be feasible to
test all possible combinations of inputs?

To test all possible inputs, a minimum of 26" (~141 trillion) tests
would be required. Assume it takes very little time to write these tests. If it
took only one microsecond to execute each test, it would take about 4.5 years
to execute all of the 141 trillion tests once.

Clearly, for most software products where the size of the input space is
many orders of magnitude larger than this trivial example, the time required
to develop and execute such large numbers of tests cannot be economically
justified, even if it were feasible.

If we cannot test all possible combinations of inputs, our objective then
becomes to select a relatively small number of tests that have a high probabil-
ity of finding defects. An obvious question: How do you write tests that can
do this?

There is no magic formula for writing tests that have a high probability
of finding defects. There are, however, some good testing practices that
should be followed to help maximize the benefit gained from the testing
activity. These good testing practices (based on Myers [1]) are summarized as
follows:

A good test case is one that has a high probability of detecting an
undiscovered defect, not one that shows that the program works
correctly.

e It is impossible to test your own program.

e A necessary part of every test case is a description of the expected
result.

¢ Avoid nonreproducible or on-the-fly testing.
o Write test cases for valid as well as invalid input conditions.

e Thoroughly inspect the results of each test.

Testing 133

e As the number of detected defects in a piece of software increases,
the probability of the existence of more undetected defects also
increases.

e Assign your best people to testing.
e Ensure that testability is a key objective in your software design.
e Never alter the program to make testing easier.

e Testing, like almost every other activity, must start with objectives.

In this chapter, we will review levels of testing, test methods that are
appropriate for each level, and types of tests. We will also discuss a concur-
rent development/testing model that is more effective than commonly used
testing approaches. Lastly, we discuss the process of planning a testing
activity.

There are several excellent books written on software testing [4-7].
These books provide much more depth and insight into the complexities of
testing. This chapter is intended as an overview for practitioners who have
not been exposed to any formal training in testing. After reviewing the mate-
rial in this chapter, I strongly urge those who are so inclined to do further
study in this area.

9.1 Levels, Methods, and Types of Tests

Testing can be viewed as a hierarchy composed of different levels, methods,
and types, as shown in Figure 9.1.

9.1.1 TestLevels

Each level of testing has specific objectives and limitations. The lowest, most
basic testing level is called #nir or module testing. The objectives of unit test-
ing are to find defects in logic, data, and algorithms by testing modules indi-
vidually. The next testing level is called integration testing. The objectives of
integration testing are to find defects in interfaces between units by testing
selected units as a group. The next level is called validation or system testing.
Recall once again the definition of validation: “The process of evaluating a
system or component during or at the end of the development process to
determine whether it satisfies specified requirements” [8]. The objectives
of validation testing are to determine if the software meets all of its

134 Software Verification and Validation for Practitioners and Managers

Acceptance Testing
Validation Testing
Integration Testing

White Box Unit Testing
Black Box
Top-down, Bottom-up
Act Like a Customer

Some examples include:
Methods Functional

Algorithmic

Positive
Types Negative
Usability

Boundary

Figure 9.1 Testing hierarchy.

requirements as defined in the SRS. Regression testing entails selectively rerun-
ning validation tests to ensure that bug fixes have not introduced new bugs.

Some organizations actively involve customers in testing by providing
prerelease software for customer evaluation through what is commonly called
alpha and beta testing. Customers are frequently reluctant to participate in
such activities because (1) there is no guarantee that problems found by cus-
tomers will be fixed, and (2) such testing requires time and resources that
customers may not have.

Beta testing can be a useful activity for customers and developers if it is
planned and scripted so that customers are expected to follow a defined
sequence of activities and developers commit to fixing problems reported by
customers.

Another level of testing is referred to as acceptance testing. Acceptance
testing is similar to validation testing, with one difference—the customer is
actively involved.

Note that within the software industry, terms such as “unit testing,”
“integration testing,” “validation testing,” and “alpha and beta testing” are
not used consistently. Therefore, within your organization, it is important
that the objectives of these testing activities be precisely defined to minimize
confusion and maximize return on investment.

Now let us look at each of these levels in more detail.

Testing 135

9.1.1.1 Unit Testing

The objective of unit testing is to find bugs in individual modules by testing
them in an isolated environment. Unit testing is usually considered part of
the coding process and typically requires a significant investment in “scaf-
folding,” as illustrated in Figure 9.2. Unfortunately, unit testing is often
viewed more as a debugging activity than as a testing activity. Understanding
the difference between debugging and testing is very important.

Debugging is defined as the process of detecting, locating, and correct-
ing faults in a computer program [8]. Testing is defined as the process of
operating a system or component under specified conditions, observing or
recording the results, and making an evaluation of some aspect of the system
or component [8].

In many organizations, unit testing is an informal activity performed
by software engineers on their own modules with little or no test documenta-
tion. To increase the return on investment in unit testing, the use of a buddy
system can help. In such a system, each software engineer is assigned a peer
who is responsible for unit testing their partner’s code. That way, software
engineers are not testing their own code. Why is this important? From expe-
rience we know that when software engineers test their own code, they

Driver —— > Results

A

Module under
test

Stub Stub Stub

Figure 9.2 Unit testing environment.

136 Software Verification and Validation for Practitioners and Managers

subconsciously write tests that show that the code works, rather than writing
tests that will find places where the code does not work.

In addition, the following questions can be used as a checklist when
developing unit test cases:

o Algorithms and logic. Have algorithms and logic been correctly
implemented?

o Data structures (global and local). Are global data structures used? If
so, what assumptions are made regarding global data? Are these
assumptions valid? Is local data used? Is the integrity of local data
maintained during all steps of an algorithm’s execution?

o [Interfaces. Does data from calling modules match what this module
expects to receive? Does data from called modules match what this
module provides?

o [Independent paths. Are all independent paths through the module
identified and exercised?

o Boundary conditions. Are the boundary conditions known and tested
to ensure that the module operates properly at its boundaries?

o Error handling. Are all error-handling paths exercised?

IEEE-Standard 1008-1987 [9] provides additional information on unit
testing.

9.1.1.2 Integration Testing

The objective of integration testing is to find bugs related to interfaces
between modules as they are integrated together. One question frequently
asked is, “If all modules are unit tested, why is integration testing necessary?”
Here are some answers.

e One module can have an adverse effect on another.

e Subfunctions, when combined, may not produce the desired major
function.

e Individually acceptable imprecision in calculations may be magni-
fied to unacceptable levels.

e Interfacing errors not detected in unit testing may appear.

e Timing problems (in real-time systems) are not detectable by unit
testing.

Testing 137

e Resource contention problems are not detectable by unit testing.

Integration testing covers a broad range of activities, beginning with
the testing of a few modules and culminating with the testing of the com-
plete system. Let us look briefly at the different approaches that can be used.

Incremental integration is a systematic approach to integration
whereby the product is constructed and tested in small chunks so that errors
are easy to observe, isolate, and correct. Incremental integration can be per-
formed top-down or bottom-up. In top-down integration, modules are inte-
grated by moving downward through the program hierarchy starting with
the topmost or main module, as illustrated in Figure 9.3.

Top-down integration, as defined by Pressman [10] is performed as
follows:

1. The main control module is used as a driver, and stubs are substi-
tuted for all modules directly subordinate to the main module.

2. Depending on the integration approach selected (depth or breadth
first), subordinate stubs are replaced by modules one at a time.

Main

M1 M2 M3

m4 m5 m6 m7 m8

|:| Stubs

Figure 9.3 Top-down integration testing environment.

138 Software Verification and Validation for Practitioners and Managers

3. Tests are run as each individual module is integrated.

4. On the successful completion of a set of tests, another stub is
replaced with a real module.

5. Regression testing is performed to ensure that errors have not
developed as a result of integrating new modules.

The process is repeated from step 2 until the whole program is inte-
grated. There are some inherent problems with top-down integration, as
described by Pressman [10]:

e Many times, calculations are performed in the modules at the bot-
tom of the hierarchy.

e Stubs typically do not pass data up to the higher modules.

e Delaying testing until lower-level modules are ready usually results
in integrating many modules at the same time rather than one at a
time.

e Developing stubs that can pass data up is almost as much work as
developing the actual module.

This leads to another integration approach called bottom-up integra-
tion. Pressman [10] defines the bottom-up integration procedure as follows:

e Integration begins with the lowest-level modules, which are com-
bined into clusters, or builds, that perform a specific software
subfunction.

e Drivers (control programs developed as stubs) are written to coordi-
nate test case input and output.

e The cluster is tested.

e Drivers are removed and clusters are combined moving upward in
the program structure.

As with the top-down approach, the bottom-up method has draw-
backs, including (1) the whole program does not exist until the last module is
integrated, and (2) timing and resource contention problems are not found
until late in the process.

In many organizations, software developers are responsible for perform-
ing some form of integration testing. Unfortunately, many organizations pay

Testing 139

lictle attention to intergration testing, and as a result, developers fre-
quently use the Big Bang approach: They integrate all of the product’s mod-
ules together in one fell swoop and start testing. What usually happens is that
there are a lot of problems. Since all the pieces have been integrated, it is usu-
ally more difficult to find the offending modules.

Further, the distinction between unit testing and integration testing is
often fuzzy. Often, unit tests are repeated as modules are integrated together.
Clearly, to maximize return on investment, integration tests need to be writ-
ten that help determine if the interfaces between modules are working as
defined in the design specifications. If unit tests can be used for this purpose,
that’s good. If they can’t, then additional tests need to be written.

Refer to ANSI/IEEE Standard 829-1998 [11] for more information on
documenting the testing process.

9.1.1.3 Validation Testing

The objective of validation testing is to determine if the software meets all of
its requirements as defined in the SRS.

Frequently, organizations perform what is referred to as validation test-
ing without the benefit of written requirements. A question to ask then, is,
Can validation testing be effective without written requirements?

When you perform validation testing without written requirements,
what you are actually doing is demonstrating that the software “does what it
does.” Is “what it does” what it is supposed to do? Without written require-
ments, how would you know? My advice to those organizations that perform
validation testing without written requirements is as follows.

First and foremost, write the requirements down before the tests are
developed. This is so important, it is recommended that anyone on the proj-
ect team who has the ability to do it be assigned the task. We will discuss this
topic further in Chapter 15 and Appendix L.

If for some reason the requirements cannot be written down, then the
people who write tests will need to have domain knowledge, that is, knowl-
edge of the product and how customers use the product in their environ-
ment. Domain knowledge is not easy to come by. And testers with domain
knowledge are scarcer than hen’s teeth. Based on their domain knowledge,
testers can develop tests based on how they expect the software to work and
their knowledge of how customers would use the software in their environ-
ment. Clearly, this is not always possible.

If you can’t get the requirements written down and don’t have testers
with domain knowledge, whatever testing you do will likely be superficial
and of little value to you or your customers.

140 Software Verification and Validation for Practitioners and Managers

As part of validation testing, regression testing is performed to deter-
mine if the software still meets all of its requirements in light of changes and
modifications made to the software. Regression testing involves selectively
repeating existing validation tests, not developing new tests.

9.1.1.4 Alpha and Beta Testing

The objectives of alpha and beta testing are often vague. If you are going to
invest time and resources in this activity, there should be clear objectives to
maximize return on investment. If you choose to perform alpha and beta
testing by providing prerelease versions of software to some subset of your
customers, be aware of the following:

1. For alpha and beta testing to be most effective, you should provide
your customers with an outline of the things that you would like
them to focus on and specific test scenarios for them to execute. In
this way, you can get very specific and valuable feedback from key
customers.

2. Provide customers who are actively involved in your alpha and
beta testing program with a commitment to fix defects that they
find when they perform the test scenarios you identify for them.
This provides the motivation customers need to commit resources
to alpha and beta testing your software.

9.1.1.5 Acceptance Testing

Acceptance testing is similar to validation testing, except that customers are
present or directly involved. Acceptance testing can be a repeat of (or subset
of) the same tests used for validation testing or can employ tests developed
entirely by customers. In the latter case, it would be prudent to ask your cus-
tomer for those tests in advance so that you can run as many of them as possi-
ble as part of your validation testing activity.

9.1.2 Test Methods
Just as there are levels of testing, there are several different testing methods.

For example:

o White box or glass box testing is a method of testing in which knowl-
edge of the software’s internal design is used to develop tests.

Testing 141

e In functional or black box testing, no knowledge of software design is
used and tests are strictly based on requirements and functionality.

o Top-down and bottom-up are examples of methods for performing
incremental integration testing, whereby modules are integrated and
tested based on their position in the module hierarchy.

o Act-like-a-customer (ALAC) testing is a test method in which tests
are developed based on knowledge of how customers use your soft-
ware. ALAC tests are based on the principle illustrated in Figure 9.4.
From experience we know that complex software products have
many bugs and that customers typically find only a small percentage
of these bugs. To maximize benefit to your customers, focus testing
and bug-fixing activities on those bugs that your customers are likely

to find.

Table 9.1 summarizes the levels of testing and test methods that are
most appropriate for each level.

9.1.3 Test Types

In addition to different levels of tests and different methods, there are also
many different types of tests that can be used. Table 9.2 lists examples of test

types.

Software has lots
of bugs...

...Customers
typically only
find a small

percentage...

To improve testing
effectiveness, focus
tests on finding those
bugs customers are
likely to find.

Figure 9.4 ALAC testing.

142 Software Verification and Validation for Practitioners and Managers
Table 9.1
Testing Levels and Test Methods
Test

Test Level | Objectives Performed by | Environment Test Methods

Unit Find bugs in logic, Software Isolated. Stubsand | White box
data, and algorithms | engineers scaffolding may be
in individual modules. required.

Integration | Find bugs in inter- Software Isolated or simulated. | White box
faces between mod- | engineers Stub§ and scaffolding Top-down and
ules. required. bottom-up

Validation | Determine if software | QA Actual Functional and
meets SRS. ALAC

Regression | Determine if software | QA Actual Functional and
still meets SRS in ALAC
light of changes.

Acceptance | Determine if software | Customer, QA, | Actual (usually at Functional and
meets customer or project team | customer site) ALAC
requirements.

Table 9.2

Test Types
Functional Load/Stress
Algorithmic Security
Positive Performance

Compatibility
Life

Negative

Safety-related tests

Timing

Documentation

Error checking

Power failure

Usability
Boundary
Startup and shutdown

Configuration

Platform

Out of resources/space
Installation

Upgrade

Volume scalabhility tests

Throughput/performance tests

Testing 143

Some of the more common test types are:

o Functional. Tests designed to determine if specific functions/features
work as specified.

o Algorithmic. Tests designed to determine if specific algorithms have
been implemented correctly.

e Positive tests. Tests designed to determine if a feature produces
results that are consistent with the stated requirements when the
software is used properly.

o Negative tests. Tests designed to determine if the software behaves
reasonably when faced with invalid inputs or unexpected operator
actions.

o Usability tests. Tests that exercise specific user interface features in
order to determine if the software behaves as would be expected by
trained/untrained users.

o Boundary tests. Tests that exercise specific limitations of the product,
such as minimum and maximum values, to determine if the software
behaves reasonably.

o Startup/shutdown tests. Tests designed to determine if startup and
shutdown functions have been implemented correctly.

o Configuration tests. Tests designed to determine if a feature produces
results that are consistent with the stated requirements when the
software is used properly.

o Platform tests. Tests designed to determine if the software works
properly on all supported platforms/operating systems.

o Load/stress tests. Tests that exercise the product under stated or
expected load conditions.

When planning a testing effort, it is critically important that an appro-
priate mix of the many test types be included in the overall suite of tests
developed. Using a broad mix of test types increases the likelihood that
defects will be uncovered and therefore increases the return on investment.

144 Software Verification and Validation for Practitioners and Managers

9.2 Concurrent Development/Validation Testing Model

Given an understanding of the different levels of testing and what they can
achieve, the different testing methods, and the many test types, we now need
to understand the relationship between development and testing. In organi-
zations where this relationship is not understood, validation testing often
happens as illustrated in Figure 9.5.

In these organizations, software development begins with only a vague
statement of requirements. Developers must fill in the blanks where require-
ments are missing. When they do this, they frequently don’t update the
requirements document. As they get closer to being done (however they
define “done”), they throw the software over the proverbial wall to QA. As
QA is not usually aware of how the developers chose to fill in the blanks, they
can do only a cursory test at best. Since there are no criteria defined to deter-
mine when to stop testing, most organizations use the calendar. When test-
ing is done this way, product quality is lower and the return on investment is
much less than it could be.

To increase the return on investment from your testing effort, you need
a good understanding of testing levels, methods, and types. Ideally, you
should plan to perform a mix of testing activities, commensurate with risk
and business objectives. In this way, you will be more likely to find problems
before your customers do.

How can you do this? First, get QA involved as early as possible. Sec-
ond, use a concurrent development/validation testing model similar to that
shown in Figure 9.6.

Software

Testing...
development esting

Vague
requirements

Figure 9.5 Typical validation testing process.

Testing 145

Software eadiness Completion
Development | Incremental Releases | Review Criteria
Test | Informal Validation |
Development

Formal
Validation

Figure 9.6 Concurrent development/validation testing model.

In this model, software development and validation testing activities
are based on a complete and updated SRS. Once the SRS is available, soft-
ware development activities like design and coding begin. Similarly, valida-
tion activities, such as test planning (discussed in Section 9.3) and test
development, also begin in parallel with development activities. The key to
the concurrent development/testing model is that development and testing
are both based on the SRS.

As developers complete coding, unit testing, and integration testing,
pieces of the product are made available to QA. In the meantime, QA
has been planning the testing effort and developing tests based on the SRS.
QA can now begin to test these incremental pieces. This approach enables
QA to ensure that its tests are correct and provides immediate feedback to
developers.

9.2.1 Informal Validation

As development continues, incremental releases are provided to QA, which
develops its tests in the same order as the incremental features are being
developed. By the time coding is completed, all of the validation tests that
need to be run should have been written and run at least once. Thus, the
majority of problems should have been found, reported, and corrected by
this time. This activity is referred to as informal validation because tests are

146 Software Verification and Validation for Practitioners and Managers

run informally; some features are expected to be missing and some tests are
expected to fail as a result. Informal validation:

e Provides an opportunity for validation tests to be developed and
debugged early in the software development process;

e Provides early feedback to software engineers;

e Results in formal validation being less eventful, since most of the
problems have already been found and fixed.

Once coding is completed and most all of the validation tests have been
run at least once, the project team is ready for the validation readiness review.

9.2.2 Validation Readiness Review

The purpose of this review is to ensure that everything is in place before
beginning formal validation. The main differences between informal valida-
tion and formal validation are as follows:

e During informal validation developers can make any changes
needed in order to comply with the SRS.

¢ During informal validation QA runs tests and makes changes as nec-
essary in order for the tests to comply with the SRS.

¢ During formal validation the only changes that can be made to the
code are bug fixes in response to bugs reported during formal valida-
tion testing. No new features can be added at this time.

e During formal validation the same set of tests run during informal
validation is run again. No new tests are added.

The purpose of this review is to ensure that formal validation begins
only when the project is ready. Starting formal validation prematurely results
in wasted effort, increased frustration, and pressure to release products with
far too many defects.

Configuration management (discussed in Chapter 8) is essential for
increasing the effectiveness of validation testing. CM tools provide a con-
trolled environment and a mechanism for analyzing changes between base-
lines. Having CM tools in place and the code under version control is an
essential criterion for starting validation testing.

Testing 147

The test plan (discussed in Section 9.3) should define the criteria that
should be met before formal validation can begin. Example criteria include
the following:

¢ Software development is completed (a precise definition of “com-
pleted” is required—refer to “Binary quality gates at the inch-pebble
level” in Appendix L, Section L.2).

e The test plan has been reviewed, approved, and is under document
control.

¢ A requirements inspection has been performed on the SRS.
¢ Design inspections have been performed on the SDDs.
e Code inspections have been performed on all “critical modules.”

e All test scripts are completed and the software validation test proce-
dure document has been reviewed, approved, and placed under
document control.

o Selected test scripts have been reviewed.
o All test scripts have been executed at least once.

e CM tools are in place and all source code is under configuration
control.

e Software problem reporting procedures are in place.

e Validation testing completion criteria have been developed,
reviewed, and approved.

9.2.3 Formal Validation

After the validation readiness review is held and the project determines that
the criteria have been met, formal validation begins. At this point in the proj-
ect, software changes are restricted to changes required to fix bugs. No new
functionality can be added.

During the formal validation phase, the following activities are performed.

1. The same tests that were run during informal validation are exe-
cuted again and results recorded.

2. Software Problem Reports (SPRs) are submitted for each test that
fails (i.e., the software does not meet requirements).

3. SPR tracking is performed and includes the status of all SPRs (i.e.,
open, fixed, verified, deferred, not a bug).

148 Software Verification and Validation for Practitioners and Managers

4. For each bug that is fixed, the SPR identifies the modules that were
changed to fix the bug.

5. Baseline change assessment (discussed in Chapter 8) is used to
ensure that only those modules that should have changed actually
have changed and that no new features have slipped in.

6. Informal code reviews (not formal inspections) are selectively con-
ducted on changed modules to ensure that new bugs are not being
introduced.

7. Time required to find and fix bugs (find-fix cycle time) is tracked.
8. Regression testing is performed using the following guidelines:

a. Use complexity measures discussed in Chapter 7 to help deter-
mine which modules may need additional testing.
b. Use judgment in deciding which tests need to be rerun.
c. Base decision on knowledge of software design and past his-
tory.
9. Track test status (i.e., passed, failed, or not run).
10. Record cumulative test time (cumulative hours of actual testing)
for software reliability growth tracking (described in Chapter 11).

A key element of an effective testing effort is knowing when to stop
testing. It is very important to have objective, measurable completion criteria
defined, reviewed, and approved early in the development process. Some
examples of completion criteria include the following:

o All test scripts have been executed.

o All SPRs have been satisfactorily resolved. (Resolution could include
bugs being fixed, deferred to a later release, determined not to be
bugs, and so on.) All parties must agree to the resolution. This crite-
rion could be further defined to state that all high-priority bugs
must be fixed, while lower-priority bugs can be handled on a case-
by-case basis.

e All changes made as a result of SPRs have been tested.

e All documentation associated with the software (such as SRS, SDD,
test documents) have been updated to reflect changes made during
validation testing.

e The test report (discussed in Section 9.3) has been reviewed and
approved.

Testing 149

Now that we have discussed the overall concurrent development/test-
ing model, we will look at how to prepare a test plan to utilize it.

9.3 TestPlanning

In order to make the most effective use of testing resources, we need to plan
how those resources are to be used. The best way to do this is to write a test
plan. Organizations need to plan a testing activity in the same way that they
plan a development activity. I have long advocated the use of the following
three documents for planning a testing effort:

1. The test plan. The test plan is a plan that defines the scope of the
work to be performed. The test plan defines what must be done
and who must do it. It is analogous to a software development plan
in that it contains information that allows project managers to
more accurately plan and schedule the testing activity.

2. The test procedure. The test procedure is a container document that
holds all of the individual tests (referred to as zest scripzs) that are to
be executed. It is important that tests be developed to be reused as
many times as possible, again to increase return on investment. For
that reason, the test procedure should contain a clean copy of all the
unexecuted test scripts.

3. The test report. The test report documents what occurred when the
test scripts contained in the test procedure were run. It is a good idea
to include bugs found and fixed during the testing effort, as well as
other relevant data, some of which is discussed in Chapter 10.

Example outlines of a test plan, test procedure, and test report are
included in Appendix H. Let us now look at each of these documents in
more detail.

9.3.1 TestPlan

The test plan is normally written by QA. In writing this document, it is
important to describe all of the testing activities that are planned for the proj-
ect. For example, if software engineers will be performing unit and integra-
tion testing, that should be so stated in the test plan.

The major focus of the test plan is to scope out the work that QA will
be required to perform by answering the following three questions:

150 Software Verification and Validation for Practitioners and Managers

1. How many tests do we need?
2. How long will it take to develop those tests?

3. How long will it take to execute those tests?
QA is most often involved in performing validation or functional test-

ing. In planning the effort to perform validation testing, the following topics
need to be addressed in the test plan:

e Test estimation;

Test development and informal validation;

Validation readiness review and formal validation;

Test completion criteria.

Let us look at each of these more closely.

9.3.1.1 Test Estimation

As the test plan starts to take shape, one of the first tasks that must be per-
formed is test estimation. This task consists of the three following compo-
nents, which correspond to the three questions posed above: (1) estimating
the number of tests that need to be developed, (2) estimating the test devel-
opment time, and (3) estimating the test execution time.

Estimating the number of tests that need to be developed is based on
the requirements in the SRS. Humphrey observed that “[w]hile there is no
magic way to select a sufficient set of practical tests, the objective is to test
reasonably completely all valid classes for normal operation and to exhaus-
tively test unusual behavior and illegal conditions” [3]. This determination
needs to be made early on so that adequate resources (people and equipment)
can be planned for, and accurate and realistic schedules can be developed.

The test estimate reflects the number of tests needed based on factors
such as:

e Testing all features and functions defined in the SRS and related
documents;

e Including an appropriate number of ALAC tests;
e Achieving some test coverage goal (see Chapter 10);

e Achieving a software reliability goal (see Chapter 11).

Testing 151

Test estimates should be based on and tied to specific sections of the
SRS and other related documents. To do this, start with the SRS, review each
requirement and, based on past experience, estimate the number of tests
required to determine if the software has met the requirement. For an effi-
cient way to estimate tests required, create a table similar to that shown in
Table 9.3 within the test plan. In addition to tests that are tied directly to the
SRS, you should also develop a reasonable number of ALAC tests that are
representative of customer use of the product.

Acting like a customer also means developing tests that [12]:

e Do it wrong;

e Use wrong or illegal combinations of inputs;
e Don’t do enough;

¢ Do nothing;

e Do too much.

The test estimate should also reflect the complexity of tests as well as
whether they are manual or automated tests. Manual tests are tests that
require a person to execute the test. Automated tests are developed like man-
ual tests but can be executed repeatedly under computer control. Automated
tests are particularly well suited for testing user interfaces. Several excellent
automated test tools (generally referred to as capture/playback tools) are
available. Refer to the References Section for Web sites devoted to software
testing tools.

Developing tests should be viewed as an investment. The time and
effort required to identify, write, and debug a test can be more than recouped
based on the costs required to find and fix bugs once the product is released.
Building up a large suite of good regression tests is like having money in the
bank.

Like most estimating tasks, the first time you try it, you may find that
your estimate and the actual number of tests developed are very different. At
the end of a project, do a postmortem (see Appendix N) and determine why
there was a discrepancy. Learn from past experience. Use estimates from past
projects to help develop new estimates. If you do, your estimates will con-
tinually get better.

Remember, when estimating the number of tests required for each fea-
ture or function, take into account issues such as:

152 Software Verification and Validation for Practitioners and Managers

Table 9.3
Estimating Tests Required

Estimated
Number
SRS of Tests
Reference | Required | Notes
411 3 2 positive and 1 negative test
412 2 2 automated tests
413 4 4 manual tests
414 5 1 boundary condition, 2 error
conditions, 2 usability tests
Total 165

o Test complexity. It is better to have many small tests than a few large
ones.

o Different platforms. Does testing need to be modified for different

platforms, operating systems, and so on?

o Automated or manual tests. Will automated tests be developed? Auto-
mated tests typically take more time to create but do not require
human intervention to run.

Once you have estimated the number of tests required, the next task is
to estimate how much effort will be required to develop these tests. Again,
rely on past experience to develop an accurate estimate for test development
time. An average time (person-hours/test) can be used. This average time
should include the time required to (1) write the first draft of the test script,
(2) run the test once, and (3) find any errors in the test and revise the test
script accordingly

Based on past experience, an average test development time is deter-
mined. If you have no idea what this number should be, write a few tests and
measure the time it takes to write them, run them, and correct any errors.
Use this time as the average and make adjustments down the road if neces-
sary. Once an average is determined, you can arrive at the estimated test
development time, as shown in Table 9.4.

Testing 153

Table 9.4
Estimated Test Development Time
Estimated Average Test Estimated Test
Number of Development Time Development Time
Tests (person-hours/test) (person-hours)
165 35 577.5

In a similar manner, we now need to estimate the test execution time.
This time includes the time required to get systems set up for tests, execute
tests, and report problems. Again, use past experience to arrive at an average
here. Once an average is determined, you can arrive at the estimated test exe-
cution time, as shown in Table 9.5.

Plan on adding an additional 25% to 50% to the estimated test execu-
tion time to allow for regression testing. The amount will vary depending on
factors such as how many inspections were held, integrity of the bug-fixing
process, amount of new code versus reused/modified code, amount of unit
and integration testing performed, and experience of the developers.

Based on these three measures (number of tests required, test develop-
ment time, and test execution time) and the available resources, you can now
develop a realistic validation testing schedule.

9.3.1.2 Test Development and Informal Validation

The test development task includes the work required to write the tests iden-
tified in the test plan. Different test methods as well as a wide variety of test

types should be used. For example:

o White box. Use your knowledge of how the software is designed to
maximize testing effectiveness by eliminating tests that test the same

code repeatedly.
Table 9.5
Estimated Test Execution Time

Average Test Estimated Total Estimated
Estimated Execution Time Estimated Test Regression Test Execution
Number (person- Execution Time Testing (50%) Time (person-
of Tests hours/test) (person-hours) (person-hours) hours)
165 15 2475 123.75 371.25

154 Software Verification and Validation for Practitioners and Managers

e Black box. Use black box tests to test features without any knowledge
of how the features are implemented.

e ALAC. Use your knowledge of how customers use your product to
develop tests.

The test plan should describe how the test development work will be
partitioned among the QA people on the project team. This task should also
be synchronized with the software development plan so that tests are devel-
oped in the same order as features are implemented.

Informal validation, as we have already seen, involves developing and
executing tests concurrently with feature development. This section of the
test plan should describe how this will be performed, how problems found
during informal validation will be reported to developers, and how QA will
track problems and verify resolution.

9.3.1.3 Validation Readiness Review and Formal Validation

The validation readiness review criteria that must be met in order to start for-
mal validation should be specified in this section of the test plan. Example
criteria are listed in Section 9.2.2.

The formal validation testing process should also be described in the
test plan. This would include activities such as bug tracking, baseline change
assessments, and other tasks listed in Section 9.2.3.

9.3.1.4 Test Completion Criteria

The test plan needs to include the criteria that must be met to complete the
testing activity. The criteria should be objective, easily measurable, and
agreed to by project management early on in the project. Example comple-
tion criteria are listed in Section 9.2.3.

9.3.2 TestProcedure

As mentioned earlier, the test procedure is nothing more than a container
document for the collection of test scripts that are to be run. Test scripts
define the detailed steps that determine if the software meets a specific
requirement. An integral part of each test script is the expected results. The
test procedure document should contain an unexecuted, clean copy of every
test so that the tests may be more easily reused.

Outlines for a test procedure and test script are included in Appendix H.

Testing 155

9.3.3 TestReport

The test report documents the results of the formal software validation test-
ing process. An outline for a test report is included in Appendix H. Informa-
tion typically found in a test report includes:

e Completed copy of each test script with evidence that this script was
executed (i.e., dated with signature of person who ran the test);

e Copy of each SPR showing resolution;
¢ List of open or unresolved SPRs;

e Identification of SPRs found in each baseline along with total
number of SPRs in each baseline (bar charts like those shown in
Appendix L can help illustrate the trend);

e Regression tests executed for each software baseline.

The test report contains valuable information about what was found
during the formal validation testing activity. This information will be
extremely important for a project postmortem (see Appendix N) as well as
any root-cause analysis (see Appendix O) that may be performed.

9.4 Summary

To recap some of the main points from this chapter:

e There are several levels of testing, each with its own objectives and
goals.

e There are several methods of testing that can be used within each
level.

¢ There are many types of tests that can be written.

e To increase the return on investment, testing should be planned
based on a variety of testing levels, methods, and types.

e To increase the return on investment, the SRS needs to be the basis
for developing validation tests.

¢ Validation testing is a complex activity that needs to be planned and
managed.

e A concurrent development/testing model looks like that shown in

Figure 9.6.

156

Software Verification and Validation for Practitioners and Managers

e Criteria that must be met to start formal validation testing should be
included in the test plan.

e Criteria that must be met to complete formal validation testing
should be included in the test plan.

Testing, to be effective, must be planned and performed rigorously in a

controlled environment. Configuration management plays a key role in help-
ing to increase the effectiveness of the testing activity.

(10]

[11]

References

Myers, G. J., The Art of Software Testing, New York: Wiley, 1976.

Dijkstra, E. W., “Structured Programming,” in]J. N. Buxton and B. Randell (eds.),
Software Engineering Techniques, Brussels, Belgium: NATO Science Committee, 1970.

Humphrey, W. S., Managing the Software Process, Reading, MA: Addison-Wesley,
1989.

Kit, E., Software Testing in the Real World, Reading, MA: Addison-Wesley, 1995.

Marick, B., The Craft of Software Testing, Upper Saddle River, NJ: Prentice-Hall PTR,
1995.

Kaner, C., et al., Testing Computer Software, 2nd ed., Boston, MA: International
Thomson Computer Press, 1993.

Humphrey, W., A Discipline for Software Engineering, Reading, MA: Addison-Wesley,
1995.

IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering Termi-
nology, © 1990 by IEEE, Inc.

ANSI/IEEE Standard 1008-1987, IEEE Standard for Software Unit Testing, IEEE,
© 1987 by IEEE, Inc.

Pressman, R., Software Engineering: A Practitioner’s Approach, 3rd ed., New York:
McGraw-Hill, 1992.

ANSI/IEEE Standard 829-1998, IEEE Standard for Software Test Documentation,
© 1998 by IEEE, Inc.

Beizer, B., Software Testing Techniques, New York: Van Nostrand Rheinhold, 1983.

Testing 157

Web Resources

For lists of software testing tools, visit the following URLs:
o htep://www.cigital.com/hotlist/comm-test.html

o http://www.testingfags.org

Note: URLs cited were accurate as of April 2001.

10

Validation Metrics

Effective validation activities are critical to the successful launch of new prod-
ucts. An effective software validation effort can lead to lower support costs,
more satisfied customers, and more efficient use of scarce software engineer-
ing resources. As a result of fewer bugs, less time is required for bug fixing
and therefore more time is available to work on the next product.

On the other hand, an unsuccessful validation effort can result in
releasing a product that has a significant number of bugs. Customers will
become dissatisfied with the product (especially if a competitor’s product has
significantly fewer bugs), and the organization’s scarce software engineering
and customer support personnel will spend most of their time fixing bugs
and dealing with irate customers instead of generating revenue.

To help ensure that software validation activities are as effective as pos-
sible, a predictable development process (the focus of Part IV) is essential. To
maximize the return on investment, the validation process must be carefully
planned and closely managed. On any given software development project,
you should be able to answer the following questions:

e How much time is required to find bugs, fix them, and verify that
they are fixed?

e How much time has been spent actually testing the product?
e How much of the code is being exercised?

e Are all of the product’s features being tested?

159

160 Software Verification and Validation for Practitioners and Managers

e How many defects have been detected in each software baseline?

e What percentage of known defects is fixed at release?

e How good a job of ALAC testing are we doing?

In this chapter we will discuss each of these questions and describe how
the information can be used to improve the effectiveness of validation
activities.

10.1 Time Measures

10.1.1 Find-Fix Cycle Time

The find-fix cycle time metric answers the question, “How much time is
required to find bugs, fix them, and verify that they are fixed?” As illustrated
in Figure 4.4, this measure includes the time required to:

¢ Find a potential bug by executing a test;

e Submit a problem report to the software engineering group;
e Investigate the problem report;

e Determine corrective action;

e Perform root-cause analysis (see Appendix O);

o Test the correction locally;

¢ Conduct a mini code inspection on changed modules;

¢ Incorporate corrective action into new baseline;

o Release new baseline to QA;

e Perform regression testing to verify that the reported problem is
fixed and the fix hasn’t introduced new problems.

The units of the find-fix cycle time metric are person-hours/defect. You
can use this measure to help justify increasing the amount of effort spent on
prevention and detection activities and to compute the cost of quality. This
measure represents activities that fall into the nonconformance category.

Validation Metrics 161

10.1.2 Cumulative Test Time

This metric answers the question, “How much time has been spent actually
testing the product?” This measure represents the cumulative testing time for
all validation testing activities. It is important for the following reason:
Often, during the final weeks prior to release, many defects are fixed and
many changes are made to the software. Sometimes the version that is finally
released has seen very little in the way of actual test time, since most of the
regression testing performed may be very focused and very limited. Unfortu-
nately, when changes are made, there is a good chance that new defects will
be introduced. Unless the regression testing is comprehensive, these new
defects will not be caught. So, measuring cumulative test time provides an
indicator of how much testing this version has been exposed to. The higher
the measure, the more confidence the organization should have in the
release.

Cumulative test time is measured in test hours. This measure can be
used to compute software reliability growth. (See Chapter 11.)

10.2 Test Coverage Metrics

10.21 Code Coverage

The code coverage metric answers the question, “How much of the code is
being exercised?” There are two types of code coverage measures:

1. Segment coverage. Units are % of segments hit.

2. Call-pair coverage. Units are % of call pairs hit.

The code coverage measures are useful during all phases of testing.
They help drive the development of additional tests to ensure that as much of
the code is exercised as is possible.

10.2.1.1 Segment Coverage

A segment is a set of program statements that are executed unconditionally
or executed conditionally based on the value of some logical expression or
predicate in the program.

e Every (executable) statement is in some segment.

e A segment corresponds to an edge in a program’s directed graph, as
illustrated in Figure 10.1.

162 Software Verification and Validation for Practitioners and Managers

Sequence statement

Alteration statement A l
A statement A;
if condition then B C
statement B;
B else
statement C;
endif;

Iteration statement - while A

statement A;

while condition loop
statement B;

end loop;

statement C;

. Case statement
case elementis
A C
when value 1 => statement A;
. when value 2 => statement B;
when value 3 => statement C;
end case;

Figure 10.1 Directed graphs.

e Segment coverage is especially useful during unit and integration
testing.

e Segment coverage is cumulative.

e A goal of 85% is a practical coverage value.

10.2.1.2 Call Pairs

A call pair is an interface whereby one module invokes another. Call-pair
coverage is especially useful during integration testing to ensure that all mod-
ule interfaces are exercised. A goal of 100% is a practical coverage value.

Note that because call-pair coverage is less detailed than segment cover-
age, it is more suitable for large systems.

Validation Metrics 163

10.2.2 Requirements Coverage

The requirements coverage metric answers the question, “Are all of the pro-
duct’s features being tested?” A requirements traceability matrix, similar to
that shown in Table 10.1, is used to trace requirements (SRS) to tests.

The units for the requirements coverage metric are the percentage of
requirements covered by at least one test. The metric is used to ensure that all
features are covered by at least one test. The requirements traceability matrix
is also useful for test estimates and for identifying tests that need to be
changed when requirements change.

10.3 Quality Metrics

Organizations should be tracking the three following important quality met-
rics on a regular basis:

1. Defect removal percentage;
2. Defects reported in each baseline;

3. Defect detection efficiency.

Appendix L shows examples of bar charts representing these measures.

Table 10.1
Example of a Requirements Traceability Matrix

Requirement Design Code Tests

(SRS) (SDD) (Modules) (TestProcedure) Notes

412 8.2.2 userin.c Test scripts #102, Range checking of
User interface Entering data 103,104 user-entered data
414 5.6.3 calc.c Test scripts #405, Calculation accuracy
Calculation accuracy Calculations 506, 660 and precision

and precision

415 423 all Test scripts #221, Performance meas-

Performance Performance 210-220 ured with typical
system loading

416 441 datab.c Test scripts #321, Empty and full

Data storage Database 332, 333-336 conditions checked

164 Software Verification and Validation for Practitioners and Managers

10.3.1 Defect Removal Percentage

The defect removal percentage answers the question, “what percentage of
known defects is fixed at release?” This metric measures the percentage of
defects that have been removed as compared with the number of defects
known. It is computed by:

Number of bugs fixed prior to release

100
Number of known bugs prior to release

This measure can be used to help make decisions regarding process
improvements, additional regression testing, and the ultimate release of the
software. (See Figure L.4 in Appendix L.)

10.3.2 Defects Reported in Each Baseline

This measures the number of defects that were found in each baseline prior
to release. This measure can be used to help make decisions regarding process
improvements, additional regression testing, and ultimate release of the soft-
ware. (See Figure L.3 in Appendix L.)

10.3.3 Defect Detection Efficiency

Defect-detection efficiency [1] answers the question, “how well are we per-
forming ALAC testing?” This metric measures how successfully we are find-
ing those defects our customers are likely to find. It is computed by means of
the following equation:

Number of unique defects we find 100

Number of unique defects we find +
Number of unique defects reported by customers *

This measure can be used to help make decisions regarding release of
the product and the degree to which your testing is similar to actual customer
use. (See Figure L.5 in Appendix L.)

* The number of unique defects reported by customers is based on at least three to six months
of actual customer use.

Validation Metrics 165

104 Summary

Measures related to the validation testing activity are essential for improving
the effectiveness of this activity. These measures should be used to help
define process improvements that will help increase the return on investment
in validation testing.

References

[1]1 Jones, C., “Software Defect-Removal Efficiency,” IEEE Computer, Vol. 29, No. 4,
April 1996, pp. 94-95.

11

Software Reliability Growth

More often than not, software is delivered later than planned. When it is
finally delivered, it typically has less functionality than the customer expected
and the functionality that it does have is typically buggy.

This problem can frequently be traced to the fact that management and
customers often have a different perspective on software quality. When asked
about the quality of its product, management may say, “The software should
be defect-free.” While this statement expresses a noble goal, it is one that is
not reachable. Customers, on the other hand, often have a very different per-
spective, as illustrated by the statement, “I expect the software to operate for
x hours/week without any downtime.” Clearly, customers realize that it is
unreasonable to expect software to be defect-free. What the customer is
expressing is a requirement for an expected level of reliability, “which is
probably the most important of the characteristics inherent in the concept of
‘software quality’ [1].

There are three key questions that are frequently asked during the last
few weeks prior to software being released. These are:

1. Is this version of software ready for release (however “ready” is

being defined)?
How much additional effort is required to release it?

3. When will it be ready for release?

167

168 Software Verification and Validation for Practitioners and Managers

The purpose of this chapter is to help provide answers for these ques-
tions by introducing a software reliability growth model. Such a model
enables organizations to develop a reliability goal and to track progress
toward that goal by collecting data during software validation testing, and as
a result, providing answers to the three questions above. The information in
this chapter provides only an overview. See References [1] and [5] for more
in-depth discussions of this complex topic.

11.1 Definitions

Before we begin the discussion of software reliability growth modeling, we
need to establish definitions of a few key terms. These are shown in

Table 11.1.

11.2 The Test-Analyze-Fix Process

Software reliability can only change as a result of the test-analyze-fix process
illustrated in Figure 11.1.

Testing stimulates the occurrence of failures. As each failure is detected,
a root-cause analysis is performed (see Appendix O). Corrective action is
applied, which corrects the immediate problem. Preventive action, based on

Table 11.1
Software Reliability Definitions

Software Reliability The probability of failure-free operation of a computer
program for a specified period of time operating in a
specified environment [1].

Reliability Growth The improvement in software reliability that results
from correcting faults in the software [2].

Software Availability The expected fraction of time during which the
software functions acceptably [1].

Fault A defect (or bug) in the software that causes a
software failure.

Failure A departure of the software’s operation from user
requirements.

Failure Intensity The number of failures occurring in a given time period.

MTTF The average value of the next failure interval.

Software Reliability Growth 169

2. Record Abnormal
1. Tests: Events
Run tests that Abnormal events are
represent observed as a result
actual use. of running test
Abnormal
Tests bnorma
Events
Fix Anaylze
4. Fix: 3. Analyze:
Apply corrective Systematically
actions to the review and
design categorize all
observed failures.

Figure 11.1 Test-analyze-fix process.

the root-cause analysis, prevents the same failure mode from occurring again
and reduces the rate of failure mode occurrence.

Thus, one way to achieve growth in software reliability is by using test-
ing to identify defects, changing the software to fix the defect, and then per-
forming root-cause analysis, which should result in a reduction in the
occurrence of a specific failure mode.

11.3 Reliability Growth Modeling

Modeling software reliability growth can help answer all three of the ques-
tions listed above. By having a robust model of how the reliability of the soft-
ware changes over time, management can make decisions regarding testing,
release, and expected level of support required after release. As observed by
Musa:

To model software reliability one must first consider the principal fac-
tors that affect it: fault introduction, fault removal, and the environ-
ment. Fault introduction depends primarily on the characteristics of the
developed code ... and the development process characteristics. The

170 Software Verification and Validation for Practitioners and Managers

most significant code characteristic is size. Development process charac-
teristics include engineering technologies and tools used and the level of
expertise of personnel.... Fault removal depends on time, operational
profile, and the quality of the repair activity. The environment directly
depends on the operational profile. Since some of the foregoing factors
are probabilistic in nature and operate over time, software reliability
models are generally distinguished from each other in general terms by
the nature of the variation of the random process with time. [1]

11.3.1 Objectives of Modeling

Applying modeling techniques to measure software reliability can help
achieve the following objectives:

e Measure and predict software reliability in terms of its mean time to

failure MTTEF);
e Determine optimal time to stop testing and release software;

e Provide data for making tradeoffs between test time, reliability, cost,
and performance goals;

e Define realistic software reliability goals.

Many software organizations are making these decisions today using
the gut feel (GF) model. As observed by Musa [1], a good software reliability
model has several important characteristics:

e It predicts future failure behavior.
e It computes meaningful results.

e Itissimple, widely applicable, and based on sound assumptions.

By properly applying a software reliability growth model we can get
answers to the three questions presented at the beginning of this chapter.

11.3.2 Types of Models

As illustrated in Figure 11.2, there are two classes of models that can be
applied. Empirical models involve fitting a curve to reliability growth data on
a log-log scale. Mathematical models are based on modeling the reliability
growth as a stochastic process. Both classes of models have advantages and
disadvantages. (For a complete discussion of the different classes of models,

Software Reliability Growth 171

Empirical models

Data analysis and prediction models

Time Data Axiomatic/ Error
domain domain complexity seeding
\4
Software
reliability/availability
analysis
A
Markov Petri
models nets

Reliability/availabilty
behavior models

Figure 11.2 Types of models.

and other relevant topics, the reader is referred to Musa [1] and the /EEE
Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable
Software [3].)

Since software reliability is a function of fault introduction, fault
removal, and the environment, the discovery of a new fault is a random
event. As a result, we can use data analysis and prediction models. More spe-
cifically, we can use models that operate in the time and data domains. These
models are typically easier to use than many of the other types of models and
can produce results that are just as accurate.

Examples of time and data domain models are listed below:

Jelinski-Moranda De-Eutrophication Model”

* Additional information on these models is included in Appendix J.

172 Software Verification and Validation for Practitioners and Managers

Shooman Exponential Model

Schick-Wolverton Model”

Goel-Okumoto Nonhomogeneous Poisson Process
Goel Generalized Nonhomogeneous Poisson Process
Littlewood Bayesian Debugging Model
Brooks-Motley Model’

Goel-Okumoto Imperfect Debugging Model

Musa Execution Time Model

Lipow’s Extension Model

Generalized Poisson Model”

Rushforth, Staffanson, and Crawford Model

Duane Model

Moranda Geometric Model

Littlewood-Veral Bayesian Reliability Growth Model
Moranda Geometric Progression Model
Schneidewind Model

Littlewood Semi-Markov Model

Musa-Okumoto Logarithmic Poisson Execution Time Model

Thompson-Chelson Bayesian Reliability Model

11.3.3 Model Assumptions

All models make assumptions. The process of selecting a model (discussed in
Section 11.3.4) has much to do with the assumptions that models make.
There are three types of assumptions:

1. Universal assumptions. Assumptions made by all models, for example:

a. Time between failures is independent.
b. Testing is representative of actual use.
c. Faults are of similar severity.
d. Time is used as basis of failure rate.
2. Criteria assumptions. Assumptions made by some models, for
example:

a. The number of potential faults is fixed and finite.
b. Detected faults are fixed immediately.

Software Reliability Growth 173

c. Individual fault occurrence times are recorded (versus fault oc-
currences grouped by time intervals).

d. New faults can be introduced as a result of fixing existing
faults.

3. Particular assumptions. Assumptions made by individual models,
for example:

a. There are a fixed number of errors in the code.
b. No new errors are introduced through the bug fixing process.
c. The program size is constant (no new code is being added).
d. The detection of errors is independent.
e. The testing is performed in a manner that is similar to in-
tended usage.

f. The error detection rate is proportional to the number of er-
rors remaining in the code.

In addition to assumptions, each model has specific data requirements.
That is, you may need to collect specific information that is needed for the
model. Model assumptions and data requirements are usually clearly defined
in the description of the model.

11.3.4 Model Selection Process

There are several factors to consider before selecting a particular model to
use.

o There is no one best model.
e Each model has pros and cons.

e The model’s assumptions should be matched to the software devel-
opment process.

e More than one model should be used to validate results.

e Models use data based on actual faults obtained as a result of soft-
ware validation testing.

With this in mind, we can now describe a general process for selecting a
model.

e Use criteria assumptions to select a group of candidate models.

174 Software Verification and Validation for Practitioners and Managers

e Compare each model’s particular assumptions with your software
development process and narrow down the list of candidates to two
or three.

e Identify the data requirements for each of the selected models and
determine how to collect this data.

e Once the data is collected, apply the models to the data.

e Perform goodness-of-fit test and determine if each model meets
your goodness-of-fit criteria.

¢ Rank the models based on goodness-of-fit criteria.

11.3.5 Applying the Selected Model

After selecting a model, the next step in the process is collecting the required
data. This data will usually be collected during the validation testing phase of
a project. As an example, if you chose the Duane model, you would need to
collect (1) cumulative testing time and (2) time to each fault. Collection of
this information should be automated if possible. If it is not possible to auto-
mate the collection of the data, then use lab notebooks to record testing time
and time to each fault.

As faults are detected during validation testing, the information is
entered into the model. Periodically, a graph similar to that shown in
Figure 11.3 can be created, which shows progress toward reaching a reliabil-
ity goal.

The reliability goal can, for example, be expressed as a number of faults
found by customers that require immediate correction.

Once a model has been selected and applied, the results produced from
the model need to be validated against actual experience. This requires that
you collect actual failure data once the product is released and see how the
actual data compares with that predicted by the model.

11.3.6 Reliability Modeling Tools

Statistical Modeling and Estimation of Reliability Functions for Software
(SMERES) [4, 5] contains a collection of several reliability models including:

¢ Littdewood-Veral Bayesian Model (see Appendix J)
¢ Musa Execution Time Model

e Geometric Model

Software Reliability Growth 175

Actual data points based on

software validation testing

Failure intensity goal
required to ship software

Failure intensity

Predicted software reliability

\— after shipment to customers

> Time

Today Ship

Figure 11.3 Software reliability growth model.

e Nonhomogeneous Poisson Model for Execution Time Data

¢ Musa Logarithmic Poisson Execution Time Model

o Generalized Poisson Model for Interval Data

¢ Nonhomogeneous Poisson Model for Interval Data

¢ Brooks-Motley Discrete Software Reliability Model (see Appendix J)
¢ Schneidewind Maximum Likelihood Model

¢ Yamada S-Shaped Reliability Growth Model

Let us look at one example of a SMERFS model, the generalized Pois-
son model. The following assumptions can be made:

e The expected number of errors occurring in any time interval is pro-
portional to the error content at the time of testing and to some
function of the amount of time spent testing.

o All errors are equally likely to occur and are independent of each
other.

o Each error is of the same order of severity as any other error.

176 Software Verification and Validation for Practitioners and Managers

e The software is tested in a manner similar to intended usage.

e The errors are corrected at the ends of testing intervals without
introduction of new errors into the program.

¢ Errors discovered in one testing interval can be corrected in others;
the only restriction is that corrections be made at the end of an
interval.

o The data requirements for this model are as follows:
e The length (time) of each testing interval;
¢ The number of errors corrected at the end of each testing interval;

e The number of errors discovered in each testing interval.

11.4 Summary

Software reliability growth modeling provides management with another

piece of quantitative data to use in making key decisions regarding product

quality, especially for embedded software products. This data can be

extremely helpful in determining when to stop testing and release a product.
The key points regarding software reliability growth are:

e There are many software reliability models.
e The accuracy of models varies widely.

e Significant differences in results can be achieved from using differ-
ent models.

e There isn’t one best model.

e It is possible to obtain an accurate reliability prediction using these
models if the selection process is followed.

e As many models as possible should be tried, with the goal of select-
ing the one(s) that provides the best result.

e Data collection is usually the most difficult problem.

e Software reliability growth modeling, like anything else, must be
subject to continuous process improvement.

Software Reliability Growth 177

References
[1] Musa, J. D., A. Iannino, and K. Okumoto, Software Reliability Measurement, Predic-
tion, and Application, New York: McGraw-Hill, 1987.

[2] IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering Termi-
nology, © 1990 by IEEE, Inc.

[3] IEEE Standard 982.2-1988, IEEE Guide for the Use of IEEE Standard Dictionary of
Measures to Produce Reliable Software, © 1988 by IEEE, Inc.

[4] Farr, W. H., “Statistical Modeling and Estimation of Reliability Functions for Software
(SMERES) Library Access Guide,” NAVSWC TR-84-371, Revision 3, 1993.

[5] Lyu, M. R., Handbook of Software Reliability Engineering, Los Alamitos, CA: IEEE
Computer Society Press, 1996.

Web Resources

Information on SMERES can be found at the following Web sites:
o htep://www.cse.cuhk.edu.hk/-lyu/book/reliability/smerfs.html
o http://technology.nasa.gov/scripts/nls_ax.dll/w3TechBrief(15;NPO-19307@;0;0)

Note: URLs cited were accurate as of April 2001.

Part IV
Predictable Software Development

If you always do what you've always done, you’'ll always get what you’ve
always gotten. [1]

To maximize the return on investment of the software V&V activities
described in Parts I through III, software development organizations must
learn to behave in a predictable manner. Common sense would dictate that
increases in efficiency are achieved by increasing an organization’s ability to
behave in such a manner.

In Part IV, we explore management’s role in changing an unpredict-
able, inefficient organization that produces poor-quality products that are
delivered late (if at all) into an efficient organization that consistently meets
commitments to customers and delivers high-quality products on time. This
transformation can only occur with the direct involvement of and commit-
ment from all levels of management.

Software V&V activities, if applied effectively, can have a significant
positive impact on the quality of products released and on the company’s
bottom line. Management must learn to recognize this and play an active
role in fostering the use of these techniques across software development
projects.

At this point you may be thinking, how does predictability relate to
software V&V? The effectiveness of the software V&V techniques discussed

179

180 Software Verification and Validation for Practitioners and Managers

in Parts I through III of this book can be significantly increased when an
organization learns to behave in a more predictable manner. For example,
software validation testing in an unpredictable organization that does not
have effective change control can be ineffective, costly, and time consuming.

In Part IV, we look at topics related to predictable software develop-
ment. The chapter titles of this section are self-explanatory:

Chapter 12: Motivation for Becoming Predictable
Chapter 13: Balancing Quality, Features, and Schedule
Chapter 14: Accurate Estimating and Scheduling
Chapter 15: Balancing People, Process, and Product
Chapter 16: Managing Commitment and Risk

While Parts I through III of this book are written primarily for practi-
tioners, Part IV is written primarily for managers. For without the under-
standing, commitment, and active participation of management, the changes
the organization must make in order to behave in a more predictable manner
will not happen.

Reference

[1]1 Author unknown, quoted in J. O'Toole, Forming the Future: Lessons from the Saturn
Corporation, Cambridge, MA: Blackwell Publishers, 1996.

12

Motivation for Becoming Predictable

How often have you heard the expression, “We never have the time to do it
right but always have the time to do it over”? This theme is unfortunately
common for many companies developing software. While this mode of
operation may have been acceptable in the past, the global economy of the
new millenium is forcing companies to become more efficient. Those organi-
zations unable or unwilling to learn how to do it right the first time are going
to be left in the dust.

Software development in the twenty-first century is changing dramati-
cally. New paradigms such as “Extreme Programming” [1] and developing
software on “Internet time” [2] are putting increasing pressure on organiza-
tions to develop better software more quickly with fewer resources.

Do more with less. Software development organizations are developing
more products that are more complex and more difficult to create. To staff
up for new projects, organizations are competing, fiercely at times, for a lim-
ited pool of experienced people. The tight labor market for software develop-
ers and QA professionals is expected to continue well into the first decade of
the twenty-first century, since the demand for qualified people is expected to
far exceed available resources [3, 4]. Doing more with less means that there
are fewer people available for testing. So the testing that is done must be that
much more effective.

Do it faster. As a result of the global economy, many organizations
are now facing competition from new players in other parts of the world.
These new players are developing products faster and at lower cost. Further,

181

182 Software Verification and Validation for Practitioners and Managers

the ability to develop products on Internet time is affecting all busi-
nesses, not just those that are developing software for the Web. Product
development, testing, and release cycles that once took years are being com-
pressed to months and sometimes weeks. So, not only do organizations
have to do more with less, they also have to do it faster. Doing it faster means
that the verification and validation activities have to be completed in less
time.

Do it with higher quality. Customers are becoming more demanding
and more selective in deciding which software products to buy. Unreliable
products with exotic features are less attractive than products that contain the
features customers actually need and are very reliable. Compressed schedules
and understaffed projects, coupled with the need to release very reliable
products, result in extraordinary pressures on people within development
organizations.

Organizations need a way to cope with these conflicting demands.
Doing more with less, doing it faster, and doing it with higher quality all
mean that there is little room for error. More than ever before, organizations
must learn how to get it right the first time. A predictable development
process is crucial to getting it right the first time.

The goal of predictable software development is simply to delight your
customers by consistently delivering what you promised when you promised
it.

Now let us look at why this is so important.

12.1 Introduction to Predictable Software Development

For every software project, management wants to know three things: (1)
when will coding be done; (2) when will testing be done; and (3) when will
the product be released?

These are legitimate questions for management to ask. Unfortunately,
when an organization is unpredictable, it is very difficult to provide accurate
answers to these questions. Why? Well, knowing with certainty when a prod-
uct will be released requires, among other things:

e A clear definition of what “done” means with respect to coding and
testing;

e A process for writing and reviewing requirements (so that developers
know what features to code and testers know what features to test);

Motivation for Becoming Predictable 183

e A process for designing software;

e A process for planning, estimating, and scheduling software devel-
opment activities;

e A process for planning, estimating, and scheduling software verifica-
tion and validation activities;

e A process for controlling changes to requirements, designs, code,
and tests;

o A staff that has been trained in critical skills such as accurate estimat-
ing and scheduling, requirements writing, project management,
inspections, verification and validation, and testing;

e A commitment from management to follow the process agreed to
for the project.

New projects often begin with great optimism—a naive expectation
that somehow this project is going to be different, that it will be successful.
For some reason, management expects that the outcome for new projects will
be different, even though the organization continues to use the same unpre-
dictable processes that resulted in failure on earlier projects.

After the initial euphoria ends, the hard reality sets in. The project team
quickly recognizes that the same unpredictable processes used on the last
unsuccessful project are being applied yet again to the new project. Lessons
learned from the previous failure have not resulted in any changes to the
process, because there was no management commitment to improve. Man-
agers and executives need to understand that having a predictable software
development process is vitally important to the long-term success of their
business.

Many software development organizations lack discipline. These
organizations either do not have or have but do not follow a written software
development process. As a result, they are not able to accurately predict when
key events (such as code complete, test complete, and product release) will
occur. What many companies fail to recognize is that various parts of the
organization need to know when things will happen so that:

e Marketing can plan product-rollout events;
o Customer service can alert customers to new software updates;

e Training can prepare updated course materials and schedule new
training sessions;

184 Software Verification and Validation for Practitioners and Managers

e Technical writers can prepare updates to online help and have
printed manuals ready for product launch;

e Managers can plan resource assignments for the next project.

As a result of the inability to predict when things will happen, many
software development organizations suffer from a lack of credibility. No one
believes dates from the development group, because it has never met a date.
As a result, management frequently sets (or allows to be set) unrealistic
release dates for products and makes (or allows to be made) unreasonable
commitments to customers.

As you might expect, the unrealistic dates set by management are rarely
met. This creates a lose-lose situation—your customers lose, since their plans
may be predicated on your unrealistic schedules and unreasonable commit-
ments, and your employees lose, since no one wants to be associated with a
project that fails.

On projects with unrealistic schedules, the schedule can only be
reduced so much (the time required to get the minimum feature set coded
and tested). Developers, being eternal optimists, fail to anticipate problems,
and coding frequently takes longer than expected. QA engineers fail to accu-
rately estimate how many tests are needed and how long it will take to write
and execute them. This problem occurs because most people have never been
trained in how to develop accurate estimates and build realistic schedules.
When development time expands, time for software V&V activities is
reduced (usually owing to a commitment made to a key customer to ship on
a certain date). When V&V tasks are cut from projects, the organization will
find fewer bugs and customers will find more bugs. This makes the QA staff
frustrated and customers unhappy. It also means that the organization will
need to do unplanned bug-fix releases.

Simply stated, the more predictable an organization is, the more likely
the software V&V activities discussed in Parts I-III of this book will be per-
formed. When those activities are performed, they will significantly increase
the ability of the organization to find and fix bugs before the software is
shipped to customers, thereby decreasing the need for unplanned, expensive
bug-fix releases.

Lack of predictability impacts your bottom line. Unplanned bug-
fix releases represent a significant cost to the organization, as shown in
Figure 12.1. Management determines how to use scarce and expensive
resources. You can decide to use these resources to deliver bug-fix releases,

Motivation for Becoming Predictable 185

How do you want to use your scarce, expensive engineering resources?

Develop new products OR Rework existing products

/\ 02003

$$

Generates revenue Doesn’t generate revenue

Figure 12.1 The real cost of unplanned bug-fix releases.

which typically don’t generate any revenue, or to work on new features and
new products, which do generate revenue. The choice is yours to make.

Lack of predicrability negatively impacts customers. In unpredictable
organizations, customers are unsure of when new products and updates to
existing products will be released. This makes it hard for customers to plan to
migrate to new software releases. Further, since unpredictable organizations
are unable to develop accurate schedules, they tend to release software with
far too many bugs, adding to customer dissatisfaction.

Lack of predictability negatively impacts employees. No one wants to be
associated with projects that fail. In unpredictable organizations, failed proj-
ects are the norm. And experience has shown that there is a very strong corre-
lation between customer satisfaction and employee satisfaction.

Predictable software development can be achieved when management
takes the lead to change the behavior of the organization. Management needs
to be focused on the elements identified in Figure 12.2.

To become predictable, organizations need to learn how to balance
quality, features, and schedule. While tradeoffs are made all the time, organi-
zations need to understand and assess the implications of these tradeoffs.
Further, organizations need to learn how to balance the needs of people,

186 Software Verification and Validation for Practitioners and Managers

Commitment management

Quality People

Predictable
software
development

Features Schedule Process Product

Risk management

Figure 12.2 Elements of predictable software development.

process, and product. Tradeoffs here affect productivity as well as customer
and employee satisfaction.

Also required is the ability to manage commitments and to manage
risks. Managing commitments (internal and especially external) is essential so
that the organization can consistently exceed commitments. Many complex
software projects are fraught with risks. Risks on many software projects may
be tacitly understood, but all too often they are not actively managed. Effec-
tive risk-management skills can make the difference between success and
failure.

12.2 Characteristics of Unpredictable Organizations

How can you tell if your organization is unpredictable? Listed below are
some characteristics of unpredictable organizations.

e The organization frequently over-commits and under-delivers.

e Project schedules are consistently not met.
e Customer perception of product quality is low.
e Itis difficult to plan for new product releases and product rollout.

e Itis difficult to plan the resources required for future products.

Motivation for Becoming Predictable 187

Customer satisfaction is low and probably not being measured
regularly.

Employee satisfaction and employee morale are low.
Many unplanned bug-fix releases are needed.

Revenue projections are frequently not met.

From working with dozens of companies, I have identified several root
causes of unpredictable behavior. These include:

Unrealistic schedules. Unrealistic schedules can result from several
causes, including lack of training in estimating and scheduling,
allowing other organizations to set development and validation
schedules, and not keeping or using information from past projects
to help develop more accurate estimates.

Poor project management. Software project management is a difficult
and unrewarding job. Project managers frequently become scape-
goats for failed projects. Good project managers are rare and worth
their weight in gold. Without a doubt, one of the most frequent rea-
sons that projects fail is due to poor project management. In many
cases, the root cause of this problem is not the project manager, but
rather, how management measures the project manager’s perform-
ance. Usually, project managers are measured on their ability to get
products released. Therefore, they will do whatever it takes to get the
product released, including cutting features and reducing quality.

Crisis mentality. For many organizations, working in “firefighting”
mode is the norm. These organizations move from one crisis to the
next. It is a mystery how anything gets done. What we should have
learned by now is that working from crisis to crisis is not the most
effective way to use scarce, expensive resources. This mode of work-
ing frequently leads to burnout and frustration.

Rewarding of wrong behaviors. In many organizations, management’s
goals and objectives are not aligned with the individual performance
goals and objectives of the staff. For example, in organizations where
management complains about poor product quality, you would
likely not find any mention of the word “quality” in the perform-
ance plans for the staff. Rather than encouraging the behavior that is
desired, management knowingly or unknowingly does the opposite.
For example, management inadvertently encourages firefighting

188

Software Verification and Validation for Practitioners and Managers

behavior by rewarding “heroes” who resolve the crisis-du-jour. In
fact, in organizations that work in crisis mode most of the time, in
many instances it is the so-called “heroes” who frequently cause the
crises in the first place.

Lack of measurement. Many organizations are unable to measure the
amount of effort required to develop, document, and test a software
release. Some organizations are unable to answer basic questions,
such as how big is the product (using any particular size metric);
how long did it take to develop and release; and how many bugs
were found?

12.3 Characteristics of Predictable Organizations

Predictable organizations exhibit the following characteristics:

Under-commit and over-deliver;
Master skills for estimating tasks and building realistic schedules;

Use project postmortem information to refine estimating and sched-
uling skills;

Make effective use of scarce, expensive resources;
Rarely operate in firefighting mode;

Require few unplanned bug-fix releases;

Follow a documented software development process;
Actively manage risks and commitments;

Measure quality and customer satisfaction regularly;
Measure employee satisfaction regularly;

Recognize the connection between customer satisfaction and employee
satisfaction.

These characteristics will be discussed further in subsequent chapters.

124 Management Can Change the Organization

Being a parent who has helped raise two children, I learned the value of posi-
tive reinforcement—rewarding and recognizing good behavior and

Motivation for Becoming Predictable 189

providing negative incentives for bad behavior. I adapted these principles to
managing technical people and found that they worked just as well with
adults as they did with children.

Management has the ability to change the organization. Management
controls the organization’s human resources, determines how resources are
allocated to projects, and most importantly, determines how people are
evaluated and measured. What management often fails to recognize, how-
ever, is that to change the culture, you need to change the way people behave.
In most organizations, the way people behave is directly related to how they
are measured.

This is particularly true for software engineering organizations, where
technical challenge and peer recognition are very important. The notion
that management can change the culture of an organization by changing the
way people are measured is not new. It has been acknowledged for many
years [5, 6]. Unfortunately, in many organizations, management hasn’t rec-
ognized it.

The following are some specific actions management can take to help
create an organization that behaves in a more predictable manner.

o Measure individual performance based on objectives that are directly
related to overall corporate goals. Most organizations have general cor-
porate goals such as increasing market share and improving quality
and customer satisfaction. Frequently, management fails to define
specific goals and objectives for individuals that are based on the cor-
porate goals. Setting individual goals and objectives is vitally impor-
tant, since we know from experience that people will be
conscientious about those things that they are being measured on.

A client having quality problems asked me to come up with recom-
mendations for improvements. I asked to see the performance plans
for the software engineering staff. Not one person had “improve
code quality” or “ reduce defects” as an objective. My recommenda-
tion was to incorporate such objectives into the performance plans.
The client did this and over time the quality problem disappeared.

o Learn to develop accurate, realistic schedules, and then meet them. The
literature is full of horror stories about project failures, cost overruns,
and missed schedules [7]. The ability of an organization to define an
accurate and realistic schedule is critical. Yet few organizations know
how to do this. Why? Well, there are probably many reasons, but
what I have observed is that most people have never been trained,

190

Software Verification and Validation for Practitioners and Managers

while in school or on the job, in how to accurately estimate a task,
build an accurate schedule, and then meet that schedule. Even in
those organizations that conduct project postmortems, there is little
or no improvement in the organization’s ability to develop accurate
schedules that can be met. Skills required to develop accurate esti-
mates and build realistic schedules are discussed in Chapter 14.

Follow a documented software development process. One of the reasons
that organizations are unpredictable is that either they don’t have a
documented software development process or they don’t follow the
process they do have. We know from experience that to successfully
develop complex products you need to rely on a proven process.
This is as true for software as it is for any complex product. For soft-
ware, the process must address both development activities and veri-
fication and validation activities, as described in Chapter 3 and
Appendixes G and H.

Without a documented process, people will spend a significant
amount of time arguing about what to do. It will be harder to
develop accurate estimates and schedules. Groups like software QA
and documentation that need to have specific information will not
know if or when that information will be available. Further com-
pounding the problem is the claim from some software engineers
that having to follow a process will diminish their ability to be crea-
tive. Nothing could be further from the truth. Ask hardware engi-
neers if following a process diminishes their ability to innovate. It
doesn’t. I've found that software engineers who resist following a
process do so out of fear that they will actually be held accountable
for some task (such as writing a design specification) when they
would rather spend all of their time writing code. This topic will be
further discussed in Chapter 15.

Hold people accountable. Accountability is a concept that is totally
foreign to many in the software industry. However, it is essential for
those organizations that want to become predictable. Everyone in
the organization, from the CEO on down, needs to be held account-
able for doing his or her job. On a project team, people need to be
held accountable for meeting their schedule, assuming of course that
the people doing the work set their schedules. Development should
be held accountable for delivering what was promised, not just to
the external customers but to internal customers (such as software
QA and technical documentation) as well. Software QA should be

Motivation for Becoming Predictable 191

held accountable for writing and executing tests based on the SRS
and for performing the testing as defined in the schedule.

Management needs to give people the responsibility for defining
what they will do and when they will do it by. Once this happens,
people need to expect to be held accountable for delivering what
they promised. When people miss their commitments, managers
need to understand the reason and determine how to get things back
on track by working collaboratively and cooperatively with everyone
involved.

Note that accountability extends to managers as well. Oftentimes
management is responsible for providing resources, buying equip-
ment and tools, and taking care of other things that project teams
need to meet their commitments. This topic will be further dis-
cussed in Chapter 16.

Proactively manage risk. Most software development projects are
fraught with risk, yet few project managers proactively manage risk.
On projects where risk management is ignored, I frequently see sev-
eral “replanning” activities. Replanning is often just a euphemism
for dealing with something that wasn’t expected but could possibly
have been avoided. Many times, replanning activities can be pre-
vented if proactive risk management is used from the outset. Proac-
tively managing risk not only helps ensure that development and
software QA will meet their schedule, it increases the likelihood that
the project will be successful. Risk management is further discussed
in Chapter 16.

Manage internal and external commitments. In many organizations,
salespeople frequently make unrealistic commitments to customers
in order to sell product. This often results in undue pressure on proj-
ect teams to deliver. When they can’t deliver (because the commit-
ments were unrealistic), customers become unhappy. Meanwhile,
the salesperson has received their commission check and is off with
other customers making more unrealistic commitments.

The underlying problem here is an organizational one. There is a
disconnect between sales and development. And it all goes back to
how salespeople are measured. In many organizations, salespeople
are measured on the dollar amount of sales they book, not on meet-
ing commitments to customers. In fact, some customers have finally
smartened up and have signed agreements that have penalty clauses
in them based on agreed-to delivery dates and feature sets.

192 Software Verification and Validation for Practitioners and Managers

Surprisingly, even with these financial incentives in place, manage-
ment still has failed to hold salespeople accountable.

Management needs to manage commitments made to external and
internal customers. One way to do this is to set expectations lower.
By doing this, the organization has a much better chance of meeting
or exceeding expectations. All too often, organizations set expecta-
tions unrealistically high and frequently fail to meet them. As a cus-
tomer, we are generally very satisfied when we receive exactly what
we expect. If we receive more, we are very happy. If we receive less,
we are usually not happy. Therefore, management should encourage
the organization to undercommit and overdeliver.

In addition, people who make commitments to customers need to
be held accountable for meeting those commitments. The same is
true for commitments made to internal customers. Managing com-
mitments is discussed in more detail in Chapter 16.

o Measure what happens. It goes without saying that in order to
become more predictable, organizations need to measure what hap-
pens. A few simple measures that are tied to the overall corporate
goals should be sufficient. For example, What is the average amount
of schedule slippage on projects> How many known defects are
products being shipped with? How many unplanned bug-fix releases
were there last year? Measurement is discussed in Chapters 7, 10, 13,

and 14.

Management must recognize that they have the ability to change the
behavior of their organizations. By learning how to do this, management can
significantly improve the organization’s predictability.

125 Summary

As observed by Jones [8], “One of the most important topics in the entire
software quality domain is the relationship between software quality and
software project management. Indeed, Deming, Juran, and Crosby have
asserted that the main source of quality problems can be assigned to manage-
ment rather than to technical workers.”

Management must provide leadership to help organizations behave in a
more predictable manner. Management must understand that they can
change how people behave by changing how people are measured. If you

Motivation for Becoming Predictable 193

want to improve schedule accuracy, measure people on their ability to
develop accurate schedules and then meet them. If you want to improve
product quality, measure people on product quality. If you want to improve
customer satisfaction, reward people based on achieving improvements in
customer satisfaction.

Don’t believe that this works? Jay Bertelli, CEO of Mercury Computer
in Chelmsford, Massachusetts, challenged his management team in January
1999 to double the company’s stock price by the end of the year. As an
incentive to meet this goal, each executive was promised a new Porsche. By
the end of 1999, the company’s stock price had tripled. Bertelli had 20 Por-
sches delivered to the company’s headquarters—one for each executive and
two loaners for top performers among the staff [9].

References

[1] Beck, K., “Embracing Change with Extreme Programming,” JEEE Computer, October
1999, pp. 70-78.

[2] Cusumano, M. A., “Software Development on Internet Time,” IEEE Computer, Octo-
ber 1999, pp. 60-70.

[3] Schafer, M., “Hiring for Keeps (Or at Least for a While),” Soffware Magazine,
April/May 2000.

[4] Wilkinson, S., “Hired Guns—Beating the IT Staffing Shortage with Contract Work-
ers,” Datamation, May 1999.

[5] Weinberg, G. M., The Psychology of Computer Programming, silver anniversary ed., New
York: Dorset House, 1998.

[6] Lister, T., and T. DeMarco, Peopleware: Productive Projects and Teams, 2nd ed., New
York: Dorset House, 1999.

[71 Yourdon, E., Death March: The Complete Software Developer’s Guide to Surviving “Mis-
sion Impossible” Projects, Upper Saddle River, NJ: Prentice-Hall, 1999.

[8] Jones, C., Software Quality: Analysis and Guidelines for Success, Boston, MA: Interna-
tional Thomson Computer Press, 1997.

[91 Boston Globe, Business Section, April 27, 2000, page C4.

13

Balancing Quality, Features,
and Schedule

Predictable organizations recognize the delicate balance that exists between
quality, features, and schedule. While common knowledge seems to be that
you can have “any two,” in today’s highly competitive market, it is essential
to have all three. Managers must learn to work with their teams to identify
acceptable tradeoffs among all three. Only then can organizations meet cus-
tomer needs for quality, features, and schedule. The more factual informa-
tion the organization has, the better able it will be to make informed
decisions.

When an organization releases a poor-quality product, with fewer fea-
tures than were promised, later than it was promised, there are no winners,
only losers.

Your customers lose. They may have waited a long time for your prod-
uct, only to discover that it is fraught with defects and doesn’t have all the
features they were promised. Often, your customers’ success is dependent
upon their ability to use your product effectively. When your product is
defective, lacking important features, and delivered late, your customers may
become less competitive in their markets.

Your employees lose. There is no pride in working on a team that delivers
a poor-quality product behind schedule. When employees are dissatisfied,
they are less productive. Eventually, dissatisfied employees may leave. Man-
agement is all too familiar with the costs associated with high turnover.

195

196 Software Verification and Validation for Practitioners and Managers

Predictable organizations reduce turnover by working to increase employee
satisfaction. These companies have long since recognized the strong connec-
tion between employee satisfaction and customer satisfaction.

Your company loses. Releasing a poor-quality product that lacks impor-
tant features, and doing so later than promised, negatively impacts your com-
pany’s reputation and your bottom line (e.g., from lost sales to competitors,
increased support costs). More important, your bottom line is further
impacted by the need to divert costly and scarce engineering resources from
work on new projects, which generates revenue, to fixing defects in current
products, which typically generates no new revenue.

Management needs to understand the importance of relationships.
A software project is a team effort consisting of software developers, soft-
ware QA engineers, technical writers, project managers, and others. For
a project to be successful, the project team must work well together and
have a clear understanding of the tasks they are to accomplish. Further-
more, management must understand the complex relationships that impact
a project team’s ability to produce a quality product with the required fea-
tures in the desired time frame. For software projects, these relationships are
critical.

One of the most important relationships that management needs to
understand is the delicate balance between quality, features, and schedule.
These three attributes are tightly coupled—push on one and the other two
are affected. Unpredictable organizations are often narrowly focused on only
one or two of the three (features and schedule) to the detriment of the third
(quality). As a result the effectiveness of the software V&V techniques dis-
cussed in Parts I through III can be diminished.

For example, in an unpredictable organization that lacks the ability to
develop accurate schedules, it is likely that testing will be cut short as a result
of pressures from unrealistic schedules. Since critical software V&V activities
such as code inspections and testing are performed during the later part of
the development process, such activities will be curtailed if the organization
is unable to develop accurate estimates and schedules. Learning how to do
this, then, is essential to ensure that these activities are not eliminated from
projects.

In this chapter, we examine the issues related to balancing the conflict-
ing demands of quality, features, and schedule. We begin by looking at each
of these three critical parameters individually; then we will move on to a dis-
cussion of how they impact one another.

Balancing Quality, Features, and Schedule

197

13.1

Quality

Software quality is difficult to define and hard to measure. People have
defined quality in numerous ways. For example:

When we examine an item based on its measurable characteristics, two
kinds of quality may be encountered: quality of design and quality of
conformance. Quality of design refers to the characteristics that designers
specify for an item. The grade of materials, tolerances, and performance
specifications all contribute to the quality of design. Quality of confor-
mance is the degree to which the design specifications are followed dur-
ing manufacturing. Again, the greater the degree of conformance, the
higher the level of quality of conformance. [1]

Quality: This term is among the most ambiguous words in the English
language and is ambiguous in all other natural languages, too. For soft-
ware, quality usually has a hybrid meaning that includes freedom from
defects plus adherence to requirements plus other nuances such as fit-
ness for use. There is no single, unambiguous definition. [2]

The principal focus of any software quality definition should be the
users’ needs. Crosby [3] defines quality as “conformance to require-
ments.” While one can debate the distinction between requirements,
needs, and wants, quality definitions must consider the users’ perspec-
tives. The key questions then are, who are the users, what is important
to them, and how do their priorities relate to the way you build, pack-
age, and support your products? [4]

Wearing our consumer’s hat, the first things we see when we put soft-
ware quality under the microscope are:

Reliability
Usability
Maintainability
Adaprability [5]

[TThe term quality will be used to mean software that has these six
attributes:

1. Low levels of defects when deployed, ideally approaching zero defects.

198 Software Verification and Validation for Practitioners and Managers

2. High reliability, or the capability of running without crashes or strange
results.

3. A majority of users expressing satisfaction with the software when
surveyed.

4. A structure that minimizes bad fixes or insertion of new defects during
repairs.

Effective customer support when problems do occur.

6. Rapid repairs for defects, especially for high-severity defects [2].

From the definitions above, it should be clear that software quality
refers to more than an absence of defects. When asked to define software
quality, most people answer, “I can’t define it but I know it when I see it.”
Further compounding the problem is the fact that many organizations don’t
know what level of quality their customers are willing to pay for and wait for.
Nor do they know what level of quality they are capable of delivering.

The measurement program identified in Chapter 7 as well as the soft-
ware validation metrics identified in Chapter 10 can provide objective data
that helps assess product quality.

13.1.1 The Impact of Poor Quality

Management needs to understand that software is a handcrafted product.
Each line of code is individually devised, usually based on incomplete,
ambiguous, and inconsistent requirements. Humphrey [6] has collected data
that shows that experienced programmers make one mistake for every 10
lines of code they write. At this rate, a software product with a million lines
of code would have 100,000 defects. Humphrey states that about 95% of
these defects are typically found before the product is released. This means
that there could be as many as 5,000 defects in the released product, yielding
a defect rate of 5%.

Table 13.1 applies a 5% defect rate to other things we are familiar with
in order to provide some perspective on the magnitude of the software qual-
ity problem. Clearly, we would not accept a 5% defect rate in other areas of
everyday life.

Jones [2] has studied thousands of software development projects at
hundreds of companies and reports that the U.S. average for software quality
ranges from 75% to 85%, yielding a defect rate of from 15% to 25%.

While there are many companies that consistently develop high-
quality, feature-rich software on time, there are many more companies that

Balancing Quality, Features, and Schedule 199

Table 13.1
A 5% Defect Rate, in Perspective

Item At a 5% defect rate...

Of the approximately 900,000 45,000 prescriptions would
prescriptions [7] written per year be incorrect
by U.S. doctors. ..

Of the approximately 3 million 150,000 parts would be
parts [8] in a Boeing 767 defective
airplane...

Of the approximately 2 million 100,000 checks would be
checks [9] processed per day by deducted from wrong
the Federal Reserve Bank of accounts

Boston. ..

develop poor-quality software, cut features late into the project, and deliver
the product late, if at all. While the quality of software generally improved
during the 1990s, the gap between best and worst widened. Yourdon reports
that at the beginning of the 1990s the gap between the best and worst com-
panies was about 10:1. For every company producing high-quality software,
there were 10 companies producing poor-quality software. Today, the gap
between best and worst has increased to about 100:1 [10].

Even though it may be hard to define what we mean by high-quality
software, we unfortunately have many real-life examples of poor-quality soft-
ware. For example:

The fiasco surrounding the delayed opening of the Denver International
Airport was probably one of the most visible and publicized examples
of how costly poor quality software can be. The opening of the airport
was delayed for over a year at a cost of about $1 million per day directly
as a result of software defects in the highly automated baggage handling
system. [2]

For more examples of serious software failures, see Collins [11] and
Weiner [12]. Poor-quality software has caused significant financial losses.
Consider what happened to the Bank of New York in 1985. A defect sur-
faced in software used at the bank to track government securities transactions
from the Federal Reserve Bank. The Federal Reserve Bank would debit the
Bank of New York for each transaction, but the defect prevented the Bank of
New York from determining who owed it how much for which securities.

200 Software Verification and Validation for Practitioners and Managers

After running up a staggering debt of $32 billion in just 90 minutes, the
Bank of New York managed to shut this system down. The bank had to bor-
row over $23 billion from the Fed and pay $5 million in interest in addition
to pledging all of its assets to cover the loss [12].

There aren’t many businesses that can survive the effects of a $5 million
defect. Poor-quality software has also caused physical harm and even loss of
life. In 1991, during the Gulf War, an Iraqi Scud missile killed 28 American
soldiers and wounded 98 others. The Scud missile might have been inter-
cepted had it not been for a defect in the target acquisition software running
in the Patriot Missile System. Engineers found the defect and sent over a fix.
Unfortunately, the fix arrived the day after the incident [12].

Two cancer patients died from radiation therapy they received from the
Therac-25 radiation therapy machine. Software was used to replace mechani-
cal interlocks on the system. As a result of an operator error, the software
interlock failed and the two patients were inadvertently given lethal over-
doses of radiation [13].

Every day, in every part of the world, poor-quality software impacts
businesses and people in many ways—from lost productivity and corrupted
data to loss of life.

13.1.2 Quality and Risk

As customers, we need to determine the level of quality we need in the soft-
ware products we buy. One way to do this is by considering the potential risk
that using the software presents to developers and users. The higher the risk,
the greater the need for quality. Kinds of risk include:

¢ Business risks, where a defective product may result in financial loss
to either the developer or the user;

e Societal risks, where a defective product may adversely affect large
groups of people;

e Safety risks, where a defective product may result in injury or death
to users.

There is a valid business argument that says that the quality of the
product should be consistent with the risk of using the product. Clearly, soft-
ware for medical devices, such as an implantable pacemaker, presents a much
higher risk than software for video games, and therefore should be developed

Balancing Quality, Features, and Schedule 201

with much higher quality requirements and much more rigorous V&V
processes.

Figure 13.1 illustrates an overly simplified software quality spectrum.
On this spectrum are examples (there are others) of methodologies that could
be used to achieve a level of quality commensurate with the risk associated
with use of the software.

Work by Yourdon and Bach [10, 14-16] has stimulated debate on the
notion of how much quality is enough. While Yourdon’s notion of “just
enough quality” [17] is not applicable to safety-critical software, it can be
applied to a wide spectrum of non-safety-critical products. Just enough qual-
ity supports the business principle that quality should be commensurate with
risk, and is based on the following important points:

e What most customers want is software that is cheap, fast, feature-
rich, and available now [17].

e Customers would not be willing to pay for or wait for defect-free soft-
ware, even if it were possible to produce defect-free software (which it
isn’t).

e Rigorous software development methods appropriate for safety-
critical software may not be appropriate for software that is not
safety critical.

Product Spectrum
Games Everything Safety critical
else software
< II Risk II >
Any Quality Some Quality Just Enough Six-sigma SE| CMM®"
Quality Total Quality
Methodology Spectrum

Figure 13.1 Software quality spectrum—an overly simplistic view.

202 Software Verification and Validation for Practitioners and Managers

Furthermore, experience has shown that:

e Customers can be very satisfied with software products that have
defects, if they don’t find those defects in their normal use of the
product.

e Most companies start projects knowing full well that they will ship
software with known defects.

e Zero-defect software, while a noble goal, is neither realistic nor
practical.

In the real world, companies make decisions to ship software every day
based on some notion (usually a gut feeling) of what is “good enough” for
their customers. Most just haven’t recognized or don’t acknowledge that this
is what they are doing.

13.2 Features

Many organizations are overly focused on functionality or feature richness.
Sales and marketing people are keen on comparing their product’s features
against the competition’s product features. Unfortunately, customers often
use this comparison in making their purchasing decisions. This has resulted
in software companies competing in “some kind of a heated ‘feature race’.
Each time a [company] releases a new gimmick in a product, all other [com-
panies] do the same, and maybe add their own gimmicks as well. The result
is massive suites of applications that take over 50 million bytes of storage and
contain features that may be used less than 1% of the time by less than 1% of
the users” [2].

The problem with the feature race is that it frequently leads to increas-
ing complexity. The increasing complexity impacts the organization’s ability
to develop products on time and with a reasonable level of quality. From
experience we have learned that there is a strong correlation between com-
plexity and defects. As products grow, significantly more testing is required
to find defects, because software engineers are not always aware of the impact
coding changes can have on a product.

As observed by Brooks:

The besetting temptation for the architect of a general-purpose tool
such as a spreadsheet or word processor is to overload the product with
features of marginal utility, at the expense of performance and even ease
of use. The appeal of proposed features is evident at the outset; the

Balancing Quality, Features, and Schedule 203

performance penalty is evident only as system testing proceeds. The loss
of ease of use sneaks up insidiously, as features added in little incre-
ments, and the manuals wax fatter and fatter. [18]

Lastly, organizations need to know which features customers are actu-
ally using on a regular basis. Knowing this information is critical if organiza-
tions are to do a better job of focusing their testing effort on those features
that are most frequently used.

13.3 Schedules

Building a suspension bridge is a pretty complex task—much more complex
than say, building software. What does building bridges have to do with
building software? Well, both are engineering-intensive activities, both are
very complex, typically take a relatively long time, involve many people, and
both must deal with many unexpected glitches encountered along the way.

In Chapter 8, I mentioned the Verrazano Narrows Bridge in New York
City, which connects Staten Island to Manhattan. As one of the longest sus-
pension bridges in the world, it is truly an engineering marvel. But what makes
this bridge even more amazing is that, designed and built in 1959-1964, it was
completed under budget and opened one month ahead of schedule.

The software projects most of us typically work on pale by comparison
to the magnitude and complexity of the Verrazano Narrows Bridge project.
However, many project teams consistently fail to deliver software products
on time. And when the project team finally releases a product, more often
than not, key features that customers need are left out and far too many
defects are left in.

The track record of the software industry is dismal. Project teams con-
sistently underestimate the magnitude of many software projects and man-
agement frequently promises customers more than can be delivered. The
inability of many software organizations to develop accurate estimates and
schedules has a negative impact on product quality and morale. Since valida-
tion testing is one of the last activities performed, it is often cut short when
projects are behind. Shortchanging validation testing is shortsighted, since
delivering a poor-quality product followed by several bug-fix releases is not
cost-effective.

There are many factors that influence our ability to develop accurate
estimates and stay on schedule. By looking at projects that fail to meet their
schedules, we can identify some specific root causes, such as the following:

204 Software Verification and Validation for Practitioners and Managers

e Most projects are “scheduled-backwards.”

e We don’t teach the skills required for developing accurate estimates
and schedules.

e We don’t cultivate software project management skills.
¢ We don’t manage risk and commitments.

¢ We don’t manage change.

Let’s look at each of these in some detail.

13.3.1 Most Projects Are Scheduled Backwards

Since many companies are unable to keep pace with the demand for new prod-
ucts, overly aggressive schedules for product development are the norm. Pro-
ject teams are often pressured to deliver based on the desire to meet customer
needs. Factors such as product complexity, the organization’s capability, capac-
ity, track record, resources, and difficulties related to staffing are frequently
ignored when setting aggressive schedules. I have frequently seen projects that
were under way with key roles identified only as TBH (“to be hired”).

As a result, management frequently sets the release date without fully
understanding the magnitude of the project, the resources required, and even
what features the product must have.

When the release date is given, the project team has to “schedule back-
wards.” This means that the project schedule is developed by starting with
the release date and working back to the present day. It shouldn’t be a sur-
prise that scheduling backwards results in an unrealistic schedule. We know
that this is the wrong way to develop schedules, yet we continue to do it and
are always surprised when we miss the release date.

13.3.2 We Don’t Teach Estimating and Scheduling Skills

Management should not be surprised that project teams do a poor job of esti-
mating and scheduling, since these skills are rarely taught in school or on the
job. And it isn’t because it’s difficult to learn how to do this. There are many
techniques that can be used for accurate estimating and scheduling (some are
discussed in Chapter 14). It’s not hard to learn how to get better at estimat-
ing and scheduling. Management must create an environment that requires
the organization to improve. Management must accept that the best way to
get accurate estimates and realistic schedules is to involve the people who will
actually be doing the work.

Balancing Quality, Features, and Schedule 205

History is a great teacher—especially when it comes to estimating and
scheduling. The best way to get better at estimating and scheduling is to
learn from past projects. Unfortunately, this is an area in which we are also
poor. We rarely ever look at our original estimates of tasks and compare them
to how long the tasks actually took in order to understand why they are dif-
ferent. By reconciling the differences between the initial estimates and the
actuals, people can learn to develop more accurate estimates and more realis-
tic schedules.

13.3.3 We Don't Cultivate Software Project Management Skills

More often than not, the success or failure of a project hinges on the skill of
the project manager. This is why savvy managers usually assign their best
project manager to their most critical projects.

Not only does project management have a significant impact on the
success or failure of a project, there is also a relationship between project
management and software quality. When project management is weak or
ineffective, software products more than likely will be behind schedule and of
lower quality. In fact, Jones [2] has collected quantitative data on the rela-
tionship between project management techniques and software quality.
Based on a sample of more than 100 companies and more than 1,000 soft-
ware projects, Jones found the following management approaches to corre-
late with poor software quality:

¢ Use of manual project estimation methods;

e Use of manual project planning methods;

e Failure to estimate or consider software defect potentials;
e Failure to provide time for pretest inspections;

e No use of historical quality data from similar projects;

e Milestone tracking absent or perfunctory;

e Defect tracking absent or perfunctory;

e Management focus concentrated only on schedules.

When project management is weak or ineffective, software products are
more likely to be behind schedule and of lower quality.

Organizations frequently fail to provide an environment that can help
cultivate good project managers. Project managers need the support of man-
agement in applying these best practices in order to help them succeed.

206 Software Verification and Validation for Practitioners and Managers

13.34 We Don't Manage Risk and Commitments

Most software projects are fraught with risks. In fact, according to
Jones [19], “Software has long been regarded as one of the most risk-prone of
all engineering activities. Risks such as schedule slips and cost overruns tend
to occur on more than 50% of all large systems. Even more severe risks, such
as cancellation of the project prior to completion or serious quality deficien-
cies are not uncommon.”

While we know that risks exist, we frequently ignore them, hoping that
somehow they will go away. Unfortunately, this is never the case. Ignoring
risks only makes the problem worse. By ignoring the risks present on every
project, we significantly increase the likelihood that the project will be deliv-
ered late and with lower quality.

Similarly, many projects lack the human skills and internal discipline
needed to manage both internal and external commitments. Management fre-
quently commits to delivering more than can be delivered. In many organiza-
tions, management may not even be aware of commitments that salespeople
make to customers in order to book sales (and earn their commissions).

Some customers, who have been burned in this way too many times,
have smartened up and put penalty clauses in their contracts. Unfortunately,
sometimes even penalties of thousands of dollars for every day, week, or
month that the product is late are not enough to motivate management to
change the process.

We discuss issues of managing risk and commitment in more detail in

Chapter 16.

13.35 We Don't Manage Change

Does this sound familiar?

A marketing or product manager, very late into a project, asks a young
software engineer if he or she could “just add this one feature because
the customer really wants it.” Unfortunately, the young software engi-
neer, wanting to be a team player, obliges and adds the new feature but
doesn’t tell anyone—like QA, the tech writer, or the person developing
training materials. As you might expect, the implementation of the new
feature isn’t perfect and the software engineer inadvertently introduces
new defect(s) into the product.

Since QA doesn’t know about it, the defect(s) is not caught during test-
ing. Since the tech writer isn’t aware of the new feature, it isn’t described

Balancing Quality, Features, and Schedule 207

in the user manual. Since the trainer isn’t aware of the new feature, it
isn’t in the training materials. Since the new feature isn’t in the user
manual or training materials, customers aren’t aware of it. When cus-
tomers accidentally stumble across the new feature, they find the related
defect(s) and are not happy about either the defect(s) or the fact that the
feature isn’t documented.

Allowing change to occur in a controlled manner is an essential organ-
izational skill that is often lacking. This topic is addressed in Chapter 8.

13.4 Balancing Quality, Features, and Schedule

Now that we have looked at each of these parameters individually, let’s see
how they impact one another.

On most projects, tradeoffs between quality, schedule, and features are
made implicitly and without considering the long-term impact on the prod-
uct, the project team, and the customer. By recognizing that quality, features,
and schedule are tightly coupled, organizations can make better decisions.

As an example, consider a typical project team that has determined, for
a variety of reasons, that they will not make their release date. Assume that
there is still time to do something about this problem. To balance the need
for quality, features, and schedule, the project team identifies several alterna-
tives, as shown in Table 13.2.

By assessing each option using the information above, project teams,
project managers, and management can make better, more informed deci-
sions about crucial tradeoffs between quality, features, and schedule. As a
manager, when situations arise that impact these issues, you need to require
that the project team provides options and alternatives, along with informa-
tion similar to that shown in Table 13.2, so that the options can be evaluated
and the best possible decision made.

13.5 Summary

A key component of a predictable software development process is balancing
the conflicting goals of quality, features, and schedule. Learning how to bal-
ance these components can significantly improve the effectiveness of software
V&V activities. Management must take the lead in helping the organization
make informed decisions based on factual information.

Table 13.2

Balancing Tradeoffs Between Quality, Features, and Schedule
The Issue: The project is behind schedule and is at risk of missing the delivery date.
The possible options that the project team proposes to deal with the issue are:

Option 1

Option 2

Option 3

Description

Add one developer and one QA person.

Drop features not implemented.

Negotiate an extension of the delivery date
with the customer.

It will take time and effort for new people to

Customers were promised some of these fea-

Customers may not be able to wait and may

Risks get up to speed. May delay tures. Will minimize the competitive value of | buy our competitor’s product.
project even further. release.
Quality - .]))
Impact Additional QA resource could help perform Dropping the features not implemented means | An extension to the schedule will allow all
more testing. that some code already written won't work. features to be coded and tested according to
How will this be handled? plan.
Feature - . -))
Impact Additional developer can help implement re- | Customers were promised all of the features. | Customers were promised all of the features.
maining features.
Schedule |] . o o -]
Impact New people will take time from existing staff | May shorten development time; impact on Lengthening the schedule may not be accept-
to get up to speed. testing time is neutral. able to the customer.
Long-term) o) . e " . .
Impact Will help complete remaining features with- | Dropping features means project “continues” | Lengthening the schedule will delay the date

out impacting maintainability.

after release, thereby delaying planned next
release.

for the next release.

80¢

siaBeuej\ pue SIBuoNIOBI4 10 UOIEPI[ZA PUB UONBIIIIB A 8IEMI0S

Table 13.2 (continued)

Option 1

Option 2

Option 3

Will result in product

Will result in shortened development schedule.

Will enable team to deliver all features prop-

Pros delivered with features promised and accept- erly tested.
able quality.
c Adding resources will ultimately delay the re- | Code related to the dropped features may Product will be delivered later than customer
ons lease further. Difficult to find qualified re- have to be excised or somehow disabled. promised. Customers may choose to use com-
sources. Testing implications? Customers expecting all | petitor's product instead.
features.
Key:

some positive impact

strong positive impact

some negative impact

——strong negative impact

Description. States the alternative.

Risks. Describes risks that might be incurred were the option to be implemented.

Quality Impact. States what impact (or) the option has on the overall quality of the product.

Feature Impact. States what impact (or) the option has on the features that were supposed to be included in the product.

Schedule Impact. States what impact (or) the option has on the scheduled release date for the product.

Pros. Describes the advantages of this option.

Cons. Describes the disadvantages of this option.

npagas puw Saangva,J “Mznd) Sutouvivg

60

210 Software Verification and Validation for Practitioners and Managers

Management must work to establish common definitions and measur-
able objectives for achieving quality in the products developed by the organi-
zation. These common definitions and objectives should be reflected in the
individual performance plans of the staff and in the common objectives of
project teams. Management can change the culture by holding people
accountable (themselves included) for meeting specific goals and objectives
related to desirable behaviors and product attributes. Individuals as well as
project teams that meet specific quality goals should be rewarded.

Management must work to reduce the ever-increasing spiral of com-
plexity resulting from feature wars. Developing robust products with a solid
feature set may appeal to more customers than unstable products with exotic
features. As products acquire more and more features, management must
recognize that development time will increase (due to personnel changes
and lack of architectural knowledge of the product) and testing time will
increase (due to increased number of interactions between features and addi-
tion of new features). More often than not, support costs will also increase
as a result of the decrease in usability that accompanies complex, exotic
features.

Management must work to create an organization that is credible.
Management must help the organization learn how to create accurate esti-
mates, learn how to put these estimates together into a schedule, and learn
how to manage projects to meet the schedule. Once this is done, the organi-
zation will become more credible and, as a result, more predictable.

Some specific actions that management can take to help make the
organization more predictable are:

e Change individual performance goals and objectives throughout the
organization to reflect those behaviors that are consistent with a pre-
dictable software development process.

e Require that the organization identify the features that customers
need using techniques such as quality function deployment (QFD),
conjoint analysis, focus groups, and no-tie ranking.

e Require that the organization define the level of quality customers
require in measurable terms.

¢ Require that the organization determine when customers need the
product as opposed to when they want it.

e Require that when project teams make tradeoffs between quality,
features, and schedule, they consider the impact to all three in addi-
tion to the long-term impact to the product.

Balancing Quality, Features, and Schedule 2n

e Provide rewards and recognition for people and project teams that
behave in the desired manner.

References

Pressman, R. S., Software Engineering: A Practitioner’s Approach, 4th ed. New York:
McGraw-Hill, 1997.

Jones, C., Software Quality: Analysis and Guidelines for Success, Boston, MA: Interna-
tional Thomson Computer Press, 1997.

Crosby, P. B., Quality Is Free, New York: Mentor, 1980.

Humphrey, W. S., A Discipline for Software Engineering, Reading, MA: Addison-
Wesley, 1995.

Dunn, R. H., Software Quality: Concepts and Plans, Upper Saddle River, NJ: Prentice
Hall, 1990.

Humphrey, W. S., “What If Your Life Depended on Software?” Carnegie Mellon Uni-
versity, SE 735-SI, 1996.

1997 World Almanac, “Most Frequently Prescribed Drugs in the US for 1994, p. 973.

Boeing Aircraft Company, Facts About the Boeing 767-400ER, available online at
http://www.boeing.com/news/feature/767-400Erroll/funfacts.html (accessed February
2001).

Federal Reserve Bank of Boston, Tour of Operations, Check Processing Department,
available on-line at http://www.bos.frb.org/educate/html/checks.html (accessed Febru-
ary 2001).

Yourdon, E., Rise and Resurrection of the American Programmer, Upper Saddle River,
NJ: Prentice-Hall PTR, 1998.

Collins, W. R., et al., “How Good Is Good Enough? An Ethical Analysis of Software
Construction and Use,” Communications of the ACM, Vol. 37, No. 1, January 1994,
pp. 81-91.

Weiner, L. R., Digital Woes: Why We Should Not Depend on Software, Reading, MA:
Addison-Wesley, 1993.

Leveson, N. G, and C. S. Turner, “An Investigation of the Therac-25 Accidents,” JEEE
Computer, July 1993, pp. 18—41.

Bach, J., “A Framework for Good Enough Testing,” IEEE Computer, Vol. 31, No. 10,
October 1998, p. 124-126.

Yourdon, E., Death March: The Complete Software Developer’s Guide to Surviving “Mis-
ston Impossible” Projects, Upper Saddle River, NJ: Prentice-Hall PTR, 1997.

212 Software Verification and Validation for Practitioners and Managers

[16] Bach, J., “Good Enough Quality: Beyond the Buzzword,” IEEE Computer, Vol. 30,
No. 8, August 1997, pp. 96-98.

[17] Yourdon, E., “The Revolution for Just Enough Quality,” Keynote speech, 10t Intl.
Conf. Software Quality, ASQ Software Division, New Orleans, LA, October 2000.

[18] Brooks, F. P., The Mythical Man-Month, 20th anniversary ed., Reading, MA: Addison-
Wesley Longman, 1995.

[19] Jones, C., Assessment and Control of Software Risks, Upper Saddle River, NJ: Prentice-
Hall PTR, 1994.

Selected Bibliography

Boehm, B. W., Software Risk Management, Los Alamitos, CA: IEEE Computer Society Press,
1989.

Brooks, F. P., Jr., The Mythical Man-Month, 20th anniversary ed., Reading, MA: Addison-
Wesley, 1995.

DeMarco, T., and T. Lister, PeopleWare Productive Projects and Teams, 2nd ed., New York:
Dorset House, 1999.

Jones, C., Assessment and Control of Software Risks, Upper Saddle River, NJ: Prentice-Hall
PTR, 1994.

Leveson, N. G., Safeware: System Safety and Computers, Reading, MA: Addison-Wesley, 1995.

Weinberg, J., The Psychology of Computer Programming, Silver Anniversary ed., New York:
Dorset House, 1998.

Note: URLs cited were accurate as of April 2001.

14

Accurate Estimating and Scheduling

[(Industry surveys from organizations such as the Standish Group, as
well as statistical data ... suggest that the average [software] project is
likely to be 6 to 12 months behind schedule and 50 to 100 percent over
budget. [1]

Learning how to create accurate estimates and build realistic schedules and
then meet them is a critical organizational skill required to achieve predict-
ability. In this chapter, we will discuss the following topics related to accurate
estimating and scheduling:

Why estimates and schedules are wrong most of the time;

A typical scheduled backwards project;
e Best practices for estimating;

e Best practices for scheduling.

Developing accurate estimating and scheduling skills is critical for
many reasons, not the least of which is the impact on software V&V activi-
ties. When a project is behind schedule, what usually happens? Well, verifica-
tion activities like code inspections are eliminated. And the time available for
software validation testing is often reduced. It is for these reasons that organi-
zations must learn how to more accurately estimate tasks and build schedules

213

214 Software Verification and Validation for Practitioners and Managers

that can actually be met. And it is management’s responsibility to see that
this happens.

The objective of this chapter is twofold: (1) to provide insight into why
estimates and schedules are usually wrong, and (2) to identify what manage-
ment must do to help the organization improve its abilities to accurately esti-
mate all of the tasks (development, QA, documentation) required, to use
those estimates to build accurate and reasonable schedules, and then to meet
those schedules.

141 Why Estimates and Schedules Are Wrong Most of the Time

From looking at many projects, I've found that there are several common
factors that result in inaccurate estimates and missed schedules. Let’s explore
some of these.

1. Organizations play ridiculous negotiating games. Project managers
often find themselves in a position where they must negotiate the
project schedule with management. Frequently, this negotiation
occurs at the beginning of a project, before all the requirements
have been defined and all the variables identified. The negotiation
usually continues throughout the project, as key milestones are
missed. The negotiating games, many of which have been identi-
fied by Thomsett [2], are eloquently explained by Yourdon [1] in
the list below.

« Double and add some. In this game, the project manager comes up
with an estimate for the schedule and then doubles it. For good
measure, a few extra weeks or months are then added in.

o Reverse doubling. Most managers are aware of the double-and-
add-some game. They take the initial estimates from project
managers and immediately cut them in half.

o Spanish inquisition. In this game, the project manager walks into
a meeting unaware that he or she will be asked to provide man-
agement with an on-the-spot, instant estimate. Usually, the
schedule has already been determined and the unwitting project
manager is coerced into accepting it.

o Low bid. When outsourcing software, competitors often are en-
couraged to match or beat the competitor’s schedule in order to
win the contract. Of course, the competitor’s schedule is not real-

Accurate Estimating and Scheduling 215

istic, so the project manager must agree to match someone else’s
foolish time frame in order to get the contract.

o “Guess the number I'm thinking of.” Management has decided
what an “acceptable” schedule is but doesn’t reveal it. The project
manager meets with management and attempts to guess the end
date by starting with a realistic estimate and negotiating until
management’s “acceptable” schedule is reached.

2. Organizations overcommit and underdeliver. Many organizations fail
to manage commitments made to customers and frequently over-
commit. This may be caused by many factors such as competitive
pressure, failure to consult with development when making cus-
tomer commitments, and so on. What happens when organizations
overcommit? Well, usually the project manager will cut features
and take whatever shortcuts he or she perceives is necessary to get a
product out. More times than not, the product that is delivered is
very buggy (as a direct result of those shortcuts) and has fewer fea-
tures than the customer was promised. This results in unhappy cus-
tomers and frustrated employees.

Effectively managing commitments to customers (internal as well
as external) is discussed in more detail in Chapter 16.

3. Projects start with predetermined release date. Kickoff meetings for
new projects are exciting events. There’s lots of hoopla, food,
T-shirts, and optimism. The feeling is upbeat. Most projects are
begun with a predetermined release date that has been communi-
cated to customers. And the release date is often set before the
requirements are defined. How is it possible to commit to a deliv-
ery date before the requirements are defined? It’s like buying a new
house without detailed architectural drawings. How will you know
what kind of house you are buying? Without these drawings, how
can the contractor give you an accurate completion date? How can
the carpenters, electricians, and plumbers actually build the house?
They can’t. Yet, we frequently ask software engineers, QA, and
technical writers to build, test, and document a product without
written requirements. Projects begun with a predetermined delivery
date without written requirements will never complete on time.
How can they?

4. Tusks are estimated based on time available rather than time required.
When a project team commits to a delivery date before the

216

Software Verification and Validation for Practitioners and Managers

requirements are defined, the team members must schedule back-
wards—that is, start from the release date and work back to the
present. When we do this, we generally tend to estimate tasks based
on how much time is available rather than how much time the task
actually requires. Estimating tasks based on time available rather
than time required means that from the very beginning of the proj-
ect, the estimates are incorrect and the schedule is not realistic.

Task interdependencies are not identified. Software development
projects frequently require that several groups within the organiza-
tion work together. Typically, these groups include software engi-
neers, software QA, and technical writers. Often, other groups may
be involved as well.

On every software project, there are dependencies between the
work performed by the various groups involved on these projects.
For example, software engineers can’t begin coding until require-
ments are defined and design work is completed. QA can’t begin
testing until tests are written and code is available. Technical writ-
ers can’t do their job until requirements are defined and features are
implemented.

However, interdependencies between tasks are frequently ignored
when scheduling backwards. Why? Because even if people took
the time to identify them, the release date has already been deter-
mined so why do it. Anyone who has ever worked on a software
development project understands the importance of identifying the
interdependencies between tasks. Ignoring interdependencies guar-
antees that the schedule will not be met.

Unexpected things that always happen on every project are ignored.
Every software project has unexpected things happen. When devel-
oping a schedule, we frequently ignore this fact. Again, when
scheduling backwards people don’t bother to take this into account
since they will likely push the release date out and they know that is
not acceptable. Here are some of the unexpected things that we
know from experience happen on every project:

The requirements change.

Key member(s) of the project team leave, get sick, take maternity
or medical leave, win the lottery, and so on.

A key assumption about the product proves wrong.

Training for new tools or new technology is not provided.

Accurate Estimating and Scheduling 217

« Dependencies arise that were previously unknown or ignored.

« Key resource(s) are pulled off to fight the most recent “fire.”

By not planning for unexpected things, we create unrealistic schedules
right from the start.

14.2 A Typical Scheduled Backwards Project

Now let’s take a look at what happens on a typical scheduled backwards proj-
ect—a project that starts with a predetermined end date usually resulting
from one of the negotiating games listed in the previous section. Scheduling
backwards always leads to an unrealistic schedule, because:

1. When you schedule backwards, task estimates are made based on
the time available rather than the time required. Activities such as
decomposing tasks to understand the total scope of the problem
and identifying intertask dependencies are not done. Since the
release date is already set, why bother?

2. When you schedule backwards you assume that nothing will go
wrong and that nothing unexpected will happen. Since this is not
very realistic, neither is the schedule.

By not acknowledging the complexity, organizational capabilities,
resource requirements, task interdependencies, and the unexpected things
that always happen, the schedule quickly becomes meaningless.

So what happens on a scheduled-backwards project? Well, sooner or
later, a critical task will be very late or, worse, unable to be completed. And
then the ripple effect begins. The test plans, documentation, and coding all
take longer than expected because the tasks were never fully understood from
the outset, dependencies between tasks were never identified, contingency
plans for staffing were never implemented, and so forth.

When it becomes obvious that the project team will not meet the
schedule, the project manager panics because his or her performance is based
on releasing a product “on time.” Customers have already been promised
that the product would be released on time. Given this situation, the project
manager has no choice but to take shortcuts.

First, the project manager abandons whatever process the team was fol-
lowing in the hope this will somehow speed things up. The project team’s
focus is shifted to paring down features and cranking up coding. Verification

218 Software Verification and Validation for Practitioners and Managers

activities such as design reviews and code inspections are now viewed as
unnecessary and are eliminated. The time planned for validation testing is
drastically cut since testing is always one of the last activities on the schedule.

Some project managers add more people in a desperate attempt to meet
the schedule, ignoring the advice of Dr. Fred Brooks [3], who early on recog-
nized that the relationship between time and people on software projects is
not linear. According to Brooks, adding people to a late project just makes it
later.

No design reviews, no code inspections, less testing, and much more
hurrying all add up to a poor-quality product. The product eventually gets
released, usually weeks or months after the scheduled date. The project team
is demoralized since they worked extremely hard to get the product released
and know that customers will not be satisfied because it is missing key fea-
tures and has far too many defects. And in fact, even prior to shipping,
there’s usually a team already at work on the ubiquitous bug-fix release. The
most amazing thing about this scenario is that no matter how many times
this happens, management is still appalled at the high support costs, upset
that so many defects were missed, and quick to blame the team for doing
shoddy work.

Another critical factor related to project schedules has to do with how
project managers are measured and evaluated. If a project manager’s salary
increase is based on getting a product released, then release the product is
what he or she will do, regardless of quality and of whether or not critical fea-
tures are included. Since the project team is usually aware of this, there is no
incentive to do it right the first time.

Clearly, focusing only on time to market or only on quality or only on
features, to the exclusion of other factors, is not desirable. Having a high-
quality product that is months late and as a result does not sell is just as bad
as releasing a poor-quality product on time.

14.3 Software Estimating Techniques

There are several excellent techniques for estimating either the size or cost of
a software project. These include:

¢ Function points and feature points;
e Constructive cost model (COCOMO II);
¢ Wideband delphi method.

Accurate Estimating and Scheduling 219

A brief overview of each method is included below. Additional
resources for some of these methods are included at the end of this chapter.

14.3.1 Function Points and Feature Points

Function points are a way of estimating how big a software product will be
based on functionality from the user’s perspective. Function points were
developed initially for information systems. The feature point extension [4]
applies a similar method for other types of software, such as real-time soft-
ware, embedded software, and communications software.

The method for counting either function points or feature points has
been well documented in the literature [5-8]. The training required to learn
how to count function points takes about two days. To ensure consistency in
counting, the International Function Point Users Group (IFPUG) publishes
and periodically revises function point counting rules. IFPUG also offers
counting certification exams.

Once function points are counted for a proposed system, an extensive
body of empirical data can be used to relate function points to productivity
and size of the product. Jones [9] also claims that function points can be use-
ful for such things as normalizing defect data and estimating tests required
and number of test runs.

14.3.2 COCOMO I

COCOMO 1I is a mathematical modeling and estimation tool that helps
estimate the cost, effort, and schedule of a software development activity.
The original COCOMO model was developed by Boechm [10]. COCOMO
IT [11] has reflected the numerous changes in software development that
have occurred since the publication of the original model in 1981.

The first version of the COCOMO 1II tool was released in 1997 and
was calibrated to 83 data points that represent historical software develop-
ment projects, using a 10% weighted average approach that blends empirical
data with expert opinion. Experience with COCOMO has shown that if an
organization calibrates the model to its own empirical data, the accuracy of
the results can be greatly improved over the generic calibration described
above.

The COCOMO model has been widely used in large organizations,
especially those doing work for the U.S. government.

220 Software Verification and Validation for Practitioners and Managers

14.3.3 Wideband Delphi Method

This method was developed at the Rand Corporation in 1948 and is useful
for estimating attributes of complex tasks or projects—that may or may not
have anything to do with software. This method helps improve the accuracy
of estimates because:

e It requires that several experienced people estimate the same task.
e It requires that a detailed breakdown of the work be prepared.

e [tisan iterative process based on consensus.

I have found that this technique is most effective when estimating tasks
(such as building a new driver or incorporating new technology) being done
for the first time. The process of task estimation using the wideband delphi
method is shown in Figure 14.1.

The process typically includes the project manager, who acts as the
facilitator for the process, and from three to five experienced engineers, who
act as estimators. The process begins with a planning phase. During this
phase, the problem statement is prepared and broken down into smaller,
more manageable parts, as appropriate.

During the planning phase, the team meets to review the problem
statement and decide if and how to decompose the problem into smaller
parts. Once this is done, the team reviews and agrees on assumptions and
constraints. The project manager documents the assumptions and con-
straints. Lastly, the team agrees on what they will be estimating and the
units—development effort in person-hours, cost in dollars, or size in lines of
code, etc.

Once the planning phase is completed, the estimators get to work.
They review the problem statement(s) and start estimating. They must do

Wideband Delphi Process Flow

Plannin | Individual Estimation Review
g "| preparation| | meeting 1 results

Figure 14.1 Wideband delphi process flow.

Accurate Estimating and Scheduling 221

this in a manner that is free from management influence of any kind. For this
reason, it is best that the anonymity of the estimators is preserved.

Each estimator should identify all tasks related to the problem, such as
writing and reviewing specifications, design reviews, testing, quality assur-
ance, configuration management, bug fixing, and documentation. Each
assumption made by an estimator is recorded along with a justification.

When estimating, the estimators should make the following
assumptions:

e That all of the tasks will be performed;

e That the tasks will be completed sequentially even though some
concurrent work could be done;

e That work on each task will be uninterrupted;

e That known events (such as trade shows and planned vacations) may
interrupt activities.

The estimation is done in a series of several rounds. Typically, two to
four rounds are necessary. In each estimating round, the estimators discuss
such things as assumptions, constraints, and justifications. Once the estima-
tors complete their preparation (typically in three to five days), they provide
the project manager with a copy of their estimation worksheet, similar to that
shown in Table 14.1. The project manager convenes a meeting and the indi-
vidual estimates are plotted on a graph similar to that shown in Figure 14.2.
This illustrates that there was a wide variation in the estimates. The variation
is usually due to differences in assumptions and perspectives.

The group discusses assumptions and constraints and begins the second
round. Based on discussions, the estimators change their estimates anony-
mously and provide the project manager with their revisions using the work-
sheet shown in Table 14.1. The round 2 estimates are graphed and discussed.

This process continues until the variation decreases to an acceptable
amount (determined in advance) and the estimators reach consensus. This is
illustrated in Figure 14.2. When this happens, the process is completed and
the project team uses the final estimate.

Completion criteria for the process are as follows:

e An overall task list has been defined;
e A complete list of assumptions has been documented;

e The estimators have reached consensus on the final estimate.

222 Software Verification and Validation for Practitioners and Managers

Table 14.1
Wideband Delphi Estimating Worksheet

Round 1 Round 2 Round 3 Round 4 Final
Problem #1 | Estimate Estimate Estimate Estimate Estimate

Task 1
Task 2
Task 3
Change
Total

From: Weigers [12]. Used with permission.

Lastly, it is critically important for the estimators to compare their indi-
vidual estimates to the actual results once the project is completed in order to
reconcile differences and improve their estimating skills. This is true regard-
less of the estimating technique being used.

14.4 Scheduling Techniques

In this section we discuss the following scheduling techniques: the program
evaluation and review technique (PERT), the critical path method (CPM),
and the yellow sticky method.

1441 PERT and CPM

Most of us are familiar with PERT and CPM charts for software projects. At
one time or another, anyone who has managed software projects has had to
create schedules using these tools.

The important point to note about PERT and CPM is that they are a
means, not an end. They both depend on people creating information based
on their knowledge of the project and the tasks that software engineering,
QA, and other groups must perform. There is no substitute for this informa-
tion. Too often, I've seen project managers starting out on a new project cre-
ating PERT and CPM charts before anyone has had a chance to identify and
estimate tasks. The techniques of estimation described earlier must precede
the creation of PERT and/or CPM charts.

Before creating a PERT or CPM chart, the following information must
be clarified:

Accurate Estimating and Scheduling

223

Round 4

Round 3

Round 2

Round 1

Round 4

Round 3

Round 2

Round 1

Estimates After Round 1

500

Estimated Development Time (person-hours)

1,000

Estimates After Round 3

1,500

2,000

OO0

OO (OO

500

Estimated Development Time (person-hours)

1,000

Figure 14.2 Task estimation using wideband delphi.

1,500

2,000

224 Software Verification and Validation for Practitioners and Managers

¢ Decomposition of product function;

Identification of all tasks required to be performed;

Estimates of effort for each task;

Interdependencies between tasks;

e Assignment of specific resources to tasks.

Once this information is available, building schedules using either
PERT or CPM tools can begin.
The product decomposition and task list is often referred to as a work

breakdown structure (WBS). Once the WBS is identified, a timeline or
Gannt chart can be created to show the overall timeline for the project.

14.42 The Yellow Sticky Method

The yellow sticky method' has been used successfully for many years in other
industries. I first learned this method several years ago from a small software
company. I was impressed by both its simplicity and by the accuracy of the
resulting schedules. The experiences of this software company piqued my
interest. What was it about this method that enabled teams to develop sched-
ules that they actually met? By examining the process closely and observing
teams using it, I soon learned why this method works so well.

The yellow sticky method helps people develop more accurate, realistic
estimates of tasks they themselves will perform. It also includes identification
of dependencies between tasks. By starting with more accurate estimates and
including the dependencies, it is a rather simple and straightforward process
to create a project schedule that is accurate, realistic, and can actually be met.

The method is based on the following simple principles:

¢ Know what you are being asked to deliver.

e People who will be doing the work create the task estimates and help

build the schedule.
. . .
e Project team members critique each other’s estimates.

e Everyone is held accountable for meeting his or her commitments.

1. I did not create the yellow sticky method. I have looked far and wide to find the per-
son(s) deserving credit, but as yet I have not found anything in print. If you know who
created the yellow sticky method, please send an email to info@swqual.com.

Accurate Estimating and Scheduling 225

e Customers are promised less than what can realistically be delivered
(undercommit and overdeliver).

e Everyone on the project team (developers, software QA, technical
writers, and project managers) is trained in the method.

e Management has “bought into” the process.

A project team for a given software project would typically include peo-
ple from project management, software engineering, QA, technical docu-
mentation, and training. Other groups may also be involved.

For a complete description of how to use the yellow sticky method,
refer to Appendix K.

145 Summary

The track record of the software industry with respect to meeting schedules is
abysmal. In an unpredictable organization, management’s responsibility is to
recognize that:

¢ To continue to use the same mechanism for estimating and schedul-
ing will result in continued inability to meet schedules.

e The organization needs to find an estimating and scheduling process
that works.

e People who will be doing the work are best able to estimate how
long the work will take.

e The organization needs training in good estimating and scheduling
practices.

e The people doing the work must be given the ability to set the
schedule and then be held accountable for meeting it.

e The way to improve estimating skills is to learn from past estimates.

e DPeople who create accurate estimates and schedules and then meet
them should be rewarded.

In order for the organization to become more predictable, the organiza-
tion must learn how to create accurate estimates and schedules. Management
plays a key role by creating a culture based on developing accurate, realistic
schedules. By helping to establish a more predictable development process,

226

Software Verification and Validation for Practitioners and Managers

management will be increasing the effectiveness of software V&V activities,
which will have a positive impact on the company’s bottom line.

References
Yourdon, E., Death March: The Complete Software Developer’s Guide to Surviving “Mis-
sion Impossible” Projects, Upper Saddle River, NJ: Prentice-Hall PTR, 1997.

Thomsett, R., “Double Dummy Split and Other Estimating Games,” American Pro-
grammer, June 1996.

Brooks, F. P., The Mythical Man-Month, 20th anniversary ed., Reading, MA: Addison-
Wesley, 1995.

Jones, C., Applied Software Measurement, New York: McGraw-Hill, 1991.

Garmus, D., and D. Herron, Measuring the Software Process: A Practical Guide to Func-
tional Measurement, Upper Saddle River, NJ: Prentice-Hall, 1995.

Dreger, B., Function Point Analysis, Upper Saddle River, NJ: Prentice-Hall, 1989.

Function Point Counting Practices Manual, Release 4.0, International Function Point

Users Group (IFPUG), 1994.

Pressman, R. S., Software Engineering: A Practitioner’s Approach, 4th ed., New York:
McGraw-Hill, 1997.

Jones, C., Software Quality: Analysis and Guidelines for Success, Boston, MA: Interna-
tional Thomson Computer Press, 1997.

Boehm, B., Software Engineering Economics, Upper Saddle River, NJ: Prentice-Hall, 1981.

Boehm, B., et al., Software Cost Estimation with COCOMO II, Upper Saddle River, NJ:
Prentice-Hall, 2000.

Wiegers, K., “Stop Promising Miracles,” Software Development, February 2000.

Selected Bibliography

Pressman, R. S., Software Engineering: A Practitioner’s Approach, 4th ed. New York:
McGraw-Hill, 1997. (For further reading on function points and feature points.)

Putnam, L., and W. Myers, Measures for Excellence, Englewood Cliffs, NJ: Yourdon Press,
1992. (Contains helpful information on project planning.)

Accurate Estimating and Scheduling 227

Web Resources

More information on function points and feature points and COCOMO 1I can be found at
the IFPUG and COCOMO Web sites:

e htep://www.ifpug.org
o http://sunset.usc.edu/research/ COCOMOII/cocomo_main.heml

Note: URLs cited were accurate as of April 2001.

15

Balancing People, Process,
and Product

Management plays a central role in making tradeoffs that affect people,
process, and products. In this chapter, we discuss issues related to balancing
the needs of people (employees, organizations, and customers), process (in
the form of “best practices”), and product (did we build the right product
and does the product meet customer needs?).

Tradeoffs with regard to people, process, and product impact the effec-
tiveness of the software V&V activities described in Parts I-I1I. Management
must balance the often-conflicting needs of people, process, and product in
order to help the organization behave in a more predictable manner.

15.1 Process

In working with many companies, I have found that management is some-
times reluctant to impose “process” upon the organization. Management,
encouraged by a small, vocal segment of the software engineering commu-
nity, is led to believe that somehow process gets in the way of progress, that
somehow process diminishes creativity, even though instinct says otherwise.
In some companies, the process is viewed with much disdain. In fact, I've
been confronted with the attitude that “Real programmers don’t need a writ-
ten process!” on more than one occasion.

229

230 Software Verification and Validation for Practitioners and Managers

If you pick any industry and find the most competitive, profitable, and
efficient companies in that industry, you will find that most every one of
them is dependent upon a written process. Clearly, these industries have
learned how to use process to their advantage.

Within the software industry, as observed by Jones [1], “there are thou-
sands of ways to fail when building software applications, and only a few
ways to succeed. It is an interesting phenomenon that the ‘best in class’ com-
panies in terms of quality all use essentially similar approaches in achieving
their excellent results.”

There will be more on this later. Let’s look briefly now at the economic
motivation for process.

15.1.1 Economic Motivation

In working with organizations that are not “process-oriented,” I am often
asked the question “We're profitable operating the way we do, why should
we change?” A good question. The answer is simple.

First, whether or nor the process is written down, there is a process. If
it’s not written down, then it resides in someone’s head. If that person leaves,
the process and knowledge about the process leaves with that person. Having
worked as a developer for several years, I've found that there are some soft-
ware engineers and some software QA people who prefer to not have any
written process, since it would force them to be accountable. While there are
few of these people around, they nonetheless are vocal and persistent. In
most every other organization within companies, process is not only
accepted, but required. Why should software development be different than
other engineering disciplines?

Second, in my view, companies that lack a basic set of written processes
are less efficient then they could be and are inherently unpredictable. By defin-
ing and following a written process that’s appropriate for your business, com-
mensurate with the type of product you develop and the risk it engenders, your
organization will become more predictable and, as a result, more cost-effective.

Lastly, if your company is profitable operating without any written
process, your company can be more profitable if you define and follow an
appropriate set of basic processes. This fact often is lost in the sometimes-
heated discussions regarding process.

The objectives of a product development process should be to:

e Increase competitiveness by alignment with overall business goals
and objectives;

Balancing People, Process, and Product 231

e Reduce risk (and therefore liability) by ensuring that the product
development process is commensurate with the business risk of
developing the product and the potential risk of using the product;

e Increase predictability of the organization by establishing common
terminology, clearly defined work products, and a concise means for
measuring project progress.

Given these objectives, let us now look at what it means for an organi-
zation to be process-oriented.

15.1.2 The Process-Oriented Organization

To become predictable, organizations need a written product develop-
ment process. The notion of a written software development process was
introduced in Chapter 3. Appendix G includes an example of what such a
process might look like. This process should describe what must be done to
create products that may include hardware, software, and related services. As
such, it should incorporate procedures required of all engineering disciplines
involved in product development. For example, it should include software
engineering, software quality assurance, technical documentation, hardware
engineering, customer support, training, and so on. By preparing one docu-
ment (instead of separate documents for each technical discipline), it
becomes possible to weave the activities of each discipline into one overall
process. This enables the organization to work more efficiently and supports
the principle of concurrent engineering.

All software companies have a business need for a minimum set of
processes that need to be defined, documented, communicated, and fol-
lowed. The specifics of these processes should be defined to be commensu-
rate with business goals and product risk. That is, there needs to be a balance
between process and risk. Developing life- or mission-critical systems clearly
requires a more extensive product development process than developing
video games. We need to avoid process for process’ sake.

There are several important aspects of a product development process
that management needs to understand:

o The product development process must provide competitive advantage.
Why would an organization use a product development process that
uts them at a competitive disadvantage? Clearly they wouldn’t. Yet

p p g y they

232

Software Verification and Validation for Practitioners and Managers

this is one reason why organizations that have written a product
development process don’t follow it.

Creating a process that provides competitive advantage can seem
like a daunting task, especially for larger organizations with geo-
graphically dispersed development groups. In organizations like this,
each product development group should create their own product
development process and then work toward establishing a more
common process, if that makes good business sense. This will only
happen, however, if management at the highest levels truly believes
in the value of creating such a process.

The product development process needs to be designed to be flexible. A
rigid, inflexible process is sure to be found on the shelf collecting
dust. Flexibility means that project teams determine the amount of
“process” appropriate for the project at hand. Flexibility doesn’t
mean ignoring process. Flexibility is essential since we know from
experience that most software projects have unique constraints and
business needs. (Note that in regulated industries the amount of
flexibility is less than in nonregulated industries. However, some
flexibility is still needed.)

Flexibility applies to software development tasks as well as software
V&V tasks. One common reason that organizations don’t follow
their written product development process is that their process may
be inflexible—every project must be done the same way, following
the exact same procedures. While this approach is appropriate for
manufacturing, it just doesn’t work for software development.

The product development process needs to be tailored to meet the specific
business needs of each project. Part of the value of having a written
product development process derives from the ability to tailor it to
meet the specific and unique business and technical needs of each
project. The concept of tailoring is extremely important because it
provides the flexibility required by organizations and projects. The
product development process should require that a project plan be
written for each project. One of the primary purposes of the project
plan is to describe which of the processes and procedures from the
product development process will be used and which won’t. For
those that are not used, written justification (reviewed and approved
by management) should be provided in the project plan.

Balancing People, Process, and Product 233

Table 15.1 summarizes some “acknowledged” reasons why organizations
fail to follow their product development process and the probable root cause.

15.1.3 Finding the Right Process

As stated by Jones, there are many ways to do it wrong but only a few ways to
do it right. In Chapter 13, the concept of best practices was introduced; lists
of best practices for software development and software quality assurance are
included in Appendices L and M.

As a first step toward becoming process-oriented, your organization
needs to select one or more software development life-cycle models
(described in Chapter 2) and adapt them as necessary. Once this is done,
your staff needs to then understand processes used by best-in-class compa-
nies, and then adapt them to your selected life-cycle model(s), products, and
business objectives. By studying practices used at best-in-class companies,
Jones [1] has found that while there are many differences, there are some
similarities, as shown in Table 15.2.

Recently, Boehm and Basilli [3] reported on a study that identified ten
of the most important techniques for reducing defects. Their so-called
software-defect-reduction top-ten list is shown below.

Table 15.1
Why Product Development Processes Are Ignored

Acknowledged Reason Probable Root Cause

The process makes it harder
to get products to market.

The process ignores business objectives and risk.

The process is inflexible. People with @ manufacturing perspective probably wrote the pro-
cess, since in a manufacturing environment it makes sense for

the process to be the same for every product.

People other than those who
must follow it created the
process.

The process was probably developed by the “Process Police” and
as a result, the people who must follow it have not “bought into”
the process.

There is no accountability
regarding process.

Management may not understand the importance of following a
defined process and as a result, doesn't hold project managers
accountable. Lack of accountability may be a systemic problem
within the organization.

The process wasn't
effectively communicated to
all of the organization.

After the process was written and approved, it was never rolled
out to the organization. Lack of effective communication across
the organization may be a systemic problem.

234 Software Verification and Validation for Practitioners and Managers

Table 15.2

Practices Used By Best-in-Class Companies

Process

For more information, see...

Quality measurements

Chapter 10, Appendix L

Defect prevention techniques
such as quality function deploy-
ment (QFD) and joint application
design (JAD)

QFD—Pressman [2]
JAD—Jones [1]

Defect and quality estimation
automation

Jones [1]

Defect-tracking automation

Defect-tracking tools from several suppliers are available.
. * .
See for example, Rational Software at www.rational.com
)
and Mercant at www.mercant.com.

Complexity analysis tools

Pressman [2]

Complexity tools are available from suppliers such as
McCabe and Associates” at www.mccabe.com.

Test coverage analysis tools

Test coverage tools are available from suppliers such as Soft-
*
ware Research at www.soft.com.

Formal inspections

Chapters 5, 6; Appendixes A-D

Formal testing by test specialists

Chapter 9

Formal quality assurance group

Pressman [2] and Jones [1]

Executive and managerial
understanding of quality

Jones [1]

*
These tools are not necessarily endorsed by the author.

1. Finding and fixing a software problem after delivery is often 100
times more expensive than finding and fixing it during the require-
ments and design phase.

2. Current software projects spend about 40% to 50% of their effort
on avoidable rework.

3. About 80% of the avoidable rework comes from 20% of the

modules.

4. About 80% of the defects come from 20% of the modules, and
about half the modules are defect free.

5. About 90% of the downtime comes from, at most, 10% of the

defects.

Balancing People, Process, and Product 235

6. Peer reviews catch 60% of the defects.

7. Perspective-based reviews catch 35% more defects than nondi-
rected reviews.

8. Disciplined personal practices can reduce defect introduction rates

by up to 75%.

9. All other things being equal, it costs 50% more per source instruc-
tion to develop high-dependability software products than to
develop low-dependability software products. However, the invest-
ment is more than worth it if the project involves significant opera-
tions and maintenance costs.

10. About 40% to 50% of user programs contain nontrivial defects.

Management clearly must take a leadership role in helping the organi-
zation establish, define, and follow a written product development process
that is focused on reducing defects and delivering high-quality products on
time. Once established, management must continue to provide support for
the development process by holding people accountable for following it and
for allowing staff to continually look at possible improvements based on
process effectiveness measures.

In summary then, management’s role with regard to process is summa-

rized in Table 15.3.

15.2 People

DeMarco and Lister’s influential work Peopleware should be required reading
for every manager and executive in the software industry. Here is but one bit
of wisdom from this book: “The manager’s function is not to make people
work, but to make it possible for people to work” [4]. What does this mean?
Well, it means that management needs to:

1. Create an environment based on trust that enables people to take
pride in their work and do things right the first time;

2. Request factual information in a timely manner without recrimi-
nation;

3. Measure customer satisfaction on a regular basis—and make
changes accordingly;

236 Software Verification and Validation for Practitioners and Managers

Table 15.3
Management's Role with Regard to Process

What to do... How to do it...
Work to create a “process-oriented” Identify the processes (documented or not) that are
culture within the organization. currently being used to develop products.

Define simple effectiveness measures that can be
used to assess the effectiveness of these processes.

Based on effectiveness measures, determine which
processes need to be changed.

Talk to staff about process and the importance to the
organization of having an appropriate set of effective
processes for product development.

Require the organization to establish a Meet with managers and staff to review issues re-
written process that is appropriate for lated to process and risk.

your products and business goals and that
is flexible so that it can be tailored to
meet the specific needs of each

project.

Establish a forum for staff to raise concerns about
process (too much or too little).

Encourage staff to consider best practices such as
those included in the Appendices.

Require that the people who will have to Establish “process definition teams” within the prod-

follow the process be actively uct development groups. Ensure that all groups are
involved in creating it. represented.

Ensure that the written process is Formally introduce the process and schedule training
communicated and understood. If sessions if appropriate.

necessary, provide training to ensure that
people understand what is
expected of them.

Ensure that everyone knows that following the pro-
cess is part of his or her responsibility.

Hold managers accountable for communicating the
process to their group and for identifying training
where appropriate.

Once the process is established, hold the Hold project managers accountable for tailoring the
organization accountable for following process to meet specific project needs and then fol-
the process. lowing the tailored process.

Require that the process be reviewed Meet with staff to discuss process issues and ways
periodically and changed as a result of to improve effectiveness of processes.
process effectiveness measures.

4. Measure employee satisfaction on a regular basis—and make
changes accordingly;

5. Acknowledge the relationship between customer and employee
satisfaction;

Balancing People, Process, and Product 237

6. Listen to your staff—they can tell you a lot about what is right and
what is not;

7. Listen to your customers—they can tell you about their needs and
concerns;

8. Ensure employees are properly trained for their job;
9. Ensure every employee has specific quality goals they must meet;

10. Reduce turnover by creating an environment of which people
want to be a part.

From my own experience as a manager, I believe that the most impor-

tant roles for management are to:

15.2.1

e Provide motivation;
e Reduce turnover;

e Build effective teams.

Let’s look at each of these issues and see how it affects predictability.

Provide Motivation

What motivates your people? Surprisingly, it’s not money.

Money, benefits, comfort, and so on are “hygiene” factors—they create
dissatisfaction if they’re absent, but they don’t make people feel good
about their jobs and give them the needed internal generator. What
does produce the generator are recognition of achievement, pride in
doing a good job, more responsibility, advancement, and personal

growth. [5]

As a manager for several years, I found that the best way to motivate

people is to:

o Ser realistic, measurable goals. For each employee, I prepared a plan
that included written goals and objectives based on business objec-
tives (i.e., planned projects). These goals and objectives were meas-
urable (e.g., complete software validation of Release 1.2), and, more
importantly, were aligned with the employees’ interests and long-
term career goals. We revisited the plan whenever a task was

238

Software Verification and Validation for Practitioners and Managers

completed so that I could provide feedback as close to the comple-
tion of a task as possible. Adjustments to the plan were made as
needed. In this manner, each person always knew exactly where they
stood so that at performance review time, there were no surprises.

Establish career paths where they don’t exist. Several years ago I recog-
nized that we had to takes steps to retain customer support engineers
who were burning out. I also recognized that it was becoming
increasingly difficult to find SQA engineers who had “domain
knowledge.” I could find testers but not testers that understood the
product and how customers used the product. So, I worked with the
customer support manager to create a new career path for customer
support engineers. As a result I was able to build a core SQA group
by encouraging customer support engineers to transfer to SQA. I
provided these people with training in testing techniques and in a
very short time, they became an extremely effective testing group.

Management must recognize that customer support people have an
enormous amount of domain knowledge and that this knowledge is
incredibly valuable to the organization. Since this knowledge can’t
be bought, management should take whatever steps are necessary
(like creating new career paths) to retain as many of these people as
possible.

Create a “Mentality of Permanence”[4]. In the new millennium, it’s a
seller’s market. People seem to change jobs as often as they change
their clothes. As DeMarco and Lister stated, management needs to
create a “mentality of permanence” rather than the ubiquitous
revolving door.

At best-in-class organizations, management clearly takes a long-term
view. Investing in people is why turnover is so low at these compa-
nies. People respond to the fact that management is willing to make
significant investments in their future, through cross-training, the
office environment, on-site child care, flex hours, job sharing, tele-
commuting, on-site fitness centers, and even on-site gardens.

By working to create a mentality of permanence, management pro-
vides a clear message: We value your abilities and we are willing to
invest in you to make you more valuable to the company. People
respond to this message because “there is a widespread sense that you
are expected to stay” [4].

Balancing People, Process, and Product 239

15.2.2 Reduce Turnover

Turnover is incredibly expensive. Average figures for the cost of turnover run
as high as 20% of the total cost of labor [4]. But this is clearly only the tip of
the proverbial iceberg. In organizations with high turnover, productivity is
low, morale is low, and quality is, you guessed it, low. Why? Because most of
the staff has taken a short-term view of their jobs. In fact, as reported by
DeMarco and Lister [4], for organizations with high turnover, the reasons
cited include:

e A “just-passing-through” attitude (people don’t form a sense of
long-term involvement or permanence in their jobs);

e A feeling of disposability resulting from the perception that manage-
ment views workers as interchangeable parts;

e No sense of loyalty (who would be loyal to an organization that
views people as interchangeable?).

Traditional techniques for reducing turnover were focused on the
“hygiene factors” such as money—imagine saying to someone who has quit,
“We'll pay you more not to leave”™ —or benefits—“We'll give you an extra
week of vacation if you stay.”

Frequently, management just doesn’t understand the real reasons peo-
ple leave. Many people are too frustrated to give honest answers at their exit
interview and those that do are viewed as troublemakers or not a team player,
so their reasons for leaving are often ignored if they are regarded at all.

In today’s economy, management must become much more aggressive
in reducing turnover, because there are so many more jobs than there are
people to fill them. The traditional solutions for reducing turnover must give
way to honest introspection and real change.

15.2.3 Build Effective Teams

There is nothing more gratifying for techno-geeks like us than working on an
exciting, “bleeding-edge” project as a member of a cohesive, highly func-
tional team. If we have just one experience like this in our career, we are con-
sidered fortunate. Some people never experience the joy, the wonder, the
constant mind-stretching challenges, and the sheer electricity of such an
experience. And from experience, we know that when the planets are aligned
just so and one such team is formed, there is no telling what they can
accomplish.

240 Software Verification and Validation for Practitioners and Managers

While there is no recipe for building teams like this, management must
learn how to identify charismatic leaders, select people based on chemistry
instead of politics, and empower rather burden. For most every company,
much of the company’s success (or lack thereof) is dependent upon having
effective teams. And having such teams depends heavily on management’s
ability to form them and give them the freedom to work.

As observed by DeMarco and Lister, “In organizations with the best
chemistry, managers devote their energy to building and maintaining healthy
chemistry. Whatever their relationship to the work going on around them,
they’re certainly not doingany of it” [4].

Below are some elements of chemistry building that DeMarco and
Lister [4] have identified as contributing to a healthy organization:

e Make a cult of quality—deliver higher quality than your customers
expect.

e Provide lots of satisfying closure—people need reassurance they are
headed in the right direction.

¢ Build a sense of eliteness—teams need to feel that they are special in
order to achieve extraordinary performance.

e Allow and encourage heterogeneity—since teams are composed of
individuals, each team will be very different.

e Preserve and protect successful teams—give people the option to
continue to work together.

e Provide strategic but not tactical direction—the manager is not part
of the team and therefore can only provide strategic direction.

Management is instrumental in forming cohesive, exciting teams. If
management is lucky (or skilled) enough to form such a team, it needs to do
what was stated earlier—remove as many roadblocks as possible and, most
importantly, not become a roadblock itself. If management can do this, the
results can be astounding.

15.2.4 Best Practices for Managing People

Many organizations have put a lot of time and money into process improve-
ment by using some of the process improvement models identified in
Section 1.4. Even with huge investments in process improvement, some
organizations have come to the realization that continued improvement in

Balancing People, Process, and Product 241

productivity, quality, and time to market require significant changes in the
management, development, and utilization of their people. Such changes are
outside the scope of most process improvement models.

The idea that there could be a set of best practices for managing people
is intriguing. The SEI recognized the need for such practices a few years ago
and as a result, developed the People Capability Maturity Model
(P-CMM™) [6]. The intent of the P-CMM™™ is to “provide guidance on
how to continuously improve the ability of software organizations to attract,
develop, motivate, organize, and retain the talent needed to steadily improve
their software development organization” [6].

Work areas that are addressed by the P-CMM*™ include:

e Work environment;

e Communication;

e Staffing;

e Managing performance;

e Training;

o Compensation;

¢ Competency development;
e Career development;

e Team building;

¢ Culture development.

These areas are generally consistent with recommendations identified
here and are intended to be used with the SEI CMM* (see Appendix L). For
more information on the P-CMM®™ see [6] or visit the SEI CMM Web site
at www.sel.cmu.edu.

In summary, management’s role with regard to people is as follows:

Management must recognize that people have needs.

e People need to know that if they work hard they will be recognized
and rewarded.

e People need to be part of a team that has a good chance of being
successful.

e People need to know what is expected of them.

242 Software Verification and Validation for Practitioners and Managers

e DPeople need appropriate training in tools and technology before
being thrown onto projects.

e People need to have defined career paths with choices.

e People need to have written goals and objectives that they are meas-
ured against.

e People need a work environment based on trust.

Management must recognize that organizations have needs.

¢ Organizations need people with “domain knowledge.”
¢ Organizations need people who can work well together.
¢ Organizations need people with specific skills.

¢ Organizations need to communicate effectively.

¢ Organizations need to be focused on customers.

¢ Organizations need to be constantly improving and constantly
learning.

¢ Organizations need to be adaptable.

¢ Organizations need to change—constantly.

Management must recognize that customers have needs.

o Customers need suppliers they can count on.

e Customers need to build relationships with suppliers.

e Customers need tools that can help them get their job done.
e Customers need software products that work reliably.

e Customers need factual information in a timely manner.

o Customers need to make decisions in real-time.

e Customers need products that will give them an advantage.

e Customers need to be constantly improving and learning.

15.3 Product

In order for organizations to behave in a more predictable manner, manage-
ment must be able to answer the following product questions:

Balancing People, Process, and Product 243

Are you building the right product? During the development process,
it is important to have confidence that your team is building the
right product—with features your customers want as defined by the
requirements specification. The way to ensure that this is the case is
to perform an inspection of the requirements specification (as
described in Chapter 6) and to perform software validation testing
(as described in Chapter 9).

Is the product “good enough”? Clearly, customers have expectations
for quality. It is imperative that these expectations be documented at
the beginning of the project. Tests need to be created to ensure that
the quality requirements are met as development proceeds.

Are measurable product release criteria defined for the product? One of
the most difficult decisions for a team to make is when to stop test-
ing and release the product. Without measurable criteria, this deci-
sion can often become a contentious argument. As part of the test
planning process outlined in Chapter 9, measurable completion cri-
teria need to be defined and agreed to up front so that everyone
knows where the bar is set with regard to releasing the product.

Does the product do what it is supposed to? It may sound incompre-
hensible, but sometimes products are developed and released only
to find out that they don’t do what they were supposed to do.
How does this happen? In organizations with no formal procedures
for controlling change, frequently developers make changes to the
product and neglect to communicate these changes to anyone else.
When customers get the product, they are surprised to find that the
product doesn’t perform according to the user manual. Not surpris-
ing, since there may not have been time for SQA to test the user
manual against the product. Another way this happens is described
in Section 13.3.5 as when a product manager pressures a developer
to slip in a new feature.

Does everyone (including your customers) know what the product is sup-
posed to do? It seems like printed user manuals are about as common
as eight-track tapes. Without user manuals, how then do users know
what features products are supposed to have? Usually this happens in
a couple of ways: First, there is frequently on-line help included with
the product that provides an explanation of features. Second, there
may be internal documents prepared by the project team (like an
SRS). And lastly, there is verbal communication from sales and mar-
keting people.

244 Software Verification and Validation for Practitioners and Managers

The SRS and online help and can and should be tested as part of the
software validation process described in Chapter 9. Communication
from sales people is another issue, which is discussed in Chapter 16.

e How are changes to product features communicated (internally and
externally)? During the development of a software product, many
changes to the product may be made. It is absolutely essential for an
organization to have a process that allows change to occur in a con-
trolled manner. This process should ensure that changes are
reviewed and approved, tested, and communicated to the organiza-
tion and possibly to customers. More information on change control
can be found in Chapter 8.

o Are product installation, training, support, and maintenance issues con-
sidered part of the project? Product installation (and possibly upgrad-
ing from previous versions), training of customers and support staff,
and ongoing maintenance of products are critically important issues
for organizations and customers. As such, these issues need to be
addressed as part of the overall project plan and reviewed and
approved by management so that sufficient resources are committed
to the product.

The answers to these questions are critically important. Further, at
product release time, there are several important activities that management
should ensure occur: (1) project postmortem, (2) triage process, and (3)
root-cause analysis.

Let’s briefly look at each of these activities.

15.3.1 Project Postmortems

Postmortems can provide valuable insight into product development issues
and project management (people) issues. Best-in-class organizations make
effective use of postmortems to ensure that they learn as much as possible
from each project. Unpredictable organizations may also conduct postmor-
tems, but the lessons learned are frequently ignored, thus rendering the post-
mortem useless. As a result, many unpredictable organizations repeat the
same mistakes over and over.

An interesting point about project postmortems is that you shouldn’t
necessarily wait till the end of the project to conduct one. Mini-postmortems
can be planned at the end of each major phase of a project so that lessons
learned can be instituted immediately rather than on the next project.

Balancing People, Process, and Product 245

Conducting a postmortem is not difficult and should be a high prior-
ity. Details for planning and conducting a project postmortem are included

in Appendix N.

15.3.2 Triage Process

A key problem for every organization is deciding which defects to fix. The
organization has limited resources and usually many defects. Instituting a
decision mechanism is critical because, if left to decide on their own, devel-
opers will fix those defects they are most interested in rather than those that
are most critical to your customers.

To avoid this problem, predictable organizations use a triage process to
review all reported defects and determine which ones are most critical and
need to be fixed. This way, the organization’s scarce resources can be applied
to problems that will have a higher return on investment.

The triage process is simple. A team is formed consisting of a represen-
tative from development, QA, customer support, and project management.
The team is chartered with reviewing reported defects and assigning them
relative priority based on their perceived impact to customers (this is why a
representative from customer support is part of the team). Developers are
required to abide by the priorities set by the triage team when fixing defects.
Management provides support for this approach.

The triage team meets as often as necessary based on the number of
problems reported. It is usually a good idea to start the triage process before
the product is released. This way, the team can help prioritize bug-fixing
efforts on internally reported defects. Once the product is released, the triage
team should continue by focusing on defects reported by customers. Defects
reported by customers are critically important because they (1) reflect a gap
in your testing process, (2) reflect a gap in your knowledge of how your cus-
tomers use your product, and (3) represent an opportunity to improve cus-
tomer satisfaction by fixing problems reported by customers.

The triage team not only helps improve effectiveness by prioritizing
problems, it is also actively involved in root-cause analysis and in the root-
cause-analysis review, as discussed below.

15.3.3 Root-Cause Analysis

Root-cause analysis is an effective tool that helps the organization understand
why a defect exists. By understanding why defects exist, organizations can
take corrective and preventive actions to not only fix the problem but change

246 Software Verification and Validation for Practitioners and Managers

the process so similar problems don’t occur again. The triage team is the focal
point for performing root-cause analysis.

As a first step, organizations should consider performing root-cause
analysis on all problems reported by customers. Once this is in place, the
organization can then expand root-cause analysis to internally reported
problems.

In order to determine the root cause of a problem, it can help to follow
a systematic set of questions that will lead to the ultimate root cause. Once
data is collected over a reasonable period of time, a root-cause-analysis review
can be performed to identify process improvements that could eliminate one
or more root causes. The process for performing root-cause analysis is
described in Appendix O.

In summary, management’s role with regard to product is as follows:

e Ensure project teams are building the right products with the right
level of quality required by your customers.

e Require that project managers conduct postmortems on every proj-
ect and that the results are published. Demonstrate your commit-
ment to improvement by instituting corrective action within a
reasonable time. Ensure that changes implemented are documented
and communicated.

e Ensure that a triage team is in place following the release of a new
product.

¢ Require that root-cause analysis be performed on customer reported
defects.

e Reward project teams who perform postmortems, triage, and root-
cause analysis.

15.4 Summary

Management has a delicate balancing act to perform. Balancing the needs of
people, process, and product is no easy task. But then who said that manage-
ment was supposed to be easy? While difficult, it’s by no means insurmount-
able. To reap the benefits of predictable software development, management
must demonstrate:

e An understanding of the issues related to efficient software
development;

Balancing People, Process, and Product 247

¢ A commitment to work with people to solve problems;
¢ Dedication to people (employees and customers);

¢ Follow-up and accountability.

With these attributes, management can help the organization become

significantly more predictable and increase the effectiveness of software V&V
activities.

References

Jones, C., Software Quality: Analysis and Guidelines for Success, Boston, MA: Interna-
tional Thomson Computer Press, 1997.

Pressman, R., Software Engineering: A Practitioner’s Approach, 4th ed., New York:
McGraw-Hill, 1997.

Boehm, B., and V. Basilli, “Software Defect Reduction Top 10 List,” IEEE Computer,
January 2001, pp. 135-137.

DeMarco, T., and T. Lister, Peopleware: Productive Projects and Teams, 2nd ed., New
York: Dorset House, 1999, p. 34.

Herzberg, F., “One More Time: How Do You Motivate Employees?” Harvard Business
Review, September—October 1987.

Curtis, B., et al., “People Capability Maturity Model®™ Version 1.0,” Software Engi-
neering Institute, Pittsburgh, PA, CMU/SEI-95-MM-02, DTIC Number 300-822,
September 1995.

16

Managing Commitment and Risk

Commitment and risk represent two important issues that, if not actively
managed, can contribute to the demise of a project. Learning how to effec-
tively manage commitment and risk are key skills required for organizations
to become more predictable. Managing commitment and risk will result in
fewer “unexpected surprises” on projects. With fewer unexpected surprises,
planned software verification activities (like design reviews and code inspec-
tions) are less likely to be canceled or postponed, and the software validation
testing can occur as planned.

16.1 Managing Commitments

The role of the management system is to ensure that projects are suc-
cessfully completed. This implies some organization-wide agreement on
the meaning of the terms “success” and “completion.” It also requires a
continuing management focus on the progress of each project.... This
involves managing commitments, project oversight, and contention. [1]

People make commitments every day. These commitments take many
forms. For example, a commitment can be in the form of a work product, as
in “T’ll have that report on your desk by 5 p.m.,” or an action, as in “I'll fix
that bug in the next build,” or a commitment can be in the form of a prom-
ise, as in when a salesperson tells a customer, “Release 5.2 will have the fol-
lowing features....” Commitments are often, but not always, made by the

249

250 Software Verification and Validation for Practitioners and Managers

person who must fulfill the commitment, as in the first two examples above.
Sometimes, commitments are made by someone other than the person or
group that must fulfill the commitment, as in the third example above. Both
kinds of commitments must be managed.

Commitments made by the person who must fulfill the commitment
can be managed if those commitments are communicated and tracked. In
the example above regarding the bug fix, there should be a list of bug fixes
that are to be included in the next release along with the name of the devel-
oper assigned to do the work. By using such a list, management can actively
“manage” the commitments made by people for their own work.

However, commitments made by people other than those who must
fulfill the commitment are often harder to manage because:

e Frequently, the other person or group may not be aware that a com-
mitment was made.

e Sales and marketing people frequently make commitments to pro-
spective customers in order to book orders (and receive commis-
sions). Sometimes these commitments are realistic. Sometimes they
are not. Sometimes the commitment made to the customer is com-
municated back to the person or group that must fulfill it. Some-
times it isn’t. Quite often the person making the commitment is not
held accountable for seeing that it is fulfilled. Without accountabil-
ity, unrealistic promises are frequently made.

Further complicating this picture is management’s constant quest to
get more done than can reasonably be expected. Management often pressures
project teams into committing to deliver an ever-expanding list of features in
an unrealistic amount of time with fewer people than are needed. Character-
ized by Yourdon [2] as “death marches,” these projects often fail with many
“casualties” among the project team.

As pointed out by Humphrey [1], what is needed is a discipline for
managing commitments. This discipline should be based on a process that
extends to the highest levels of management. The process should have the
following elements:

o Making Commitments. At a personal level, a commitment is an
agreement to do something. Commitments should not be taken
lightly, since most every organization depends upon its people mak-
ing and meeting their commitments. Humphrey [3] has identified

Managing Commitment and Risk 251

the following points that each person should consider when making
commitments:

1. The person making the commitment does so willingly.

2. The commitment is not made lightly, that is, the work in-
volved, the resources, and schedule are carefully considered.

3. There is agreement between the parties on what is to be done,
by whom, and when.

4. The commitment is openly and publicly stated.

5. The person responsible tries to meet the commitment, even if

help is needed.

6. Prior to the committed date, if it is clear that it cannot be met,
advance notice is given and a new commitment is negotiated.

Note that commitment management is a key component of the yel-
low sticky method for estimating and scheduling and is described in

Appendix K.

Managing Commitments. As stated by Humphrey [1], the active
involvement of management is what motivates people to take com-
mitments seriously. This involvement requires that:

1. Management must create an environment based on honoring
commitments, whether internal or external. Everyone (including
management) must be accountable for meeting commitments to

the best of his or her ability.

2. All commitments made to customers for future delivery of
products are reviewed and/or made personally by the organiza-
tion’s senior executive.

3. Such commitments are made only after completion of a for-
mal project review and assessment process in which management
participates.

4. Management is responsible for ensuring that formal project
reviews and assessments are conducted.

5. In the case of salespeople, commissions should be tied to de-
livery of the specified product, not taking of an order. This gives
sales a stake in meeting commitments made to customers.

252 Software Verification and Validation for Practitioners and Managers

16.2 Risk

Software has long been regarded as one of the most risk-prone of all
engineering activities. Risks such as schedule slips and cost overruns
tend to occur on more than 50% of all large systems. Even more severe
risks, such as cancellation of the project prior to completion or serious
quality deficiencies are not uncommon. [4]

For software projects, risks are events that could have a negative impact
on the project and/or the product. After surveying hundreds of projects,
Jones identified the 10 most serious software risks:

. Inaccurate metrics;

. Inadequate measurement;

. Excessive schedule pressure;
. Management malpractice;

. Inaccurate cost estimating;

. Silver Bullet syndrome;

. Creeping user requirements;
. Low quality;

. Low productivity;

S O 0 N QNN W~

—_

. Canceled projects.

Refer to Table 2.1 for Boehm’s view of common software project risks.
Some risk is present on every software development project. Many software
organizations fail to recognize that risks are present and that they need to be
dealt with. Sadly, a common risk management technique is to sweep them
under the rug, pretend they don’t exist, and won’t impact the project. Com-
mon sense would tell you that if you ignore risks, they will cause problems.
Unfortunately, when it comes to risk management, common sense isn’t all
that common.

16.3 Risk-Management Techniques

Risk management is an activity that needs to be performed throughout a
project and is focused on the following three activities:

Managing Commitment and Risk 253

e Risk Identification. From experience, we have identified many types
of risks that occur on software projects. Table 2.1 and the list in the
previous section identify risks commonly observed on software proj-
ects. Clearly, the first task must be to try to identify as many poten-
tial risks that can be expected so that their impact can be assessed
and a mitigation plan developed. To help to do this, Pressman [5]
has created risk categories and questions that can be asked to deter-
mine if specific types of risk are present on a project. An example of

several risk categories and the questions associated with each are
shown in Table 16.1.

o Risk Assessment. Once risks are identified, their potential impact to
the project needs to be assessed. A simple way to do this was devel-
oped by Boehm and is illustrated in Table 16.2. Each risk is listed in
a table along with an assessment of the potential schedule and cost
impact. Table 16.3 shows adding an additional piece of informa-
tion, which is probability—how likely is it that this risk will
occur—to the assessment. Then decide where to draw the line with
regard to risk mitigation. In this way, project teams can decide
which are the most important risks to address. Those risks in
Table 16.3 above the line are actively managed while those below
the line are not.

e Risk Mitigation. Once the risks are identified and assessed as to
impact and probability, the next step is to determine mitigation
strategies and a contingency plan should the risk occur. An example
of this is shown in Table 16.4. Monitoring progress and status of
risks is a task that should occur throughout the project, not just at

the beginning.

o Management’s Role. Management’s role with regard to risk manage-
ment should be as follows:

1. Create an environment where planning for and dealing with risk is
part of the process;

2. Provide staff with training in risk management and risk avoidance
techniques;

3. Require project managers to prepare risk management plans that
address: risk identification; risk assessment; and risk mitigation,
monitoring, and management;

4. Reward those project managers who proactively manage risks.

254

Software Verification and Validation for Practitioners and Managers

Table 16.1
Identifying Risk [5]

Risk Category

Risks

Technology

Is the technology new to your organization?

Are new algorithms, input, or output technology required?

Does the software interface with new/unproven hardware?
Does the software interface with unproven third-party software?

Do the requirements put excessive performance constraints on
the product?

Staffing

Are the best people available?

Do the people available have the right skills?

Are enough people with the right skills available?
s staff committed for the duration of the project?
Have staff members received necessary training?
Will turnover likely affect the project?

Process

Does management support following a documented development pro-
cess?

Is there a documented development process?

Is the documented process followed?

Are published software standards provided to staff?

Are formal inspections and/or design reviews included in the process?
Has staff been trained in formal inspections?

Are configuration management tools, procedures, and training in place?

Is there a documented mechanism for controlling changes to
requirements?

Development
Environment

Is there a stable development environment that includes tools appropri-
ate for the kind of development being considered?

Does the development environment include bug tracking and configura-
tion management tools?

Are debugging, simulation, and performance analysis tools required?
If so, are they available?

Has everyone that needs training been trained?

Product Quality

Do we know what level of quality customers need?
Are measures defined that are indicative of quality?
What tradeoffs can be made with respect to quality?

Managing Commitment and Risk

255

Table 16.2
Risk Assessment [6]
Rank | Impact Cost Schedule
Major 1 Project failure Cost overrun of more Schedule slip of more
than $x than n
2 Significant degrada- ~ Cost overrun of more Schedule slip of more
tion of usefulness ~ than $y but less than $x than m but less than n
Minor 3 Significant reduction Cost overrun of more Schedule slip of more
in desirable features than $zbut less than $y than p but less than m
4 Minor reductionin -~ Cost overrun less than Schedule slip of less than
desirable features $z p
Negligible |5 — — —
Table 16.3
Rank Risks in Probability Order [6]
Risks Rank Category Probability
Size estimate may be too low 1 Technology 65%
Customer will change requirements 1 Customer 50%
Project understaffed 1 Staffing 50%
Staff turnover will be high 2 Staffing 45%
Schedule not accurate 2 Process 40%
Lack of training on tools 3 Staffing 30%
Funding for project lost 5 Business 20%
Table 16.4
Example of a Risk-Mitigation Plan
Prob-
Risk Rank Category ability Mitigation Monitoring Contingency
Project 1 Staffing 45% Mitigation strategies Monitoring in- The manage-
under- include more aggres- cludes a weekly ment contin-
staffed sive recruiting, project team gency plan is

actively recruiting
internal transfers,
and identifying
potential reductions

in scope.

meeting to add an
agenda item for
staffing; and to
check performance
to schedule.

to outsource
portions of the
work.

256 Software Verification and Validation for Practitioners and Managers

16.4 Summary

In order for organizations to become predictable, management must play an
active role in creating an environment that is focused on:

e Making commitments that can be met;
¢ Meeting those commitments;
e Proactively identifying and assessing risk;

¢ Using risk mitigation, monitoring, and management techniques.

Creating such an environment, while not easy, can be done if management
believes that it is important. By doing this, management will help the organi-
zation achieve the goal of predictable software development.

References
[11 Humphrey, W. S., Managing the Software Process, Reading, MA: Addison-Wesley,
1990.

[2]1 Yourdon, E., Death March: The Complete Software Developer’s Guide to Surviving “Mis-
ston Impossible” Projects, Upper Saddle River, NJ: Prentice-Hall PTR, 1997.

[3] Humphrey, W. S., Managing for Innovation—Leading Technical People, Upper Saddle
River, NJ: Prentice-Hall, 1987.

[4] Jones, C., Assessment and Control of Software Risks, Upper Saddle River, NJ: Prentice-
Hall PTR, 1994

[5] Pressman, R., Software Engineering: A Practitioner’s Approach, 5th ed. New York:
McGraw-Hill, 2000.

[6] Boehm, B. W., Software Risk Management, Los Alamitos, CA: IEEE Computer Society
Press, 1989.

Appendix A:
Inspection Roles and Responsibilities

One of the most important aspects of the inspection process is that team
members play specific roles. For the inspection process to be successful, it is
essential that each team member know the role he or she is to play and the
responsibilities of that role. It is expected that people eventually will play all
the divergent roles as the inspection process becomes part of a company’s
culture.

A.1 Roles

An inspection team consists of three to six people who play the following
roles:

¢ Moderator;

e Producer;

e Reader;

¢ Recorder (optional);

e Inspector.

257

258 Software Verification and Validation for Practitioners and Managers

The producer’s immediate supervisor or manager, while not directly
involved in the inspection process, does play a role in the inspection process.
The manager’s role and responsibilities are to participate in the decision of
what to inspect; include inspections on project schedules; allocate resources
for inspections; support inspection training; participate in the selection of
moderators; and support the moderator in getting rework completed.

A.2 Responsibilities

Each inspection team member has specific responsibilities.

A.21 Moderator

The moderator is a key player in the inspection process. Selection of the
moderator is crucial to the success of the inspection process. A good modera-
tor will ensure that the inspection team is selected appropriately, is trained in
the inspection process, is adequately prepared for the inspection, and abides
by the guidelines for inspection meetings.

Selection of the moderator is, therefore, very important. The modera-
tor is usually selected from a small group of senior people who have had prior
experience as moderators and who are well respected for their technical skills
as well as their people management skills.

The moderator must be able to:

e Understand the information being inspected;

e Lead the team in an effective discussion;

¢ Mediate disputes;

¢ Recognize key issues and keep the team focused on them;

e Maintain an unbiased view of the information being inspected;

e Assign responsibilities appropriately.

The specific responsibilities of the moderator are:

e To select inspection team members;

e To ensure that team members can devote sufficient time to the
inspection and are not involved in other activities that could impair

Appendix A: Inspection Roles and Responsibilities 259

their ability to spend the required amount of time preparing for the
inspection;

e To ensure that the manager of the person whose work is being
inspected is aware of the inspection;

e To schedule the inspection meeting and make the necessary logisti-
cal arrangements for conference rooms, review materials, and so on;

e To ensure that the inspection team is adequately prepared to con-
duct the inspection or, if the team is not prepared, to postpone the
inspection meeting;

e To ensure that the inspection meeting is conducted in an orderly
and efficient manner, starting promptly and ending on time;

e To ensure that all problems found during the inspection meeting are
properly documented;

e To track each problem identified to closure;

e To prepare and distribute meeting minutes within two working days
after the inspection meeting.

The moderator is usually selected by the producer and the producer’s
manager.

A.2.2 Producer

The producer is the person who prepared the information or work product
that is to be inspected. Inspections are conducted for the benefit of the pro-
ducer. The reward for the other inspection team members is the satisfaction
gained from helping a peer improve the quality of the company’s product.
There is an implied understanding that they will be helped in return.

The producer’s responsibilities are:

e To ensure that the work product to be inspected is ready for
inspection;
¢ To make required information available on time;

e To support the moderator in making meeting arrangements, provid-
ing copies of materials, and helping to establish schedules for any
required corrective action;

e To promptly resolve all problems identified by the inspection team;

e To remain objective and avoid becoming defensive.

260 Software Verification and Validation for Practitioners and Managers

The producer attends the inspection meeting to clarify any issues that
are not clear to the inspectors. The producer does not justify why he or she
developed the work product a certain way. Remember that the objective of
the inspection is to determine if the work product, as it presently exists,
meets established requirements.

A.2.3 Reader

The reader is responsible for paraphrasing portions of the work product
being inspected so the inspection team can focus on small chunks of infor-
mation. This helps divert attention away from the producer and toward the
product. The reader is also an inspector and has the same responsibilities as
inspectors.

The additional responsibilities of the reader are:

¢ To be thoroughly familiar with the work product being inspected;

e To identify logical chunks of information and to be able to para-
phrase the information in each chunk, thereby allowing the modera-
tor to keep the team focused on one chunk at a time;

e To support the moderator.

A24 Inspectors

Inspectors are selected based on their knowledge and familiarity with the
work product being inspected. Inspectors are also selected to represent a
cross-section of skills. For example, at a code inspection, inspectors repre-
senting software engineering, marketing, and manufacturing may be
selected. Inspectors are expected to devote the necessary time and effort to
become thoroughly familiar with the work product. Their role is to look for
discrepancies between the work product and the documentation and stan-
dards against which the work product is being inspected. Each inspector
should expect that, at some future date, he or she will be in the role of the
producer.
The inspector’s responsibilities are:

e To be thoroughly familiar with the work product being inspected as
well as the documents and standards against which the work prod-
uct is being inspected;

Appendix A: Inspection Roles and Responsibilities 261

e To identify discrepancies between the work product and the docu-
mentation and standards;

e To focus on identifying problems, not solving them;
¢ To remain objective;
e To criticize the product, not the producer;

e To support the moderator.

A.25 Recorder (Optional Role)

Recording information during an inspection can be a time-consuming task.
Rather than burden the moderator with this task, many times a team mem-
ber acts as the recorder. The recorder captures all issues and problems raised
by the team, thus allowing the moderator to focus on leading the discussion.
For each issue raised by the team, the recorder captures a complete descrip-
tion of the issue. The recorder is also an inspector and has the same responsi-
bilities as inspectors.

The role of the recorder is optional. Depending on the size and the
nature of the inspection, the moderator may assume the responsibilities of
recorder.

The recorder’s additional responsibilities are:

e To be thoroughly familiar with the work product being inspected;

e To record all issues raised by the team and ensure that they are
recorded correctly;

¢ To provide additional information as requested by the moderator;

e To support the moderator.

A26 Manager

The manager’s role and responsibilities are:

e To help decide what to inspect;

¢ To include inspections in project schedules;
e To allocate resources for inspections;

e To support inspection training;

e To participate in the selection of moderators;

e To support the moderator in completing any required rework.

Appendix B:
A Sample Inspection Process

The second of the five basic elements of the inspection process is a docu-
mented process for conducting inspections. A documented process provides
the basis for performing inspections in a manner such that everyone can
understand the process and how they can contribute to its success. Having a
written process also provides the basic materials required for training.

The inspection process has five steps:

Planning;
Overview meeting (optional);
Preparation;

Inspection meeting;

hAEE-E

Follow-up.

This appendix discusses these steps in detail. For each step, the follow-
ing information is included:

Objectives: the purpose of the step;

e Entry criteria: the conditions that must be met to begin the step;

Activities: the activities that occur as part of the step;

Exit criteria: the conditions that must be met to complete the step;

263

264 Software Verification and Validation for Practitioners and Managers

e Metrics: the product and process data that should be collected.
B.1 Planning
B.1.1 Objectives

¢ To determine which work products need to be inspected;

e To determine if a work product that needs to be inspected is ready

to be inspected;

¢ To identify the inspection team;
e To determine if an overview meeting is needed;

e To schedule the optional overview meeting and the inspection

meeting,.

B.1.2 Entry Criteria

The manager and the producer identify the work product to be inspected.
Examples of work products are SRS, SDD, source code, and test procedures.

B.1.3 Activities

e Identify the work product to be inspected and determine if the work

product is ready to be inspected (refer to Table 5.2).

e Select the moderator. The producer and the producer’s manager

select the moderator for the inspection.

e Identify inspection team members. Once the moderator has been

selected and has accepted the assignment, the moderator and the
producer determine the makeup of the inspection team. The nature
of the work product being inspected determines if inspectors from
other engineering disciplines are needed. For example, if the work
product is communications software that interfaces with hardware,
the engineer who designed the hardware should be on the team. A
representative from the software QA group is invited to all inspec-
tion meetings. The minimum number of people required for an
inspection is three (moderator, producer, and one inspector). The
maximum number of people for an inspection should be limited to
six or seven.

Appendix B: A Sample Inspection Process 265

e The moderator ensures that all inspection team members have had
inspection process training,.

e The moderator obtains a commitment from each team member to
participate. This commitment means the person agrees to spend the
time required to perform his or her assigned role on the team. In
some cases, approval from the team member’s supervisor or manager
may be required.

e The moderator and the producer decide if an overview meeting is
required based on the inspection team’s familiarity with the work
product being inspected, the amount and complexity of information
the team must review to be prepared for the inspection, and the
complexity of the work product being inspected.

¢ The moderator schedules meetings and distributes review materials.
The moderator communicates the date, time, and location of the
meetings to the inspection team. If an overview meeting is held, the
moderator can distribute the review materials at that meeting.

e The moderator and the producer identify the review materials
required for the inspection (see Chapter 5). The moderator ensures
that the review materials are distributed (and received) at least five
working days before the inspection meeting, so the inspection team
has sufficient time to prepare for the inspection.

e Inspection meetings should be limited to two hours in duration.
Studies have shown that the effectiveness of the inspection dimin-
ishes after two hours. Inspection meetings also should be limited to
two per day. Use the following guidelines to estimate the amount of
material that can be inspected in two hours:

« Work product is a document: 10 to 20 pages per hour;

« Work product is code: 100 to 200 source statements per hour

(based on C).

B.1.4 Exit Criteria
The planning phase is complete when the following tasks have been

accomplished:

e The inspection team has been selected and trained and its members
are committed.

266 Software Verification and Validation for Practitioners and Managers

e Review materials have been identified and distributed at least five
working days in advance.

e An overview meeting, if required, has been scheduled.

e The inspection meeting has been scheduled.

B.1.5 Metrics

The process metric that should be recorded during the planning phase is the
time spent by each person in the planning phase measured in person-hours.

B.2 Overview Meeting (Optional)
B.21 Objective

The objective of the overview meeting is to educate the inspection team on
the work product being inspected and to discuss the review materials.

B.2.2 Entry Criteria

e The work product is ready to be inspected (see Chapter 5).

e The producer has prepared an overview of the work product and the
review materials.

¢ The review materials are ready to be distributed.

B.2.3 Activities

e The moderator distributes the work product and the review
materials.

e The producer describes the information contained in the review
materials and the relationship to the work product.

e The producer provides the context for the work product and how
the work product fits into the big picture.

e Team members ask questions to facilitate their understanding of the
work product and the information in the review materials.

B.2.4 Exit Criteria

The overview meeting has been held and all questions have been resolved.

Appendix B: A Sample Inspection Process 267

B.25

B.3

B.3.1

Metrics

Preparation time by the producer;
Duration of the overview meeting.

The moderator multiplies the number of participants by the meet-
ing duration and enters that number in the appropriate place on the
Inspection Process Summary Report (see Appendix C). The measure
is person-hours.

Preparation

Objective

To prepare for the inspection meeting by critically reviewing the review
materials and the work product.

B.3.2

Entry Criteria

e The work product is ready to be inspected.

e The overview meeting, if required, has been held.

e The review materials and the work product have been distributed to

B.3.3
B.3.3.1

the inspection team members.

Activities

Inspectors

e Review prompting checklists and internal standards and conven-

tions before reviewing work product to create mental list of things to

look for;

e Become very familiar with review materials and work product;

e Review the work product against the review materials, and record

any discrepancies on an Inspection Problem Report form (see
y discrep Inspection Problem Report fa

Appendix C);

e Keep track of preparation time and bring that information to the

meeting,.

268 Software Verification and Validation for Practitioners and Managers

B.3.3.2 Reader

e Performs same activities as inspectors;

e Breaks down the work products into chunks and then paraphrases or
summarizes those chunks in his or her own words.

e Keeps track of preparation time and brings that information to the
meeting,.

B.3.4 Exit Criteria

Each team member is prepared for the inspection meeting.

B.3.5 Metrics

Preparation time, measured in person-hours.

B.4 Inspection Meeting

B.4.1 Objective

The objective of the inspection meeting is to identify errors and defects in
the work product being inspected.

B.4.2 Entry Criteria

The inspection team members have completed the required preparation.

B.4.3 Activities

e The moderator calls the meeting to order promptly.

e The moderator reviews the ground rules for the meeting: (1) The
objective of the inspection meeting is to find problems, not solve
them; (2) criticism is to be focused on the product, not the pro-
ducer; (3) the producer is present to clarify, not justify; and (4) the
meeting duration is set at two hours.

e The moderator determines if the inspectors are prepared. One way
to determine if the team is prepared is to ask each inspector to write
down how much time he or she spent preparing for the meeting. If,

Appendix B: A Sample Inspection Process 269

B.4.4

in the moderator’s opinion, the team is not adequately prepared, the
moderator postpones the meeting.

If the moderator is satisfied that the team is adequately prepared, the
inspection begins. The reader starts by paraphrasing the first chunk
of information from the work product.

The moderator then goes around the table and solicits any potential
errors or defects from the team. Each potential error or defect is dis-
cussed, and the team reaches consensus as to whether a potential
problem should be recorded as an error or a defect.

Each potential problem is recorded on an Inspection Problem
Report form for consistency.

The producer can provide clarification but not justification.

The recorder ensures that the information entered on the Inspection
Problem Report forms is complete and accurate and reflects any
team discussions and clarifications.

After the reader has completed paraphrasing the entire work prod-
uct, the moderator asks the recorder to read back all the Inspection
Problem Report forms to ensure they were recorded correctly.

The team decides if the severity of the problems found warrants
another inspection or if the moderator can review the corrective
action without another inspection meeting.

The recorder records the meeting duration information on the
Inspection Process Summary Report form (see Appendix C).

If another meeting is required, the moderator schedules it.

The moderator adjourns the meeting.

Exit Criteria

The inspection meeting has been held.

Errors and defects identified at the meeting are documented on the
Inspection Problem Report forms.

The Inspection Process Summary Report form has been completed.

The meeting minutes are published and distributed within two
working days after the inspection meeting.

270 Software Verification and Validation for Practitioners and Managers

B.45 Metrics

e Time spent by each team member during the inspection meeting,
measured in person-hours;

e Size of work product being inspected, measured in number of pages
(for documents) or KLOC:s (for code);

e Number of problems identified.

B.5 Follow-Up

B.5.1 Objective

To ensure that corrective action has been taken to correct problems found
during an inspection.

B.5.2 Entry Criteria

The producer has completed the necessary rework.

B.5.3 Activities

e The producer and the moderator agree on the schedule for complet-
ing corrective action.

e The producer resolves the problems identified by the inspection
team.

e When all rework has been completed, the moderator inspects the
rework and records the resolution of each problem on the Inspection
Problem Report form or reschedules a follow-up inspection meet-
ing, as determined by the team.

B.5.4 Exit Criteria

e All reported problems have been corrected and reviewed by the
moderator.

e The moderator completes the rework section of the Inspection
Problem Report form.

e The moderator issues a follow-up report informing inspection team
members of the completed rework.

Appendix B: A Sample Inspection Process 2n

B.55 Metrics

e The producer records the time spent in rework for each problem,
measured in person-hours.

e The moderator records the elapsed calendar time from when the

inspection meeting was held to completion of follow-up, measured
in days.

Appendix C:
Inspection Process Forms

Tables C.1 and C.2 display the Inspection Problem Report Form and the
Inspection Process Summary Report, respectively.

273

274 Software Verification and Validation for Practitioners and Managers

Table C.1 The Inspection Problem Report Form

INSPECTION PROBLEM REPORT Report No.

| Item Information: Date

n

S [tem inspected: Inspector:

p

e Defect description: Defect location:

c

t

0

r

R Meeting Decisions:

e

c Q Accepted-Planned Resolution date:

0 QA Duplicate of Problem Report No.

r QO Rejected-Reason:

d Q Deferred-Reason:

e

r Impact: Category: Type: Origin:

Q Local Q Missing Q Procedure/logic Q Requirements
Q External Q@ Wrong Q Interface Q Code

O Extra O Data definition A Design
Q Unclear O Documentation Q Test
Q Suggestion QA Other: Q Other:

P Resolution: Date:

r

0 Description:

d

u

c

e [tems changed:

r

=~ ® — =+~ — = O <

Verification: Date:

Verified by:

[tems checked:

Comments:

Appendix C: Inspection Process Forms

Table C.2 The Inspection Process Summary Report

INSPECTION PROCESS SUMMARY REPORT

Inspection Information:
Moderator: Inspection Meeting date:

Product Information:

[tem Identification Errors detected: errors
(Total problems caused by activities in the
process which led to this inspection)

[tem size: KLOC or pages

(Code inspection units: thousand lines Defects detected: defects
non-commented source code. (Total problem caused by activities prior to
Document inspection units: pages) the process which led to this inspection)

Resource Measures:

Planning: person-hours Preparation: person-hours
(Include time spent by all involved in (Sum of preparation time for all inspectors)
planning the inspection)

Overview meeting: person-hours
(Meeting duration x number of participants)

Inspection meeting: person-hours
(Meeting duration x number of participants

Meeting Decision:

Q Item accepted. No errors or defects found.
Q Meeting rescheduled. Reason:

Q Item rejected. No re-inspection required.
Rework verification scheduled to be completed by date:

Q Item rejected. Re-inspection required.
Re-inspection meeting date:

Verification of Rework:

Q Accepted. All errors and defects corrected.
Q Rejected. Additional rework required.
Additional rework to be completed and verified by date:
Verifier: Date:

Appendix D:
Inspection Checklists

The inspection checklists included in this appendix can help inspectors pre-
pare for an inspection.

D.1 Requirements Inspection Checklist

1.

o o N e

Do the requirements exhibit a clear distinction between functions
and data?

Do the requirements define all the information that is to be dis-
played to the user?

Do the requirements address system and user response to error
conditions?

Is each requirement stated clearly, concisely, and unambiguously?
Is each requirement testable?

Are there ambiguous or implied requirements?

Are there conflicting requirements?

Are there areas not addressed in the SRS that need to be?

Are performance requirements (such as response time and data
storage requirements) stated?

277

278 Software Verification and Validation for Practitioners and Managers

10. If the requirements involve complex decision chains, are they
expressed in a form that facilitates comprehension (decision tables,
decision trees, etc.)?

11. Are requirements for performing software upgrades specified?

12. Are there requirements that contain an unnecessary level of design
detail?

13. Are the real-time constraints specified in sufficient detail?

14. Are the precision and accuracy of calculations specified?

15. Is it possible to develop a thorough set of tests based on the infor-
mation contained in the SRS? If not, what information is missing?

16. Are assumptions and dependencies clearly stated?

17.

Does the document contain all the information called out in the
SRS outline?

D.2 Design Inspection Checklist: High-Level Design

Assumption: Detailed-level design done using SA/SD methodology.

General Requirements and Design

N oA W

Has the review of the design identified problems with the require-
ments, such as requirements that are missing, ambiguous, extrane-
ous, untestable, or implied?

Is the design consistent with the requirements? For example, are
there functions that are missing, extraneous, imprecise, ambiguous,
or incorrect?

Are deviations from the requirements documented and approved?
Are all assumptions documented?

Have major design decisions been documented?

Is the design consistent with those decisions?

Does the design adequately address the following issues?

e Real-time requirements;

Performance issues (memory and timing);

Spare capacity (CPU and memory);

Maintainability;
Understandability;

Appendix D: Inspection Checklists 279

Database requirements;

Loading and initialization;

Error handling and recovery;

User interface issues;

Software upgrades.

Functional and Interface Specifications

8. Is the Process Spec (P-spec) for each process accurate and complete?
Is the P-spec specified in precise, unambiguous terms? Does it
clearly describe the required transformations?

10. Are dependencies on other functions, operating system kernel,
hardware, etc., identified and documented?

11. Are human factor considerations properly addressed in those func-
tions that provide a user interface?

12. Are design constraints, such as memory and timing budgets, speci-
fied where appropriate?

13. Are requirements for error checking, error handling, and recovery
specified where needed?

14. Are interfaces consistent with module usage? Missing interfaces?
Extra interfaces?

15. Are the interfaces specified to a sufficient level of detail that allows
them to be verified?

Conventions
16. Does the design follow the established notation conventions?

D.3 Design Inspection Checklist: Detailed Design

Assumption: Detailed-level design done using SA/SD methodology.

Requirements Traceability

1.

Does the detailed design of this module or interface fulfill its part of
the requirements?

280

Software Verification and Validation for Practitioners and Managers

Has inspection of this module or interface identified problems in
the SRS? For example, are any requirements missing, ambiguous,
conflicting, untestable, or implied?

Does the detailed design of this module or interface meet its high-
level design requirements?

Has inspection of the detailed design identified problems in the
high-level design?

Are all functions completely and accurately described in sufficient
detail?

Are all interfaces completely and accurately described, including
keyword or positional parameters, field descriptors, attributes,
ranges, and limits?

Are the detailed design documents complete and consistent within
themselves, i.e., data with logic; all internal data defined; no extra-
neous data?

Structure and Interfaces

11.

12.

13.

Logic

14.
15.

At the system and subsystem levels, have all components or mod-
ules been identified on a system architecture model?

Is the level of decomposition sufficient to identify all modules?

Will further decomposition result in identification of more
modules?

Have all interfaces between system/subsystem elements and mod-
ules been clearly and precisely identified?

Do successive levels of decomposition result in successive levels of
detail?

Are modules performing more than one specific function?

Are there any logic errors?

Are all unique values tested? All positional values tested? Increment
and loop counters properly initialized? Variables and data areas ini-
tialized before use?

Appendix D: Inspection Checklists 281

16. Has the module been inspected for correct begin and end of table
processing? Correct processing of queues across interrupts? Correct
decision table logic? Correct precision and accuracy of calculations?

17. Are message priorities allocated properly to ensure the correct exe-
cution of code?

18. Is the message processing sequence correct?

19. Are there errors in handling data, data buffers, or tables; incorrect
field updates; conflicting use of data areas; incomplete initialization
or update; inconsistent or invalid data attributes?

20. Are procedure call and return interfaces correctly defined? Call and
return parameters defined correctly? Syntax correct?

Performance
21. Are memory and timing budgets reasonable and achievable?

Error Handling and Recovery

22.
23.

24.
25.
26.

Is there adequate error condition testing?

Are error conditions defined where the probability of an error is
high or results of an error would be fatal to the system?

Are return codes documented?
Are return messages understandable?

Does the program allow for successful error recovery from module
or process failures? From operating system failure? From inter-
rupts? From hardware failures?

Testability and Extensibility

27.

Is the design understandable (i.e., easy to read, to follow logic)?
Maintainable (i.e., no obscure logic)? Testable (i.e., can be tested
with a reasonable number of tests)?

Coupling and Cohesion

28.

Evaluate the design using standard coupling and cohesion criteria,
if appropriate.

282

Software Verification and Validation for Practitioners and Managers

D.4 Code Inspection Checklist for C Code

1. Is the design implemented completely and correctly?
2. Are there missing or extraneous functions?
3. Iseach loop executed the correct number of times?
4. Will each loop terminate?
5. Will the program terminate?
6. Are all possible loop fall-throughs correct?
7. Are all CASE statements evaluated as expected?
8. Is there any unreachable code?
9. Are there any off-by-one iteration errors?
10. Are there any dangling ELSE clauses?
11. Is pointer addressing used correctly?
12. Are priority rules and brackets in arithmetic expression evaluation
used as required to achieve desired results?
13. Are boundary conditions considered (null or negative values, add-
ing to an empty list, etc.)?
14. Are pointer parameters used as values and vice versa?
Interfaces
15. Is the number of input parameters equal to the number of
arguments?
16. Do parameter and argument attributes match?
17. Do the units of parameters and arguments match?
18. Are any input-only arguments altered?
19. Are global variable definitions consistent across modules?
20. Are any constants passed as arguments?
21. Are any functions called and never returned from?
22. Are returned VOID values used?
23. Are all interfaces correctly used as defined in the SDD?
Data and Storage
24. Are data mode definitions correctly used?

Appendix D: Inspection Checklists 283

25.

26.
27.

28.
29.
30.
31.
32.
33.
34.
35.

Are data and storage areas initialized before use and correct fields
accessed and/or updated?

Is data scope correctly established and used?

If identifiers with identical names exist at different procedure call
levels, are they used correctly according to their local and global
scope?

Is there unnecessary packing or mapping of data?

Are all pointers based on correct storage attributes?

Is the correct level of indirection used?

Are any string limits exceeded?

Are all variables explicitly declared?

Are all arrays, strings, and pointers initialized correctly?

Are all subscripts within bounds?

Are there any noninteger subscripts?

Maintainability and Testability

36.

37.
38.

39.

40.
41.
42.
43,

Is the code understandable (choice of variable names, use of com-
ments, etc.)?

Is there a module header?

Is there sufficient and accurate commentary to allow the reader to
understand the code?

Does the formatting and indenting style add to the readability of
the code?

Are coding conventions followed?
Is tricky or obscure logic used?
Is the code structured to allow for easier debugging and testing?

Is the code structured so that it can be easily extended for new
functions?

44. Are there any unnecessary restrictions due to code structure?
Error Handling
45. Are all probable error conditions handled?

46.

Are error messages and return codes used?

284 Software Verification and Validation for Practitioners and Managers

47. Are the error messages and return codes meaningful and accurate?
48. Are the default branches in CASE statements handled correctly?
49. Does the code allow for recovery from error conditions?

50. Is range checking done where appropriate to isolate the source of an
error?

D.5 AC++ Code Inspection Checklist
Copyright © 1992 by John T. Baldwin. Complete information regarding

copyright permission, sources, and distribution appears in Section D.5.20.
D.5.1 Variable Declarations

D.5.1.1 Arrays

Is an array dimensioned to a hard-coded constant?

int intarray[13];

should be

int intarrayLTOT_MONTHS+11;

Is the array dimensioned to the total number of items?

char entry[LTOTAL_ENTRIES];

should be

char entry[LLAST_ENTRY+11;

The first example is extremely error prone and often gives rise to one-
by-one errors in the code. The preferred (second) method permits the writer
to use the LAST_ENTRY identifier to refer to the last item in the array.
Instances that require a buffer of a certain size are rarely rendered invalid by
this practice, which results in the buffer being one element bigger than abso-
lutely necessary.

D.5.1.2 Constants

Appendix D: Inspection Checklists 285

Does the value of the variable never change?
int months_in_year = 12;
should be

const unsigned months_in_year = 12;

Are constants declared with the preprocessor #define mechanism?
#define MAX_FILES 20
should be

const unsigned MAX_FILES = 20;

Is the usage of the constant limited to only a few (or perhaps only one) class? If
so, is the constant global?

const unsigned MAX_F00S = 1000;
const unsigned MAX_FOO_BUFFERS = 40;
should be
class foo {
public:
enum { MAX_INSTANCES = 1000; }
private:
enum { MAX_FOO_BUFFERS = 40; }
};
If the size of the constant exceeds int, another mechanism is available:
class bar{
public:

static const long MAX_INSTS;

286 Software Verification and Validation for Practitioners and Managers

3;
const long bar::MAX_INSTS = 70000L;

The keyword static ensures there is only one instance of the variable for
the entire class. Static data items are not permitted to be initialized within
the class declaration, so the initialization line must be included in the imple-
mentation file for class bar.

Static constant members have one drawback: You cannot use them to
declare member data arrays of a certain size. That is because the value is not
available to the compiler at the point that the array is declared in the class.

D.5.1.3 Scalar Variables

Does a negative value of the variable make no sense? If so, is the variable
signed?

int age;
should be
unsigned int age;

This is an easy error to make, since the default types are usually signed.

Does the code assume char is either signed or unsigned?
typedef char SmalllInt;

SmallInt mumble = 280; // WRONG on Borland C++ 3.1 // or
MSC/C++ 7.0!

The typedefs should be

typedef unsigned char SmallUInt;

typedef signed char Smalllnt;

Does the program unnecessarily use float or double?

double acct_balance;

Appendix D: Inspection Checklists 287

should be

unsigned long acct_balance;

In general, the only time floating-point arithmetic is necessary is in sci-
entiWe or navigational calculations. It is slow and subject to more complex
overflow and underflow behavior than integer math is. Monetary calcula-
tions can often be handled in counts of cents and formatted properly on out-
put. Thus, acct_balance might equal 103446 and print out as $1,034.46.

D.5.1.4 Classes

Does the class have any virtual functions? If so, is the destructor nonvirtual?

Classes having virtual functions should always have a virtual destructor. This
is necessary since it is likely that you will hold an object of a class with a
pointer of a less derived type. Making the destructor virtual ensures that the
right code will be run if you delete the object via the pointer.

Does the class have any of the following:

o Copy-constructor;
e Assignment operator;

e Destructor.

If so, it generally will need all three. (Exceptions occasionally may be
found for some classes having a destructor with neither of the other two.)

D.5.2 Data Usage
D.5.2.1 Strings

Can the string ever not be null-terminated?

Is the code attempting to use a strxxx() function on a nonterminated char array,
as if it were a string?

D.5.2.2 Buffers

Are there always size checks when copying into the buffer?

288 Software Verification and Validation for Practitioners and Managers

Can the buffer ever be too small to hold its contents?

For example, one program had no size checks when reading data into a buffer
because the correct data would always fit. But when the file it read was acci-
dentally overwritten with incorrect data, the program crashed mysteriously.

D.5.2.3 Bitfields
Is a bitfield really required for this application?
Are there possible ordering problems (portability)?

D.5.3 Initialization
D.5.3.1 Local Variables

Are local variables initialized before being used?

Are C++ locals created, then assigned later?

This practice has been shown to incur up to 350% overhead, compared to
the practice of declaring the variable later in the code, when an initialization
variable is known. It is a simple matter of putting a value in once instead of
assigning some default value, then later throwing it away and assigning the
real value.

D.5.3.2 Missing Reinitialization

Can a variable carry an old value forward from one loop iteration to the next?

Suppose the processing of a data element in a sequence causes a variable to be
set. For example, a file might be read, and some globals initialized for that
file. Can those globals be used for the next file in the sequence without being
reinitialized?

D.5.4 Macros

If a macro’s formal parameter is evaluated more than once, is the macro ever
expanded with an actual parameter having side effects? For example, what
happens in the following code?

#define max(a,b) C (a) > (b) ? (a) : (b))

max(i++, j);

Appendix D: Inspection Checklists 289

If a macro is not completely parenthesized, is it ever invoked in a way that will
cause unexpected results?

#define max(a, b) (a) > (b) ? (a) : (b) result = max(i, j) + 3;

This expands into:
result = (i) > (j) 2 (i) : (j)+3;

See the example for the first question in this section (D.5.4) for the cor-
rect parenthesization.

Ifthe macro’s arguments are not parenthesized, will this ever cause unexpected
results?

#define IsXBitSet(var) (var && bitmask) result = IsXBitSet(i
i

This expands into:

result = (i || j & bitmask); // not what expected!

The correct form is:

#define IsXBitSet(var) ((var) && (bitmask))

D.5.5 Sizing of Data

In a function call with arguments for a buffer and its size, is the argument to
sizeof different from the buffer argument? For example:

memset(buffer1, 0, sizeof(buffer2)); // danger!

This is not always an error, but it is a dangerous practice. Each instance
should be verified as (1) necessary and (2) correct and then commented on as
such.

Is the argument to sizeof an incorrect type? Common errors include:

e sizeof(ptr) instead of sizeof(*ptr)

e sizeof(*array) instead of sizeof(array)

290 Software Verification and Validation for Practitioners and Managers

e sizeof(array) instead of sizeof(array[0]) (when the user wanted the
size of an element)

D.5.6 Dynamic Allocation

D.5.6.1 Allocating Data
Is too little space being allocated?
Does the code allocate memory and then assume someone else will delete it?

This is not always an error, but it should always be prominently docu-
mented, along with the reason for implementing it in this manner. Construc-
tors that allocate, paired with destructors that deallocate, are an obvious
exception, since a single object has control of its class data.

Is malloc(), calloc(), or realloc() used in lieu of new?

C standard library allocation functions should never be used in C pro-
grams, since C provides an allocation operator.

If you find you must mix C allocation with C++ allocation, is malloc, calloc, or
realloc invoked for an object that has a constructor?

Program behavior is undefined if that is done.

D.5.6.2 Deallocating Data

Are arrays being deleted as if they were scalars?

delete myCharArray;

should be

delete L[] myCharArray;

Does the deleted storage still have pointers to it?

It is recommended that pointers are set to NULL following deletion or to
another safe value meaning “uninitialized.” This is neither necessary nor rec-
ommended within destructors, since the pointer variable itself will cease to
exist upon exiting,.

Are you deleting already deleted storage?

Appendix D: Inspection Checklists 291

This is not possible if the code conforms to the answer to the preceding ques-
tion. The draft C standard specifies that it is always safe to delete a NULL
pointer, so it is not necessary to check for that value.

If C standard library allocators are used in a C++ program (not recommended), is
delete invoked on a pointer obtained via malloc, calloc, or realloc?

Is free invoked on a pointer obtained via new?

Both these practices are dangerous. Program behavior is undefined if you do
them, and such usage is specifically deprecated by the ANSI draft C
standard.

D.5.7 Pointers
When dereferenced, can the pointer ever be NULL?

When copying the value of a pointer, should it instead allocate a copy of what
the first pointer points to?

D.5.8 Casting

Is NULL cast to the correct type when passed as a function argument?

Does the code rely on an implicit type conversion?

C is somewhat charitable when arguments are passed to functions: If no
function is found that exactly matches the types of the arguments supplied, it
attempts to apply certain type conversion rules to find a match. While this
saves unnecessary casting, if more than one function fits the conversion rules,
it will result in a compilation error. Worse, it can cause additions to the type
system (either from adding a related class or from adding an overloaded func-
tion) to cause previously working code to break!
See Section D.5.17 for an example.

D.59 Computation

When the value of an assignment or computation is tested, is the
parenthesization incorrect?

if (a = function() == 0)

should be

292 Software Verification and Validation for Practitioners and Managers

if ((a = function()) == 0)

Can any synchronized values not get updated?

Sometimes, a group of variables must be modified as a group to complete a
single conceptual “transaction.” If that does not occur all in one place, is it
guaranteed that all variables get updated if a single value changes? Do all
updates occur before any of the values are tested or used?

D.5.10 Conditionals
Are exact equality tests used on floating point numbers?

if (someVar == 0.1)

might never be evaluated as true. The constant 0.1 is not exactly represent-
able by any finite binary mantissa and exponent; thus, the compiler must
round it to some other number. Calculations involving someVar may never
result in it taking on that value.

The solutionistouse , , ,or depending on which direction
you want the variable bound.

Are unsigned values tested greater than or equal to zero?
if (myUnsignedVar = 0)
will always evaluate true.
Are signed variables tested for equality to zero or another constant?

if (mySignedVar) // not always good

if (mySignedVar 0) // better!

if (mySignedVar 0) // opposite case

If the variable is updated by any means other than ~ or it may
miss the value of the test constant entirely. That can cause subtle and fright-
ening bugs when code executes under conditions that were not planned for.

If the test is an error check, could the error condition actually be legitimate in
some cases?

Appendix D: Inspection Checklists 293

D.5.11 Flow Control

D.5.11.1 Control variables
Is the lower limit an exclusive limit?

Is the upper limit an inclusive limit?

By always using inclusive lower limits and exclusive upper limits, a whole
class of one-by-one errors is eliminated. Furthermore, the following assump-
tions always apply:

o The size of the interval equals the difference of the two limits.

e The limits are equal if the interval is empty.

e The upper limit is never less than the lower limit.

e Forexample, instead of sayingx ~ 23andx 42,usex 23

andx 43.

D.5.11.2 Branching

In a switch statement, is any case not terminated with a break statement?

When several cases are followed by the same block of code, they may be
stacked and the code terminated with a single break. Cases may also be exited
via return.

All other circumstances requiring “drop-through” cases should be
clearly documented in a strategic comment before the switch. This should be
used only when it makes the code simpler and clearer.

Does the switch statement lack a default branch?

There should always be a default branch to handle unexpected cases, even
when it appears that the code can never get there.

Does a loop set a boolean flag to effect an exit?

Consider using break instead. It is likely to simplify the code.

Does the loop contain a continue?

If the continue occurs in the body of an if conditional, consider replacing it
with an else clause if it will simplify the code.

294 Software Verification and Validation for Practitioners and Managers

D.5.12 Assignment

D.5.12.1 Assignment Operators

Does a += b mean something different thana =a + b?

The programmer should never change the semantics of relationships between
operators. For the example here, the two statements are semantically identi-
cal for intrinsic types (even though the code generated might be different), so
for a user-defined class, they should be semantically identical, too. They may,
in fact, be implemented differently (should be more efficient).

Is the argument for a copy constructor or assignment operator non const?

Does the assignment operator fail to test for self-assignment?

The code for operator () should always start out with:
if (this == &right_hand_arg)

return *this;

Does the assignment operator return anything other than a const reference to this?

Failure to return a reference to this prevents the user from writing (legal C):
a=b=c;

Failure to make the return reference const allows the user to write (ille-

galC):

D.5.12.2 Use of Assignment

Can this assignment be replaced with an initialization?

See the second question in Section D.5.3.1.

Is there a mismatch between the units of the expression and those of the
variable?

For example, you might be calculating the number of bytes for an array when
the number of elements was requested. If the elements are big (say, a long or
a struct!), you would be using way too much memory.

Appendix D: Inspection Checklists 295

D.5.13 Argument Passing

Are nonintrinsic-type arguments passed by value?

Foo& do_something(Foo anotherFoo, Bar someThing);

should be

Foo& do_something(const Foo& anotherFoo, const Bar& some-
Thing);

While it is cheaper to pass an int, a long, and such by value, passing
objects that way incurs significant expense due to the construction of tempo-

rary objects. The problem becomes more severe when inheritance is
involved. Simulate pass-by-value by passing const references.

D.5.14 Return Values

Is the return value of a function call being stored in a type that is too narrow?
See Section D.5.18.

Does a public member function return a non const reference or pointer to
member data?

Does a public member function return a non const reference or pointer to data
outside the object?

This is permissible, provided the data were intended to be shared, and that
fact is documented in the source code.

Does an operator return a reference when it should return an object?
Are objects returned by value instead of const references?

See the question in Section D.5.13.

D.5.15 Function Calls

D.5.15.1 Varargs Functions (printf and Other Functions With Ellipses)

Is the FILE argument of fprintf missing? (This happens all the time.)

296 Software Verification and Validation for Practitioners and Managers

Are there extra arguments?

Do the argument types explicitly match the conversion specifications in the
format string? (printf and friends.)

Type checking cannot occur for functions with variable length argument
lists. For example, a user was surprised to see nonsensical values when the fol-
lowing code was executed:

printfC 7%d %ld \n , a_long_int, another_Llong_int);

On that particular system, int s and long s were different sizes (2 and 4
bytes, respectively). printf() is responsible for manually accessing the stack;
thus, it saw “%d” and grabbed 2 bytes (an int).

It then saw “%ld” and grabbed 4 bytes (a long). The two values printed
were the MSW of a_long_int, and the combination of a_long_int’s LSW
and another_long_int’s MSW.

The solution is to ensure that types explicitly match. If necessary, argu-
ments may be cast to smaller sizes (long to int) if the author knows for certain
that the smaller type can hold all possible values of the variable.

D.5.15.2 General Functions

Is this function call correct? That is, should it be a different function with a
similar name (e.g., strchr instead of strrchr)?

Can this function violate the preconditions of a called function?

D.5.16 Files

Can a temporary file name not be unique? (Surprisingly enough, this is a common
design bug.)

Is a file pointer reused without closing the previous file?

fp fopen(...);

fp fopen(...);

Is a file not closed in case of an error return?

Appendix D: Inspection Checklists 297

D.5.17 Errors Due to Implicit Type Conversions

Code that relies on implicit type conversions may become broken when new
classes or functions are added. For example:

class String €
public:

String(char *arg); // copy constructor operator const char*
() const;

};

void foo(const String& aString);

void bar(const char xanArray);
Now, we added the following class

class Word {

public:

Word(char *arg); // copy constructor

};

need another foo that works with “Words”

void foo(const Word& aWord);

int gorp()

foo(hello); // This used to work! Now it breaks! What gives?

298 Software Verification and Validation for Practitioners and Managers

String baz = quux ;

bar(baz); // but this still works.

The code worked before class Word and the second foo() were added.
Even though there was no foo() accepting an argument of type const char *
(i.e., a constant string like “hello”), there is a foo() that takes a constant
String argument by reference. And (un)fortunately, there is also a way to
convert a Strings to a char * and vice versa. So the compiler performed the
implicit conversion.

Now, with the addition of class Word and another foo() that works
with it, there is a problem. The line that calls foo(“hello”) matches both:

void foo(const String&);

void foo(const Word&);

Since the mechanisms of the failure may be distributed among two or
more header files in addition to the implementation file, along with a lot of
other code, it may be difficult to find the real problem.

The easiest solution is to recognize while coding or inspecting that a
function call results in implicit type conversion and either (1) overload
the function to provide an explicitly typed variant or (2) explicitly cast the
argument.

Option 1 is preferred over option 2, because option 2 defeats automatic
type checking. Option 1 can still be implemented efficiently, simply by writ-
ing the new function as a forwarding function and making it inline.

D.5.18 Errors Due to Loss of “Precision” in Return Values

Functions that can return EOF should not have their return values stored in
a char variable. For example:

int getchar(void);
char chr;

while ((chr = getchar()) != EOF) { ... };

Appendix D: Inspection Checklists 299

should be:

int tmpchar;
while ((tmpchar = getchar()) '= EOF) {

chr = (char) tmpchar; // or use casted tmpchar throughout
};

The practice in the first example is unsafe because functions like
getchar() may return 257 different values: valid characters with indexes 0-255,
plus EOF (1). If sizeof(int) > sizeof(char), then information will be lost when
the high-order byte(s) are scraped off prior to the test for EOF. This can cause
the test to fail. Worse yet, depending on whether char is signed or unsigned by
default on the particular compiler and machine being used, sign extension can
wreak havoc and cause some of these loops never to terminate.

D.5.19 Loop Checklist

The following loops are indexed correctly and are handy for comparisons
during inspections. If the actual code does not look like one of these, chances
are that something is wrong or, at least, could be clearer.

Acceptable forms of for loops that avoid off-by-one errors are:

for (i = 0; i max_index; ++i)
for (i = 0; i sizeof(array); ++i)
for (i = max_index; i>= 0; - =i)
for (i = max_index; 1 ; - =i)

D.520 Copyright Notices

Some of the questions applicable to conventional C contained herein were
modified or taken from A Question Catalog for Code Inspections, Copyright
1992 by Brian Marick. Portions of his document were Copyright 1991 by
Motorola, Inc., which graciously granted him rights to those portions.

In conformance with his copyright notice, the following contact infor-
mation is provided below:

300 Software Verification and Validation for Practitioners and Managers

Brian Marick Testing Foundations 809 Balboa, Champaign, IL 61820
marick@cs.uiuc.edu, marick@testing.com

“You may copy or modify this document for personal use, provided you
retain the original copyright notice and contact information.”

Some questions and comment material were modified from Program-
ming in C , Rules and Recommendations, Copyright 1990-1992 by
Ellemtel Telecommunication Systems Laboratories.

In conformance with their copyright notice:

“Permission is granted to any individual or institution to use, copy,
modify, and distribute this document, provided that this complete
copyright and permission notice is maintained intact in all copies.”

Finally, all modifications and remaining original material are:

Copyright 1992 by John T. Baldwin. All Rights Reserved.
John T. Baldwin 1511 Omie Way Lawrenceville, GA 30243

Permission is granted to any institution or individual to copy, modify,
distribute, and use this document, provided that the complete copyright,
permission, and contact information applicable to all copyright holders
specified herein remains intact in all copies of this document.

D.6 TestProcedure Inspection Checklist

1. Does each test have a header that identifies the author, revision
date, test objectives, required configuration, and initial setup?

2. Is each test traceable to a specific requirement defined in the SDD
or the SRS?

3. Does the test procedure define the exact sequence of steps required
to execute the test?

For each test, are the expected results clearly defined?
5. Are the expected results consistent with the SRS and the SDD?

6. Are the test objectives achievable?

Appendix E:
Attributes of Good Requirements
Specifications

Good requirements specifications have the following attributes:

o Unambiguous. The SRS is unambiguous if and only if every require-
ment has only one interpretation.

o Complete. The SRS is complete if it contains all signficant require-
ments that relate to functionality, performance, timing, design con-
straints, attributes, external interfaces, and so on. A complete SRS
also contains a definition of the response of the software to all
known classes of inputs in all known situations.

o Verifiable. The SRS is verifiable if and only if every requirement is
verifiable. A requirement is verifiable if and only if there is some
finite, cost-effective process by which a human being or a machine
can verify that the software correctly implements the stated
requirements.

e Consistent. The SRS is consistent if and only if individual require-
ments do not confict.

o Modifiable. The SRS is modifiable if its structure and style are such
that unanticipated changes can be made easily, completely, and
consistently.

301

302 Software Verification and Validation for Practitioners and Managers

o Traceable. The SRS is traceable if each requirement is clearly trace-
able to a statement contained in the preceding document and if the
SRS facilitates the referencing of requirements to subsequent docu-
ments (such as the SDD).

o Usable. The SRS must provide sufficient information to be usable
during the maintenance phase of the product life cycle since it is
likely that different people will be involved with product mainte-
nance activities.

Appendix F:
Sample Criteria for Selecting Modules
for Code Inspection

You can use the following sample criteria to help select modules for code
inspection. Revise this list based on criteria important to your project or
organization.

e Criticality. The module performs a function or functions critical to
the correct operation of the end product.

o Complexity. The module is determined to be more complex than
other modules based on an evaluation by a complexity metric, such
as the McCabe cyclomatic complexity or Halstead software science
metric.

e Past history. In the past, a relatively high number of bugs have been
found in modules that perform similar functions.

o Experience level of software engineer. The software engineer who
wrote the code is relatively inexperienced.

303

Appendix G:
Sample Software Development Process
Based on the Waterfall Model

For each phase of the process, the following information is included:
e DPurpose;
e Activities;
e Deliverables;
e Tools;

e Exit Criteria;

e Metrics.

G.1 Requirements Analysis Phase

Purpose

e Develop product concept;

e Allocate requirements to hardware and software (if appropriate).

305

306 Software Verification and Validation for Practitioners and Managers

Activities

Conduct market research;

Write business plan;

Write product concept document;

Create RTM."

Deliverables

e Product concept document;

e Business plan.

Tools
¢ Requirements tracing tool;

e Market research tools (e.g., conjoint analysis).

Exit Criteria

o Concept specification reviewed and approved;

¢ Business plan reviewed and approved;

e RTM created.

Metrics

e Person-hours expended to date;
e Number of testable requirements identified;

e Number of untestable requirements identified.

Software V& V-related items are indicated with an asterisk.

Appendix G: Sample Software Development Process 307

G.2 Requirements Definition Phase

Purpose

e Define requirements to be implemented by software.”
Activities

¢ Refine requirements contained in concept specification;
¢ Define user interface metaphors (if appropriate);
o Write SRS;

. . . *
¢ Conduct a requirements inspection on the SRS ;

e Update the RTM.”

Deliverables

e SRS;

e User interface metaphors (if appropriate; can be expressed in the
form of a style guide);

¢ Software development plan;
o Software V&V plan.”

Tools

¢ Performance analysis tools;
e Structured analysis and information modeling tools;

e Requirements tracing tool.

Exit Criteria

e SRS, software development plan, and software V&V plan approved;
¢ Requirements inspection held on SRS;

¢ User interface style guide prepared (if appropriate).

308 Software Verification and Validation for Practitioners and Managers

Metrics

e Completeness of RTM';

e Number and type of errors and defects found during requirements
inspection of SRS.”

G.3 Design Phase

Purpose

e Develop a clear, concise, and consistent design;

e Establish a controlled environment for the coding phase.
Activities

¢ Develop overall software architecture;
¢ Develop high-level software design;

e Develop detailed software design;

e Conduct design inspections ;

e Develop software architecture, high-level software design and
detailed software design specifications;

. Begi*n development of software validation test procedures based on
SRS;

e Develop software reliability growth plan*;

¢ Evaluate and select SCM and SPR tracking tools;

o Evaluate and select automated software validation testing tools';

e Update RTM.”

Deliverables

e Software architecture, high-level design specification(s), detailed
design specifications;

e Software validation test procedures*;
o SCM plan’;

. . *
e Software validation test plan ;

Appendix G: Sample Software Development Process 309

Tools

Software reliability growth plan’;

Alpha and beta test plans (if appropriate).”

Structured design and information modeling tools;

Detailed design tools (data flow diagrams, state transition matri-
ces, etc.);

Performance analysis tools;
Configuration management tools;
Automated software validation testing tools;

Software problem report tracking tool;

Requirements tracing tools.

Exit Criteria

Metrics

Software architecture reviewed and approved;
Software design specifications approved;
Design inspections held’;

SCM plan reviewed and approved ;

SCM tools selected and in place*;

Software validation test plan and alpha and beta test plans reviewed

and approved.”

Completeness of RTM’;

Number and type of errors and defects found during design inspec-
tions.”

310 Software Verification and Validation for Practitioners and Managers

G.4 Coding Phase

Purpose

e Write code that implements the requirements contained in the SRS
as expressed by the overall architecture and further defined by the
design specifications.

Activities

e Develop code;
. . *
¢ Conduct code inspections on selected modules ;
e Perform unit and integration testing;
*
e Implement SCM procedures ;
. *
e Implement software problem reporting procedures ;
. T . *
e Implement software reliability growth tracking procedures ;

o Apply selected software quality metrics to modules’;

e Complete development of software validation test procedures based

*
on SRS ;
. . . . *
¢ Conduct software validation test procedure inspections ;
*
e Develop software release procedures ;

e Update product documentation (concept specification, SRS, and

SDDs);
. . . . *
e Conduct software validation readiness review ;

e Update RTM."

Deliverables

e Source code;

e Software validation test procedures*;

o Software reliability growth procedures’;
o Software release procedure’;

e Software problem reports.”

Appendix G: Sample Software Development Process 3Mn

Tools

Coding tools (compilers, debuggers, lint, etc.);
Quality metric tools (e.g., code complexity);
SCM tools;

Software problem report tracking tools;
Automated software validation test tools;
Software reliability growth tracking tools;

Requirement tracing tools.

Exit Criteria

Metrics

Coding completed;

All source code under configuration management control;
Software problem report tracking in place ;

Software reliability growth tracking in place*;

Software validation readiness review held;

Software validation test procedures approved

Test procedure inspections held’;

. . *
All software validation test procedures executed at least once.

Number and type of errors and defects found during code
inspections*;

Number and type of errors and defects found during test procedure
. . *
inspections ;

Complexity and quality metrics for each module;
Size of each module (lines of source code)’;

Size of final executable (number of bytes)*;

Completeness of RTM.”

312 Software Verification and Validation for Practitioners and Managers

G.5 Testing Phase
Purpose

e To determine if the software meets requirements defined in the SRS.
Activities

*

Execute software validation test procedures ;

. . . *
Track and resolve problems identfiied as a result of executing tests ;

. . . *
Perform regression testing as required ;

Fix bugs and release new versions for validation testing.

Deliverables

. . *
e Software validation test report ;

e Final version of software for release.

Tools

¢ Automated software validation testing tools;
e Software problem report tracking tool;

e SCM tools;

¢ Coding and debugging tools;

¢ Requirements traceability tools.

Exit Criteria

. *
e Software validation testing completion criteria met ;

e Software validation test report reviewed and approved.

Metrics

e Find-and-fix time for bugs ;

. *
o Test coverage metrics ;

Appendix G: Sample Software Development Process 313

o Software reliability growth metrics.”

G.6 Maintenance Phase

Purpose
e Provide ongoing product support after release.
Activities

e Fix known defects;
¢ Change software to correct deficiencies in other parts of the product;
e Add new features or enhance existing features;
. . *
o Extensive testing based on changes made.
. . *
e Regression testing ;

¢ Update product documentation (SRS, SDDs, test procedures, etc.).

Deliverables

e New releases of software;

¢ Updated product documentation.

Tools

¢ Same tools used in earlier phases.

Exit Criteria

¢ Decision made to discontinue supporting the product.
Metrics
e Number and type of bugs reported by customers;

e Number and type of new features requested by customers;

¢ Find-and-fix time for bugs.

Appendix H:
Document Qutlines

Included in this appendix are outlines for the following documents:

Product Concept Document

Software Requirements Specification (SRS)
Software Design Description (SDD)
Software Development Plan (SDP)
Software Quality Assurance (SQA) Plan
Software Validation Test Plan

Software Validation Test Procedure

Software Validation Test Report

o 0o N NV s R

Software Validation Test Script

_.
e

Software Configuration Management Plan

[a—y
—_

Software Release Procedure

315

316 Software Verification and Validation for Practitioners and Managers

H.1 Product Concept Document

Purpose

The purpose of the product concept document is to define overall product
goals as well as high-level requirements that the product must meet.

QOutline

1. Overview

a. Product Features and Benefits
b. Market Requirements
c. Target Markets
d. Competitive Analysis
e. Desired Launch Window
2. Product Goals

a. Usability Goals
b. Reliability Goals
c. Upgradeability Goals
d. Serviceability Goals
e. Maintainability Goals
3. Product Functional Requirements
a. Functional Requirements
b. Performance Requirements
c. Timing Requirements
4. Financial Requirements
a. Cost Requirements
b. Projected Selling Price

H.2 Software Requirements Specification (SRS)

Purpose

The purpose of this document is to define the requirements that have been
allocated to software. By far, this document is the most important document
written for a software development effort. It forms the basis for the software

Appendix H: Document Outlines 317

design, for software validation, and for development of technical manuals
and training materials, among other things.

QOutline

Reference: IEEE-Standard-830-1998

1.

Product Overview

a. Product Perspective. This section places this product into per-
spective with regard to other products and/or projects.
Dependencies between this product and other products and/or
projects should be clearly stated. Include block diagrams show-
ing major components, external interfaces, and interconnections
where appropriate.

b. Product Functions. Provide a brief summary of the product
functions and categorize these functions into related groups for
ease of understanding. A key element to include in this section is
the feature release plan. This plan identifies specific features that
will be included in a sequence of planned releases.

General Constraints. This section describes items that limit the
available options for software design. For example:

e Hardware limitations;

e Interface requirements to other systems and/or products;

e Communication protocols that must be supported;

Criticality of operations;
e Conformance to accepted standards.

Assumptions and Dependencies. Identify specific assumptions and
dependencies that impact requirements.

User Interface. Describe in detail the user interface for the product.
This should include screen layouts for all expected screens, and all
anticipated user interaction and input devices. If necessary, a User
Interface Style Guide may need to be developed for a new or radi-
cally different user interface.

Specific Requirements. This section contains the functional
requirements that the software must implement. There are many
ways to organize the information in this section. Use the method
most appropriate for the users of the document.

a. Introduction

318 Software Verification and Validation for Practitioners and Managers

(1) Inputs. Describe sources of inputs, quantities, ranges and
limits, accuracy and tolerance, timing issues, and units.
(2) Processing. Describe all operations performed on the in-
put data and intermediate parameters to obtain the desired
output. Include: equations, algorithms, logical operations,
validity checks on input data, sequences of operations, and
timing issues. Also, address responses to abnormal situations,
such as buffer overflow and communications failures. Pro-
vide requirements for degraded operation, if required.
(3) Outputs. Describe in detail: destination/use of outputs,
quantities, units, timing issues, range of valid outputs, and
error handling.

b. Performance Requirements

c. Diagnostics Requirements

d. Security Requirements

e. Maintainability Requirements

f. Configurability Requirements

g. Upgradeability Requirements

h. Testability Requirements

i. Installability Requirements

6. Appendices

H.3 Software Design Description (SDD)

Purpose

The purpose of this document is to describe the design of the software.

Outline
Reference: IEEE Standard 1016-1998

The following is one of many ways to organize and format the informa-
tion required for the software design description. Refer to the IEEE standard
for alternatives more suited to your particular environment.

1. Decomposition Description. The decomposition description records
the division of the software into design entities. It describes the way
the software has been structured. It also defines the purpose, func-
tion, subordinates, and type of each software design entity.

Appendix H: Document Outlines 319

2. Dependency Description. The dependency description specifies the
relationships among entities. It identifies the dependent entities,
describes their coupling, and identifies the required resources.

3. Interface Description. The interface description provides every-
thing designers, programmers, and testers need to know to cor-
rectly use the functions provided by an entity. This description
includes details of the internal and external interfaces not included
in the Software Requirements document.

4. Detailed Design. This section contains the detailed design for each
of the entities identified above. These details include attribute
descriptions for identification, processing, and data.

H.4 Software Development Plan

Purpose

The purpose of the Software Development Plan (SDP) is to document a
common understanding of the software development activities that will
occur during a development project. The plan describes the role of the soft-
ware development team within the context of the development project, the
process that will be used to develop the software, the inputs that must be pro-
vided to develop the software and what will be delivered as a result of follow-
ing the SDP. The SDP also establishes the development schedule and the
tools and staffing that will be required. The reason to document this under-
standing is to eliminate ambiguity and assumptions, provide a means of
measuring progress and success, and a method for continuous improvement.

This plan is the primary document that will be used in conducting all
audits of the software development process for the project. It should refer-
ence the company’s Software Development Process wherever possible. If the
project will deviate from the Software Development Process, the nature of
the deviation must be described and justified in the Plan. For large or com-
plex projects, the individual sections of the SDP can be handled as separate
documents. These separate documents should then be referenced in the
SDP.

Qutline

1. Introduction

2. Project Definition

320

Software Verification and Validation for Practitioners and Managers

a. Goals. This section describes the overall goals of the Software.
These goals include not only product specific goals, but also any
other goals such as commonality, future projects, and staff devel-
opment.

b. Deliverables. This section defines all of the deliverables from
the Software Team.

3. Project Context

a. Project Teams. This section of the SDP describes all other
teams working on the same project that directly influence the
Software Development Plan. Entities to be considered include:

e Marketing;

e Manufacturing;

e SQA;

e Technical Publications;
e Training;

¢ Technical Support.

b. Team Interfaces. This section of the SDP defines the inter-
faces between the Software Development Team and other Pro-
ject Teams detailed above.

4. Development Strategy

a. Process Model. This section describes the software develop-
ment lifecycle to be used. This description includes dependen-
cies, timing of reviews, baselines, deliverables, and milestones. If
there are any timing requirements for input documentation,
they should also be described here. This section should also de-
scribe any special mechanisms that will be used to control the
software development process.

b. Target Environment. This section describes any assumptions
made regarding the target environment for software develop-
ment. Examples of assumptions to highlight include the number
and type of processors being used, the user interface devices
available, memory, and disk space.

c. Build Versus Buy. This section defines the criteria that will be
used for determining what portions of the software system will
be purchased, subcontracted, or developed in-house.

Appendix H: Document Outlines 321

d. Team Organization. This section describes the organization of
the software development team. This description includes the
structure of the team, responsibilities of each part of the team,
and formal reporting methods and frequency.

e. Constraints. This section describes any constraints on the soft-
ware development that are not explicitly described elsewhere.
These may include budgetary, timing, staffing, or operational
constraints.

f. Metrics. This section describes the measurements that will be
made to ensure adherence to this plan, for monitoring progress

and for establishing the quality of the deliverables.

5. Methodologies. This section describes the methods, policies, proce-
dures, and techniques to be used in the creation, modification,
review, test, measurement, and maintenance of the deliverables.

6. Standards. This section of the SDP describes the technical stan-
dards to be applied to any and all deliverables from the develop-
ment effort, and how adherence to the standards will be measured.
For example, coding standards, naming conventions, notations,
and requirements format.

7. Resource Requirements.

a. Staffing Plan. This section of the SDP describes the staffing
plan for the software development. It describes:

Skill set needed;
Whether skills will be developed internally or hired;
Number of people needed;

Ramp up and ramp down plans;

b. Tools. This section describes the tools that will be used for the

development of the software. Examples of the types of tools to
be addressed include:

Development computers

Word processors

Compilers
CASE tools

322

Software Verification and Validation for Practitioners and Managers

10.

e Revision control systems

e Debuggers

¢ Prototype target hardware

c. Support Functions. This section describes any and all support
functions, either required by the Software Development team or
provided by the Software Development team, not explicitly de-
scribed elsewhere. Examples might include external integration
testing support, external requirements traceability support and ex-
ternal revision control.

Schedules. This section provides an estimated schedule of the soft-
ware development effort, describing the major activities called out
in the process model, and the staffing levels required. For large
projects, the schedule should be called out as a separate document,
as it is likely to undergo a large number of changes during the
course of the project.

Risks and Risk Management. This section describes the primary
risk factors associated with the successful implementation of the
plan, and how those risk factors will be managed. Where appropri-
ate, contingency plans should also be included. Examples of risk
factors to consider include:

New technology;

e Target environment limitations;

Human Resources;

Budget;
Schedules.

Appendix
a. References
b. Documents
c. Standards

d. Glossary and Acronyms

Appendix H: Document Outlines 323

H5 Software Quality Assurance Plan

Purpose

The purpose of this document is to define the processes and procedures used
to ensure that software developed for a particular product is of the highest
possible quality and meets all of its requirements.

The SQA Plan defines the software quality assurance tasks and when
they are performed in relation to activities defined in the Software Develop-
ment Plan. This plan also identifies the additional documents that need to be
written. For example, the SQA Plan may call for separate plans to address
Software Verification, Software Validation, and Configuration Management
activities. Alternatively, these areas can be addressed within the structure of

the SQA Plan.

QOutline

Reference: IEEE-Standard-730.1-1995

1. Management

a. Organization. Describe the organizational structure that influ-
ences and controls the quality of the software.

b. Tasks. Describe the portion of the Software Lifecycle Model
covered by this plan, the tasks to be performed, with emphasis
on SQA activities, and the relationship between these tasks and
major project milestones.

c. Responsibilities. Identify the specific organizational elements
responsible for each task.

2. Documentation. Identify the documents governing the develop-
ment, verification, validation, use, and maintenance of the soft-
ware; and identifies how these documents are checked for
adequacy. This includes identification of the specific review or
audit held to review each document.

3. Standards, Practices, Conventions, and Metrics. Identify the stan-
dards, practices, conventions, and metrics to be used, and state how
compliance with these items is to be monitored and assured.

4. Reviews and Audits. Define the technical and managerial reviews
and audits to be conducted, states how the reviews and audits are to
be performed, and states what further actions are required and how
they are to be implemented and verified.

324

Software Verification and Validation for Practitioners and Managers

10.

11.

12.

13.

Testing. State requirements for testing other than Software Valida-
tion Testing. Specifically, Unit Test, Integration Test, and Per-
formance Test requirements should be identified. Software
Validation Testing is described in the Software Validation Test
Plan.

Problem Reporting and Corrective Action. Describe methods and
procedures for problem reporting and corrective action as well as
the organizational elements responsible for their implementation.

Tools, Techniques, and Methodologies. Identify special tools, tech-
niques, and methodologies required.

Code Control. Define the methods and facilities used to maintain,
store, secure, and document controlled versions of the identified
software during all phases of the software lifecycle. For larger proj-
ects, this may be implemented by writing a Software Configuration
Management Plan.

Media Control. Define the methods and facilities used to identify
the media for each software product and to protect the physical
media from unauthorized access, inadvertent damage, or degrada-
tion during all phases of the software life cycle.

Supplier Control. Define the process and procedures for assur-
ing that software provided by Suppliers meets established
requirements.

Records Collection, Maintenance, and Retention. Define the SQA
documentation to be retained, the methods used to assemble, safe-
guard, and maintain this documentation, and shall designate the
retention period.

Training. Identify the training required to meet the needs of the

SQA Plan.

Risk Management. Define the methods and procedures used to
identify, assess, monitor, and control areas of risk.

H.6 Software Validation Test Plan

Purpose

The Test Plan describes the process used to perform validation testing. This
plan identifies the resources required for the proposed testing effort based on
estimating the number of tests required. This estimate is derived from the

Appendix H: Document Outlines 325

SRS. This plan also defines the Completion Criteria used to determine when
to stop testing. This test plan is intended to be consistent with the require-

ments of the SQA Plan.

Qutline

Reference: IEEE-Standard 1012-1998

1.

NV e W

Overview

a. Organization. Describe the organization of the testing effort
and the relationship of this organization to other organizations
such as, development, project management, quality assurance,
configuration management, and document control.

b. Tasks and Schedules

c. Responsibilities

d. Tools, Techniques, Methods

Processes

a. Management
b. Acquisition
c. Supply

d. Development
e. Operation

f. Maintenance

Reporting Requirements

Administrative Requirement

Documentation Requirements

Resource Requirements

Completion Criteria. Define the criteria that will be used to deter-
mine when testing is completed. As an example, the following crite-
ria should be considered:

All of the Test Scripts have been executed.
All SPRs have been satisfactorily resolved.
All changes made as a result of SPRs have been tested.

The projected software reliability growth meets reliability goal
for software.

326 Software Verification and Validation for Practitioners and Managers

o The test coverage metric indicates that at least 95% of the code
has been executed. A statement identifying the 5% of the code
that hasn’t been executed and why is included in the Test Report.

H.7 Software Validation Test Procedure

Purpose

The Test Procedure document contains the detailed test scripts that will be
run.

Outline
1. Organization and Responsibilities
2. Overview of Test Scripts
3. Appendix
4. Detailed Test Scripts

H.8 Software Validation Test Report

Purpose

The purpose of this report is to document the results of software validation
testing.

QOutline

Organization and Responsibilities
Summary of Results

Summary by Software Version
Metrics

Conclusions and Recommendations
Appendices

Completed Test Scripts

O N NN D =

Software Problem Reports

Appendix H: Document Outlines

327

H.9 Software Validation Test Script

Purpose

The test scripts document the specific details of each test.

Test Script Header

Test Identifier:
Test Category:
Developed by:
Latest Rev:

Test Log:

Engineer ~ Date Version SPRs found

SPRs verified

Test Objectives:

1.
2.
3.

Hardware:

1.
2.
3.

Initial Setup:

1.

328 Software Verification and Validation for Practitioners and Managers

Test Script

Initial Test Setup

Detailed Steps

1. Perform step 1 [Pass or Fail |

Expected results for step 1

2. Perform step 2 [Pass or Fail |
Expected results for step 2

3. Perform step 3 [Pass or Fail |
Expected results for step 3

Notes and Observations:

H.10 Software Configuration Management Plan

Purpose

The purpose of this plan is to define the methods to be used to identify soft-
ware products, control and implement changes, and record and report
change implementation status. A Software Configuration Management Plan
would normally be written for complex projects that involve a large number
of software engineers.

QOutline

Reference: IEEE-Standard-828-1998

1. Management

a. Organization. This section describes the organizational struc-
ture that influences the configuration management of the soft-
ware during development.

b. Responsibilities. This section describes the organization ele-
ment responsible for each configuration management task.

c. Interface Control. This section defines the methods used to:

Appendix H: Document Outlines 329

e Identify interface specifications and control documents;

e Process changes to released documents;
¢ Provide follow-up on action items;

e Maintain status of interface specifications and control
document;

e Control the interface between software and the hard-
ware on which it is running.

d. Implementation. This section establishes the major milestones
for the implementation of the Software Configuration Manage-
ment Plan.

e. Applicable Policies, Directives, and Procedures. This section
identifies all policies and procedures related to CM that are to be
implemented as part of this plan.

2. Activities

a. Configuration Identification. This section defines the proce-
dures for identifying software baselines.

b. Configuration Control. This section defines the procedures
for controlling changes to software baselines.

c. Configuration Status Accounting. This section defines the
procedures for accounting for changes to software baselines.

d. Audits and Reviews. This section defines the role of CM in

audits and reviews.

3. Tools, Techniques, and Methodologies. This section describes the
specific tools, techniques, and methodologies used to perform the
CM functions.

4. Supplier Control. This section describes the procedure for assuring
that vendor-supplied software meets the requirements of this plan.

5. Records Collection and Retention. This section defines the CM
documentation to be retained, the methods used to assemble, safe-
guard, and maintain this documentation, and shall designate the
retention period.

330 Software Verification and Validation for Practitioners and Managers
H.11 Software Release Procedure
Purpose

The purpose of this procedure is to define the process used to release software
from Product Development to Manufacturing.

QOutline

10.

Organization and Responsibilities.
Overview of Software Release Process.

System Requirements. Identify the hardware and software required
to create new baselines of software.

Configuration Management Requirements. Identify the configura-
tion management requirements used to establish and control
changes to each new baseline of software. Refer to the Software
Configuration Management Plan if appropriate.

Procedure for Creating New Baselines. Describe the procedure for
creating new baselines.

Software Validation Requirements. Describe the software valida-
tion testing performed on each baseline. Refer to the Software Vali-
dation Test Procedure and Software Validation Test Report.

Manufacturing Validation Requirements. Describe the validation
activities performed by Manufacturing on each baseline received
from Product Development. Refer to appropriate Manufacturing
procedures.

Software Release Sign-off Requirements. Define the Software
Release sign-off process. A form should be used with the appropri-
ate signatures to attest to the fact that the requirements of this Soft-
ware Release Procedure have been followed.

Appendix.
Software Release Sign-off Form.

Appendix I: Test Cases for the Triangle
Program

This appendix describes test cases for testing the triangle program described

in Chapter 9 [1].

Test Case Objective Notes

1. Valid scalene triangle Test cases such as 1, 2, 3and 2, 5, 10 do not
warrant a “yes” answer because there does
not exist a triangle having such sides.

2. Valid equilateral triangle

3. Valid isosceles triangle Note that a test case specifying 2, 2, 4 would
not be counted.

4. Test cases that represent valid isosceles For example, 3, 3, 4; 3,4, 3;and 4, 3, 3.
triangles such that you have covered all three
permutations of two equal sides

5. One side has a value of zero
6. One side has a negative value

7. Three integers greater than zero such that If the program said that 1, 2, 3 represents a
the sum of two of the numbers is equal to the scalene triangle, that would be a bug.
third

331

332 Software Verification and Validation for Practitioners and Managers

Table I-1 (continued)

Test Case Objective Notes

8. At least three test cases in category 7 such ~ Forexample 1,2,3;1,3,2, 3,1, 2.
that you have tried all three permutations

where the length of one side is equal to the

length of the sum of the other two sides

9. Three integers greater than zero such that ~ For example 1, 2, 4 or 12, 15, 30.
the sum of two of the numbers is less than
the third

10. At least three test cases in category 9 Forexample 1,2,4;1,4,2;and 4,1, 2.
such that you have tried all three permuta-
tions

11. All sides zero
12. Noninteger values
13. Wrong number of values For example two more than three.

14. Did you specify expected output for each
test case?

Reference

[1] Myers, G.]., The Art of Software Testing, New York: Wiley, 1976.

Appendix J :
Software Reliability Models

This appendix lists the basic assumptions of the following models:

e Jelinski-Moranda model;

e Geometric model;

e Schick-Wolverton model;

¢ Goel-Okumoto nonhomogeneous Poisson process;
e Generalized Poisson model;

¢ Brooks-Motley model.

This information is derived from a lecture sponsored by the Boston sec-
tion of the IEEE Reliability Group titled Software Reliability Measurement,
Assessment, and Modeling, presented by Dr. Michael Elbert and Dr. David
Heimann, October—November, 1991.

J.1 Jelinski-Moranda Model

e There is a finite number of faults in the program.

e The failure rate Z(#) is directly proportional to the number of
remaining errors as follows:

333

334

Software Verification and Validation for Practitioners and Managers

Zt KN i1 J.1)

where:

J.2

N the number of initial errors;
i the number of errors already detected and corrected;

K aconstant Z(¢) reduction coeffcient;
Kand NN are unknown.

e The failure rate Z(#) is constant until an error is corrected, at which

time Z(#) is again constant, but at a reduced value.

e All errors are independent of each other and equally likely to occur.
e Each fault contributes equally to the unreliability of the program.

¢ Reliability growth occurs as a result of fixing faults.

e Faults are corrected instantaneously.

e Fixes are perfect and do not introduce new faults.

o All faults are of the same severity.

Geometric Model

e There is an infinite number of total errors (i.e., the program will

never be error free).

e All errors do not have the same chance of detection (i.e., all errors

are not equally likely to occur).

e The error detection rate forms a geometric progression and is con-

stant between error occurrences.

e Software is tested in a manner similar to the operational usage.
e The detection of errors is independent.

o The hazard rate function Z(#) is computed as:

Z@e))k J.2)

where:

d the initial hazard rate;

% a coefficient.

Appendix J: Software Reliability Models 335

The hazard rate function is initially a constant (&) that decreases in a
geometric progression (0 £ 1).

J.3 Schick-Wolverton Model

e The hazard rate is proportional not only to the number of errors in
the program, but also to the amount of testing time. The chance of
error detection increases with increasing testing time.

¢ All errors are equally likely to occur.

o The errors are corrected instantaneously without introduction of
new errors.

e The software is tested in a manner similar to actual usage.
e FEach error is of the same order of severity.

e The hazard rate function Z(¢) is calculated as:

Zt, kn i 17t (J.3)
where:
i the amount of testing time between the (i 1)st error and the 7ith
error;

k the proportionality constant;

n the total number of errors in the program.

J.4 Goel-Okumoto Nonhomogeneous Poisson Process

e The cumulative number of faults detected at time # is Poisson-
distributed with mean m(¢).

e The mean number of detected faults 72(#) is bounded and nonde-
creasing and approaches limit 4.

e The mean number of detected faults in a small time interval is pro-
portional to the mean number of undetected faults, with constant of
proportionality.

e There is a finite number of faults; therefore:

336 Software Verification and Validation for Practitioners and Managers

py 70" (.4)

n!
where Pr is the probability of # faults being detected in time rand

m@) a(l e ") (J.5)

J.b Generalized Poisson Model

¢ A generalization of the Jelinski-Moranda or Schick-Wolverton mod-
els, taken in a framework of error count per interval.

e The expected number of errors is proportional to the fault content at
time of testing and to some function of the amount of time spent in
testing.

e Not all faults are necessarily corrected upon detection.

e Fault correction takes place at the end of intervals, without the
introduction of new faults.

e Let E(f) be the expected number of faults detected during the 7th
time interval. Then:

E f. tN M, g, x,%..,% J.6)

where:
N the initial number of faults;

M, the faults corrected after 7 1 time intervals;
¢t proportionality constant;

& (1, X255, ..., x;) is a function of the time spent testing.

J.6 Brooks-Motley Model

e New faults can be introduced when existing faults are corrected.

e The number of new faults is proportional to the number of faults
corrected.

Appendix J: Software Reliability Models 337

e The number of faults detected is proportional to the number of
faults at risk for detection, which in turn is proportional to the
number of remaining faults:

n, N aN,, q J.7)

7

where:
n; the number of faults detected during the (i 1)th interval;

N the number of faults in the program;
N; the number of faults detected through the (7 1)th interval;
a the probability of correction without inserting new faults;

q the error detection probability.

Appendix K:
The Yellow Sticky Method

The yellow sticky method helps people develop more accurate, realistic esti-
mates of tasks that they themselves will perform. It also includes identifica-
tion of dependencies between tasks. By starting with more accurate estimates
and including the dependencies, it is a rather simple and straightforward
process to create a project schedule that is accurate, realistic, and can actually
be met.

The method is based on the following simple principles:

¢ Know in detail what you are being asked to deliver.

e People who will be doing the work create the task estimates and

build the schedule.
e Project team members critique one another’s estimates.
e Everyone is held accountable for meeting their commitments.

e Customers are promised less than what can realistically be delivered
(undercommit and overdeliver).

e The project team commits to deliver at least what was promised and
possibly more.

e Everyone is trained in the yellow sticky method.

e Management has “bought into” the process.

339

340 Software Verification and Validation for Practitioners and Managers

With these simple principles in mind, let us look at how to create accu-
rate estimates and realistic schedules.

K.1 Start with a Complete Software Requirements Specification

In order to create accurate estimates and build a realistic schedule, the project
team must have a relatively complete statement of what it is they are being
asked to build. This information usually is written in the form of a software
requirements specification (SRS). Regardless of what method is used to
develop a schedule, having a relatively complete SRS is absolutely essential.

I have taught the yellow sticky method to thousands of people across
the United States, and it never fails that when I mention the fact that a rela-
tively complete SRS is required, people laugh. What I often hear is, “We
never start projects with an SRS. We’re lucky if the SRS ever gets written!”

What managers need to understand is how crucial this document is to
the ultimate success of the project. Beginning a project without an SRS is
akin to asking a carpenter to build you a house without architectural draw-
ings. Of course, carpenters can build you a house, but will it be the house you
wanted? Probably not. So the very first step in learning how to create accu-
rate estimates and schedules is to start with an SRS.

K.2 Group Requirements into “Must Haves” and “Wants”

Once the SRS is written, the requirements must be reviewed and grouped
into “must haves” (the product is not worth introducing if it lacks these fea-
tures) and “wants” (the features that customers want, but that could be put
into a future release if necessary). Frequently, marketing people are involved
in making these decisions, since they are supposed to be in close contact with
customers and should be aware of customers” wants and needs.

Now, let’s suppose that marketing goes through the SRS and deter-
mines that all the requirements are in the must-have group. Well, this is not
an acceptable answer, since the yellow sticky method depends on the fact
that some requirements will be more important than others. If this is the
case, use the no-tie ranking method to force some ranking of requirements.
Here, marketing (or whoever determined that all the requirements are in the
must-have group) ranks each requirement according to importance to the
customer from 1 to /V, where /Vis the number of unique requirements. The

Appendix K: The Yellow Sticky Method RT3

team then determines that requirements numbered 1 through 7 are must
haves and all the rest are wants.

K.3 Commit to Deliver Only the Must Haves, Not the Wants

Recall the overall goal of predictable software development: to delight your
customer by delivering exactly what you promised when you promised it.
The problem that many organizations have is committing to customers more
than can be reasonably expected. (See Chapter 16 for a discussion on com-
mitment management.)

For the yellow sticky method to be effective, management must be able
to manage commitments made to customers. What this means is that man-
agement must be able to control the commitments made by salespeople,
marketing people, and so on, in order to achieve the goal above. Manage-
ment must get buy-in from the organization before making commitments to
customers.

Again, when using the yellow sticky method, management commits to
delivering only the must haves, not the wants. By only committing to deliver
the must-haves, management is setting the customer’s expectation lower so
that it is more likely to be met. Setting the bar too high and consistently fail-
ing to meet it causes customers to become dissatisfied. If you doubt this, just
recall the last time you as a consumer were promised delivery of some prod-
uct or service and it arrived later than expected or was not what was expected.
Were you satisfied? Probably not.

In planning the project tasks, the project team will plan to deliver a
product that contains all the requirements— must-haves and wants. And by
following the yellow sticky process, worst case, the team delivers exactly what
was promised (i.e, the must-haves), and best case, the team delivers more
than was promised (i.e, must-haves and some or all of the wants).

By following this approach, the organization undercommits and over-
delivers. Set the bar low enough so that you can consistently deliver the mini-
mum you promised when you promised it.

K.4 Yellow Sticky Estimating Rules

There are a few simple rules that need to be followed when preparing task
estimates. These are:

342 Software Verification and Validation for Practitioners and Managers

e Each task should be short—not more than five working days. A
larger number of short tasks are preferable to a smaller number of
longer tasks.

e Tasks that take longer than five days should be decomposed into
smaller subtasks. If there are longer tasks, break them down into sev-
eral shorter-duration tasks. This provides better visibility and flexi-
bility in building and managing the schedule.

e Apply the 80% rule. In a given week, most people don’t have 40
hours to apply to project tasks. At most, people have 80% of that, or
32 hours. Why? Because people spend time in meetings, going to
training classes, talking on the phone, surfing the Web, and other
similar activities. Don’t assume that people have more time than
they actually do. Some people may actually have less than 80% to
apply to a project because they may be working on two or three proj-
ects at the same time.

¢ Include in your estimate vacation, holidays, trade shows, and so on.

K.5 Identifying Tasks and Creating Initial Estimates

Once the project team has been trained in the yellow sticky method, they can
begin to review the SRS. This review is conducted either individually
(on smaller projects) or as a group within their own disciplines (on larger
projects).

The purpose of this review is to identify every task that is required to
develop, test, and document the product and determine who will be respon-
sible for that task. Note that tasks are identified for all requirements—must-
haves and wants.

After the tasks are identified, the person responsible for that task esti-
mates how long (in days) it would take them to complete the task, assuming
that they could work on that task uninterrupted.

The 80% rule is not used to determine how long a task takes, but
rather, when the task will be complete, as discussed below. If the task is
something that the organization has never been done before, use the wide-
band delphi method (discussed in Section 14.3.3) to develop a reasonable
estimate.

Once the task duration is estimated, each person then identifies the
dependencies for starting this task; that is, what task must be completed
before this task can start.

Appendix K: The Yellow Sticky Method 343

All of this information is written onto a Post-it™ note (commonly
referred to as a yellow sticky), as illustrated in Figure K.1. Different groups
on the project team should use different color sticky notes so that they can be
visually distinguished.

Each person goes through the process of completing an appropriately
colored sticky note with the information shown in Figure K.1 for each task
they have been assigned. The understanding with respect to the task esti-
mates is that each person is making a personal commitment to complete that
task in that amount of time. Because of this personal commitment, there is
immediate buy-in to the schedule from each member of the project team.

I’s a good idea to identify on each sticky note whether this task is
related to a must-have or a want. (An “M” or “W” in the corner works well.)
When everyone is finished with this part of the process, the project manager
schedules a schedule-building session.

K.6 Building the Schedule Going Forward

The first schedule-building session includes the entire project team (everyone
that has tasks assigned to them) and should occur at an off-site location. It’s a
good idea not to invite management to this session. The reason for this is
that we want the team to come together and reach agreement on the best
possible schedule before presenting it to management. More on this below.

The project manager should coordinate this activity. The room used
for this activity should have a long wall upon which some plain chart paper
can be affixed. Week marks (not dates) are indicated along the top of the
chart paper. For simplicity, assume that every month has four weeks.

Name:

Task:

Duration:

Dependencies:

Figure K.1 Yellow sticky information requirements.

344 Software Verification and Validation for Practitioners and Managers

The project team brings all of their colored sticky notes to the session.
The process of building the schedule going forward is based on each task hav-
ing at least one dependent task. When the project team is ready, they
approach the chart paper with their sticky notes and start placing them on
the chart in the location where the task should complete. Here is where the
80% rule is applied. Let’s say you have identified a task that should take you
five days (40 hours) to complete if you could work on it uninterrupted.
By applying the 80% rule, a five-day task requires six working days to com-
plete. So the sticky note is placed on the sixth day after it can begin. Refer to
Figure K.2 for an example of what a schedule might look like.

Now this is where it gets very interesting and exciting. Recall that we
have the whole project team in the room. Each person is now standing in
front of this wall with a handful of colored sticky notes. As the sticky notes
start to go up, discussions start happening. QA people talk to developers,
developers talk to technical writers, everyone talks to the project manager. In
addition, peers review one another’s estimates. For example, a developer
might put up a sticky note for a task with an estimate of three days. Another,
perhaps more experienced, developer on the team may look at that estimate

| >
Week 1 Week2 Week3 Week4 Weekb Week 6 Week7 Week8
oo B B 0
1 O
O
C O

! aca’{\O“

H = F(edo“ | I
H B (B H |E

=
oW

U

Trade

[]
O I:IDI:II:I O (o A

[] Development B Software QA [] Documentation

Figure K.2 Build the schedule going forward.

Appendix K: The Yellow Sticky Method 345

and say to the first, “You know, I did that task on the last project and it took
me eight days, not three.” Thus, with peers critiquing each other’s estimates,
the estimates get better.

Also, through discussion, team members identify tasks that may have
been forgotten or overlooked. Frequently, many new stickies are created dur-
ing the schedule-building process. This represents work that needs doing,
but wasn’t identified previously.

When placing tasks up on the chart, the team tries to place all of the
tasks related to must-haves first and the tasks related to wants last. The rea-
son for this will be apparent in the discussion below.

Finally, the team looks at the schedule they are building. The fact that
they own the schedule is a powerful motivator. From talking with one
another, sticky notes are put up and pulled off many times until the team as a
whole is satisfied that this is the best possible schedule. Because each member
of the project team contributed to the schedule and has made a personal
commitment to completing their tasks on time, there is immediate buy-in to
the schedule. Moreover, it should be obvious that people are much more
motivated to meet schedules that they themselves determined.

K.7 Negotiate Based on Factual Information

Once the project team completes the task of building the schedule going for-
ward, they will able to tell management when they can deliver the product.
Frequently, management will not be pleased with this date and a negotiation
session is usually required. Management will want to know how the delivery
date can be pulled in. By looking at the chart with all of the colored sticky
notes, the answers to this question will be fairly obvious. The choices that
management has are to (1) change the requirements, or (2) add resources
(people and equipment).

Two points need to be highlighted about this scenario. First, it is the
people who will be doing the work telling management when they can
deliver, and second, the negotiation can be conducted with factual informa-
tion that everyone can see. For example, the chart will clearly highlight any
resource bottlenecks (as evidenced by the lack of certain colored stickies in a
particular area of the chart). The chart also has the estimates for each task.

During the negotiation, tradeoffs will be made between features, qual-
ity, and schedule. These negotiations can now be conducted with factual
information that can result in an informed business decision being reached.

346 Software Verification and Validation for Practitioners and Managers

Once the negotiation is completed and everyone (management and the
project team) is in agreement on the schedule, the information on the chart
can then be entered into your favorite project management tool.

K.8 Manage the Project to the Schedule

Once everyone agrees to the schedule and the information from the chart is
entered into a project management tool, the project manager now needs to
manage the project to the schedule. This means that when a task is behind
schedule, the end result is not a schedule slip. By scheduling forward, the
project manager now has the following options:

e Work with the behind-schedule individual to understand if they can
recoup lost time by working weekends or extra hours or by rearrang-
ing other tasks;

e Work with management to identify additional resources;

e Decide (as a last resort) to drop off a want (but not a must-have) to

help keep the project on schedule.

Here then, is the reason why it is so important at the outset that the
project team be able to categorize requirements as either must-haves or
wants.

K.9 Benefits

Scheduling forward results in more accurate, realistic schedules that can actu-
ally be met. Worst case, you'll deliver exactly what was promised. Best case,
you’ll deliver more. People will work harder to achieve a schedule that they
set for themselves. Scheduling forward helps your development process
become more predictable

Appendix L:
Software Development Best Practices

A word of caution about best practices—they are only “best” if they work for
your organization and in your environment. Instituting any practice without
fully understanding the ramifications, without buy-in from the staff and
without a plan for assessing effectiveness, is not recommended.

Two well-known sources of information on software engineering best
practices are the Airlie Council and the Software Engineering Institute (SEI).
In 1996 the Airlie Council [1], a group of prominent software engineering
experts, considered over 170 best practices and from this list identified sev-
eral principal best practices for software development. The principal best
practices identified by the Airlie Council include:

¢ Define requirements first;

¢ Risk management;

e Deer reviews;

¢ Binary quality gates at the inch-pebble level;
e Project-wide visibility of project plan;

e Defect tracking against quality targets;

¢ DPeople-aware management.

347

348 Software Verification and Validation for Practitioners and Managers

The Airlie Council’s principal best practices are discussed below and are con-
sistent with the SEI’s Capability Maturity Model (CMM™) as illustrated in
Figure L.1. For reference, the key process areas (KPAs) identified in CMM™

are shown in the following list.
Key Process Areas Defined in the SEI CMM®™ [2]

Level 2 -KPAs

* Requirements Management

Software Project Planning

Software Project Tracking and Oversight

Software Subcontract Management

Software Quality Assurance

Software Configuration Management

Level 3—-KPAs

¢ Organization Process Focus
¢ Organization Process Definition
e Training Program

e Integrated Software Management

Continuous process
improvement

Process characterized and
fairly well understood

Optimizing

Process measured
and controlled

Can repeat previously
mastered tasks

Figure L1 SEI CMMSM.

Repeatable

Unpredictable and
poorly controlled

Appendix L: Software Development Best Practices 349

e Software Product Engineering
e Inter-group Coordination

e DPeer Reviews

Level 4 —KPAs

¢ Quantitative Process Management

¢ Software Quality Management

Level 5 —-KPAs

e Defect Prevention
e Technology Change Management

e Process Change Management

In addition to the Airlie Council and the SEI CMM™", Jones [3]
has identified common practices performed by several organizations he
determined to be best in class based on the quality of their products (see
Table 15.2).

Table L.1 provides a comparison of these three sources of best prac-
tices, along with an assessment of how these practices impact software V&V
activities.

Now we'll look at each of the Airlie Council’s principal best practices
and discuss management’s role with respect to each.

L1 Define Requirements First

I am still amazed at how many projects are begun these days without defined
requirements. When faced with such a project, I ask these two questions: (1)
If you don’t know what the software is supposed to do, how can you build it;
and (2) When you test software without defined requirements, what are you
testing?

I often use the analogy of building a house to illustrate the problems of
developing software without requirements. Imagine wanting to build a big,
ornate home. What's the first thing you would do? Probably hire an architect
to elicit your requirements and from these requirements, create blueprints

350

Software Verification and Validation for Practitioners and Managers

Table L1
Comparison of Best Practices and Their Relationship to Software V&V Activities

Airlie Council best
practice [1]

SEI CMMSM KPAs [3]

Practices used by
“best in class”
companies as deter-
mined by Jones [7]

How this practice
supports or
enhances software
V&V activities

Define Require-
ments First

Level 2: Requirements
Management

Level 2: Software Sub-
contract Management

Level 2: Software Qual-
ity Assurance

Level 2: Software
Configuration Manage-
ment

Defect prevention tech-

niques such as quality
function deployment
(QFD) and joint applica-
tion design (JAD)

Formal testing by test
specialists;

Formal quality assur-
ance group;
Complexity analysis
tools;

Test coverage analysis
tools.

Provides documenta-
tion required for
requirements
inspections.

Provides basis for
effective validation
testing.

Clarifies the role of
subcontractors with
respect to verification
activities and valida-
tion testing.

An effective software
quality assurance
function enables many
V&V activities to be
performed.

Software CM provides
mechanisms for change
control, which are es-
sential for effective
software V&V activities.

Binary Quality Gates
at the inch-pebble
level

Level 2: Software
Project Planning

Level 2: Software
Project Tracking and
Oversight

Provides clear defini-
tion of what will and
will not be completed
at each gate.

Can prevent wasted ef-
fort resulting from
starting validation test-
ing prematurely, before
all required elements
are completed.

Appendix L: Software Development Best Practices

351

Table L.1 (continued)

Airlie Council best
practice [1]

SEI CMMSM KPAs [3]

Practices used by
“best in class”
companies as deter-
mined by Jones [7]

How this practice
supports or
enhances software
V&YV activities

Risk Management

Increases the likelihood
that verification activi-
ties such as inspections
and peer reviews will
not be curtailed due to
unexpected events.

Increases the likelihood
that the time required
for validation testing
will not be reduced due
to unexpected events.

Increases the likelihood
that project QA re-
sources are adequate
for defined tasks.

Peer Reviews

Level 3: Peer Reviews

Level 3: Organization
Pracess Focus

Level 3: Organization
Process Definition

Formal inspections

Executive and manage-
rial understanding of
quality

Identify problems ear-
lier in the software de-
velopment process,
when they are easier
and cheaper to fix.

Increases the effective-
ness of validation test-
ing by eliminating
many problems before
testing starts.

When ownership of the
software development
process rests with man-
agement, improvements
in quality will follow.

Having and following a
written software devel-
opment process is es-
sential for effective use
of limited resources
and continued improve-
ment in quality.

352

Software Verification and Validation for Practitioners and Managers

Table L-1 (continued)

Airlie Council best
practice [1]

SEI CMMSM KPAs [3]

Practices used by
“best in class”
companies as deter-
mined by Jones [7]

How this practice
supports or
enhances software
V&YV activities

Level 3: Training
Program

Level 3: Integrated
Software Management

Level 3: Software
Product Engineering

Frequently, QA staff
doesn't receive
required training in
software V&V
activities.

Providing this training
will improve the
effectiveness of the
activities performed.

Tailoring the defined
software development
process to meet

the specific needs of
projects is an essential
tool for improving the
effectiveness of soft-
ware V&V activities
and improving quality.
Performing software
development tasks in
a consistent manner
improves the effective-
ness of software V&V
activities.

Project-wide
visibility of
project plan

Level 3: Intergroup
Coordination

Effective intergroup
communication
eliminates redundancy
and avoids wasted
effort.

Ensures that all
members of the project
team are aware of
where the project is
atall times.

Appendix L: Software Development Best Practices 353
Table L-1 (continued)
Practices used by How this practice
“best in class” supports or
Airlie Council best companies as deter- | enhances software
practice [1] SEI CMMSM KPAs [3] | mined by Jones [7] | V&V activities

Defect tracking
against Quality
Targets

Level 4: Software
Quality Management

Level 4: Quantitative
Process Management

Level 5: Defect Preven-
tion

Level 5: Technology
Change Management

Quality measurements;

Defect and quality esti-

mation automation;

Defect tracking auto-
mation.

Verification activities,
such as testing and in-
spections, can help
meet quality targets.

Validation testing can
help determine where
the project and product
is with respect to spe-
cific quality targets.
Process effectiveness
data collected from
peer reviews and in-
spections is used to
drive process improve-
ments.

Process effectiveness
data collected from
peer reviews and in-
spections is used to
drive process improve-
ments.

Assesses the impact of
using new technology
on product quality

that represent the house you want. You could then review the blueprints and
make changes if needed.

Once you’ve approved the blueprints, a general contractor would be
brought in to start work. How would the contractor know what kind of
house to build? He or she would build the house described by the blueprints.
The general contractor brings in carpenters, plumbers, electricians, and other
tradespeople to perform tasks according to the requirements contained in the
blueprints. How likely are you to get exactly the house you wanted? Pretty
likely you'll get exactly what was specified.

354 Software Verification and Validation for Practitioners and Managers

When we switch from building houses to building software, the crucial
first steps are often not done. Instead of defining what the software should
do, many organizations start projects by bringing in the “carpenters” (or pro-
grammers). With only a sketchy outline of what this “house” is supposed to
look like, how likely is it that the product they build resembles anything close
to what the customer wanted? Not very likely.

Further compounding the situation is how many organizations view
testing when requirements are not defined. Without written requirements to
test against, all that the testers can do is demonstrate that the software does
what it does. Does it do what it’s supposed to do? Well, if you don’t know
what it’s supposed to do, you can’t answer that question. Many organizations
fail to understand this basic fact. Are there problems with defining require-
ments first? Of course there are. Customers may not know what they want or
they may frequently change their mind. However, there are solutions such as
the “synchronize and stabilize” approach [4], rapid prototyping (discussed in
Chapter 2) as a means to elicit requirements (not develop products), and
having the customer or test team sign off on requirements prior to starting
development.

Wiegers [5] has developed a list of requirements engineering good prac-
tices, shown in Table L.2a and b.

To briefly answer the questions I posed at the beginning of this section:

If you don’t know what the software is supposed to do, how can you
build it? You certainly can create software without knowing what it is supposed
to do. However, there is a very good chance that under these circumstances,
the software won’t do what you intended or what your customer needs.

When you test software without defined requirements, what are you
testing? When you test software without defined requirements, all you can
do is prove that the software does what it does. Why? Because we don’t know
what it is supposed to do. Is this a good use of your scarce engineering
resources? Probably not.

L.2 Binary Quality Gates at the Inch-Pebble Level

Here’s a typical scenario: The project team realizes that there is a “crisis” but
for various reasons, management isn’t made aware of the situation for several
months—when it’s too late to do anything about it. This scenario is illus-
trated in Figure L.2.

Often, project teams intentionally create vague milestones. Since these
milestones are not well defined, they are easy to meet. A vaguely defined

Appendix L: Software Development Best Practices

355

Table L.2a

Requirements Engineering Good Practices

Knowledge

Requirements
Management

Project
Management

Train requirements
analysts.

Educate user reps
and managers about
requirements.

Train developers in
application domain.

Create a glossary.

Define change control process.

Establish change control board
(CCB).

Perform change impact analysis.

Trace each change to all
affected work products.

Baseline and control versions of
requirements documents.

Maintain change history.
Track requirements status.
Measure requirements stability.

Use a requirements manage-
ment tool.

Select appropriate life cycle.

Base plans on requirements.

Renegotiate commitments.
Manage requirements risks.
Track requirements effort.

milestone gives the impression that progress is being made. An example:
most every project has this milestone: “Coding Complete.” What does this
mean? It means different things to different people. It could mean that the
last line of code has been written, or that all the code is written and compiles
without errors, or that developers have completed unit testing, or that
they’ve completed unit testing and have fixed all the problems unit testing
uncovered. Clearly, we need a precise definition of what “done” means.
And this applies to every task, not just coding. Furthermore, task comple-
tion status must be binary. It’s either done or it’s not done. The concept of

Project starts

Scheduled ship date

Project team realizes that
there is a “crisis”

Figure L.2 Classic “crisis” scenario.

Management made aware
that there is a “crisis”

356 Software Verification and Validation for Practitioners and Managers
Table L.2b
Requirements Development
Elicitation Analysis Specification Verification

Write vision and
scope.

Define requirements
development
procedure.

Identify user classes.
Select product
champions.

Establish focus
groups.

|dentify use cases.
Hold joint application

development (JAD)
sessions.

Analyze user
workflow.
Define quality
attributes.

Examine problem
reports.

Reuse requirements.

Draw context diagram.

Create prototypes.
Analyze feasibility.
Prioritize
requirements.

Model the
requirements.
Create a data
dictionary.

Apply quality function
deployment (QFD).

Adopt SRS template.

Identify sources of re-
quirements.

Label each
requirement.

Record business rules.

Create requirements
traceability matrix.

Inspect requirements
documents.

Write test cases from
requirements.

Write a user manual.

Define acceptance
criteria.

“partial credit” doesn’t really apply. Depending on the project, for example,
it may not be possible to begin certain tasks if dependent tasks are “almost
done.”

Management needs to beware of the “90% done” syndrome. This
problem has plagued many projects. And it never fails that somehow com-
pleting that last 10% seems to always take more than 10% of the time. This
problem is the result of poorly defined tasks, not having a clear definition of
what “done” means, and not using binary measures for monitoring prog-
ress—either something is done or it’s not done.

Another issue that management must deal with is deciding to proceed
when defined tasks are not completed, or “inch-pebbles” have not been met.
This can be a difficult situation to be in and frequently, business issues may

Appendix L: Software Development Best Practices 357

enter into the decision process. But we need management to help make these
tough decisions. Obviously, management needs to gather as much factual
information as possible before making such decisions.

L3 Risk Management

Every software project undertaken has some element of risk associated with
it. Many organizations, however, ignore most risks until it’s too late. The
topic of risk management is discussed in Chapter 16.

L4 PeerReviews

The topic of peer reviews and formal inspections is discussed in Chapters 5

and 6 and in Appendixes A-D.

L5 Project-wide Visibility of Project Plan

Frequently, real progress on projects is hard to discern. Project managers
typically paint a rosy picture and report few problems. After all, they are
being measured on the successful completion of the project. Unfortunately,
management needs factual and timely information in order to avoid the
situation illustrated in Figure L.2.

To help provide more accurate information, project teams need to use
a consistent set of terms with accepted definitions. Concisely defining terms
and identifying evidence of task completion, like that shown in Table L.3, if
used consistently, can help management understand where projects really
are. Once a common set of terms and definitions are accepted, project status
needs to be made visible to the project team and management.

L6 Defect Tracking Against Quality Targets

By now, we should recognize that software defects are a primary indicator of
quality. In fact, in 1996 there were over 200 million calls to technical sup-
port at an average cost to the software industry of about $23 per call [6].

Of all the kinds of software defects, customer-reported defects are
clearly the most important. These are the defects that directly affect customer
satisfaction with your product. Organizations need to recognize the

358 Software Verification and Validation for Practitioners and Managers

Table L.3
Project Terms and Definitions

Term Precise Definition Evidence of Completion
Requirements SRS conforms to standard. Requirements review held.
complete SRS reviewed and approved. SRS approved.

Design SDD conforms to project standard. Design review held.
complete SDD reviewed and approved. SDD approved.

Code All required features coded and All unit tests pass.
complete checked into source control. All integration tests pass.

All modules compile with no errors. Ay code checked into

Unit testing completed and all source control.

defects corrected. Check-in of new modules

decreased to 0.

Testing All planned tests have been The test plan approved.

complete executed. Test report approved.

Bugs reported from tests have been Rgjease report approved.
fixed and validated.

Planned regression testing has
been completed.

Release criteria defined in the test
plan have been met.

importance of customer-reported defects and define measures that will help
them identify such defects prior to product release. Management needs to
establish a small number of critically important quality measures that are
tracked continuously. These quality measures need to be directly tied to cor-
porate goals and objectives. Some examples of useful quality measures are
illustrated in Figures L.3 through L.5.

Defect-removal percentage measures the number of defects that were
found in each software baseline (see Figure L.4) prior to release. This meas-
ure can be used to help make decisions regarding process improvements,
additional regression testing, and ultimate release of the software.

Defects reported in each baseline (see Figure L.3) measures the percentage of
defects removed at release as compared with the previous release. It is computed by:

Number of bugs fixed prior to release

: 100 (L.1)
Number of known bugs prior to release

Appendix L: Software Development Best Practices 359

Defects Reported In Each Baseline

120

100

80

60

40

20

1 2 3
Baselines

Figure L.3 Defects reported in each baseline.

Release 1 Release 2

Figure L.4 Defect removal percentage at release.

360 Software Verification and Validation for Practitioners and Managers

90 ~

85 -

80 1

70 -

65 -
Release 1 Release 2

Figure L5 Defect detection efficiency [7].

This measure can be used to help make decisions regarding process
improvements, additional regression testing, and the ultimate release of the
software.

Defect-detection efficiency [7] (see Figure L.6) measures how successtul we
are at finding those defects our customers are likely to find. It is computed by:

Number of unique defects we find

100
Number of unique defects we find +

*
number of unique defects reported by customers

This measure can be used to help make decisions regarding release of the
product and the degree to which your testing is similar to actual customer use.

L.7 People-Aware Management

The subject of people-aware management is discussed in Section 15.2.

* Based on at least three to six months of actual customer use.

Appendix L: Software Development Best Practices 361

References
Yourdon, E., Rise and Resurrection of the American Programmer, Upper Saddle River,
NJ: Prentice-Hall, 1998.

Jones, C., Software Quality: Analysis and Guidelines for Success, Boston, MA: Interna-
tional Thomson Computer Press, 1997.

Jones, C., “Software Defect-Removal Efficiency,” IEEE Computer, Vol. 29, No. 4,
April 1996, pp. 94-95.

Cusumano, M., and D. Yoffe, “Software Development on Internet Time,” IEEE Com-
puter, October 1999, pp. 60-69.

Paulk, M. C,, et al., The Capability Maturity Model: Guidelines for Improving the Soft-
ware Process, Reading, MA: Addison-Wesley, 1995.

Wiegers, K. E., Software Requirements, Redmon, WA: Microsoft Press, 1999.

Kaner, C., “Article 2B and Software Customer Dissatisfaction,” http://www.badsoftware
.com/stats.htm, May 27, 1997.

Appendix M:
Software Quality Best Practices

A group of software quality experts have indirectly defined software quality
“best practices” through the establishment of the Body of Knowledge for the
Certified Software Quality Engineer (CSQE) exam. The Software Division
of the American Society for Quality (ASQ) developed the CSQE Body of
Knowledge and a certification examination as one of the requirements for
achieving CSQE certification.

The Body of Knowledge is based on eight topic areas identified below.
Within each topic area are a number of specifics that are included on the
CSQE exam and thus indirectly represent best practices. Clearly, there is
(and should be) some overlap between these topic areas and the software
engineering best practices discussed in Appendix L.

For further information on the CSQE Body of Knowledge and exam,
visit the ASQ Software Division Web site at www.asq-software.org or call
ASQ at 1-800-248-1946 and request a copy of the CSQE exam brochure. At
the end of this appendix is a Selected Bibliography that covers a significant
portion of the Body of Knowledge. Cross-references to relevant information
contained in this book are shown in parentheses.

General Knowledge, Topics, and Ethics

Tools such as:

363

364 Software Verification and Validation for Practitioners and Managers

Root-cause analysis (see Section 15.3.3 and Appendix O)

Pareto analysis (see Appendix O)

Risk management (see Section 16.2)

Fault tree analysis

Effective problem-solving skills

Effective written and verbal communication skills
Conflict-of-interest issues related to organizational independence
Software quality and product liability issues

Software Quality Management

Define customer quality requirements in measurable terms
Define supplier quality requirements in measurable terms
Track quality requirements throughout project development

Software Processes

Defect detection, prevention, and removal procedures
Software process effectiveness—measurement and assessment
Measurement-based process improvement

Software Project Management

Planning a testing activity—test estimating (see Chapter 9)
Project planning tools and techniques

Project estimating and scheduling (see Appendix K)
Managing to schedule (see Appendix K)

Requirement traceability matrix (see Table 9.3)

Software Metrics, Measurement, and Analytical Methods (see
Chapter 7)

Measurement theory
Analytical techniques
Quality measurement—data collection and analysis

Appendix M: Software Quality Best Practices 365

Software Inspection, Testing, and Verification and Validation

Inspection process, data collection, and analysis (see Chapters 5 and 6 and
Appendixes A-D)

Testing methodologies (see Chapter 9)

Test planning and management (see Chapter 9)

Test strategies, testing levels, and types of tests (see Chapter 9)

Test design

Test coverage (see Chapter 9)

Test documentation

Testing third-party products

Methods for determining how much regression testing is appropriate
Requirements traceability (see Table 9.3)

Methods for evaluating software life-cycle products and practices
Methods for evaluating change control practices

Completion criteria (see Chapter 9)

Corrective and preventive action

Software Audits

Audit processes and procedures
Audit planning

Audit reporting and corrective action
Internal audits

External audits

Software Configuration Management (see Chapter 8)

Planning and configuration identification
Configuration control, status accounting, and reporting
Release process

Release planning

Release decision—criteria

Configuration management tools

CCB issues

Assessing impact of proposed changes

366 Software Verification and Validation for Practitioners and Managers

Selected Bibliography

Arter, D., Quality Audits for Improved Performance, ASQ Quality Press, 1994.

Dunn, R. H., Software Quality Concepts: Practice and Plans, Upper Saddle River, NJ:
Prentice-Hall, 1990.

Humphrey, W., Managing the Software Process, Reading, MA: Addison-Wesley, 1990.
Kan, S., Metrics and Models in Software Engineering, Reading, MA: Addison-Wesley, 1995.
Kaner, C,, et al., Testing Computer Software, New York: Van Nostrand Rheinhold, 1993.
Myers, G., The Art of Software Testing, New York: Wiley, 1979.

Paulk, M., et al., The Capability Maturity Model: Guidelines for Improving the Software Process,
Reading, MA: Addison-Wesley, 1995.

Pressman, R., A Manager’s Guide to Software Engineering, New York: McGraw-Hill, 1996.

. Software Engineering: A Practitioner’s Approach, 5th ed., New York: McGraw-Hill,
2000.

Schulmeyer, G., and J. McManus, Handbook of Software Quality Assurance, New York: Van
Nostrand Rheinhold, 1992.

Software Configuration Management: An Overview, Osborne: National Computer System
Labs, NIST Special Publication 500-161.

Appendix N:
Project Postmortems

A project postmortem is a tool for process improvement. It enables project
teams to learn from past mistakes and change the process so that the same
mistakes are not made again.

Remember that postmortems don’t have to be “post-project.” It is a
good idea to plan and conduct mini-postmortems at the completion of each
major project phase. That way, you can put lessons learned into practice
immediately.

Keep in mind the following points about planning and conducting a
postmortem:

e Start with a plan and a process.

e Remember that process helps focus the team on collecting factual
information about what happened.

e Conduct a factual discussion of what happened—what worked well
and what didn’t work well.

e Publish the process for conducting the meeting so that everyone
knows what to expect.

e Identify a few pieces of information that should be collected. Collect
the same information each time that you conduct a postmortem.

367

368

Software Verification and Validation for Practitioners and Managers

The data that you decide to collect should be recorded for future ref-
erence and for comparison. Collect the same data for each postmor-
tem you conduct.

Act on the information. Make a commitment to act within a reason-
able amount of time.

Prepare a report that outlines changes to be implemented as a result
of the data collected. In this way, you'll get the message across that
you’re serious about process improvements.

Have a disinterested third party act as moderator.

In addition to the “what worked well and what didn’t” kind of infor-

mation, the following list includes examples of additional information that
should be collected. The actual information collected should be based on the
specific process that was supposed to have been followed for the project.

Development schedule: planned and actual;
QA schedule: planned and actual;

Requirements reviews: number of problems uncovered (if any) and
whether they were corrected;

Design reviews: number of problems uncovered (if any) and
whether they were corrected;

Code reviews: number of problems uncovered (if any) and whether
they were corrected;

Measurable release criteria defined and if they were met;

Number of defects reported as a result of unit testing and integration
testing;

Number of complete QA testing cycles performed;
Number of test scripts executed by QA: planned and actual;
Number of defects found as a result of testing;

Amount of time spent performing regression testing: planned and
actual;

Number of defects found as a result of regression testing.

Lastly, once the postmortem is completed, all of the information collected

should be documented along with recommendations for improvements. Action

Appendix N: Project Postmortems 369

items should be assigned to individuals where appropriate for implementa-
tion of process changes agreed to at the postmortem. Commitment from
management is essential.

Appendix 0:
Root-Cause Analysis

Root-cause analysis is a tool for discovering the underlying causes of software
defects. This tool provides important information which can be used to drive
process improvements that can eliminate the root cause of problems so that
they don’t recur in the future.

Developers can perform root-cause analysis as they find defects in their
work. More importantly, the triage team (see Section 15.3.2) should perform
root-cause analysis on all problems reported by customers, at a minimum,
since these problems represent some gap in the organization’s knowledge of
customer use or some process deficiency.

As the triage team reviews problems reported by customers, they per-
form an initial assessment to determine if this is a new problem or a problem
that has already been reported. If the problem has already been reported, the
team determines if anything new can be learned from this report. The triage
team approach can also be used for internally reported problems.

For new problems, the team goes through the questions in the list
below and identifies information needed to determine the root cause. This
could include test plans (was this situation tested?), documentation (was this
situation documented?), and reviews (did we miss the problem in a review
that was held?). Action items are assigned to team members to investigate
issues further and report back at the next triage team meeting,.

3N

372 Software Verification and Validation for Practitioners and Managers

Initial Assessment for New Problems

e Is the problem reproducible? If not, root cause cannot be
determined.

e Is the root cause of the problem obvious?

e [s there an environment, configuration, or installation issue?

e [s there an operating system, platform, or software version issue?
e Was the feature in question tested prior to release?

¢ Can the module(s) related to the problem be identified?

e Does a software requirements spec for the related module(s) exist?
e Does a design spec for the related module(s) exist?

e [s the design spec vague or subject to interpretation?

e Does the code implement the design correctly?

e Were applicable coding standards followed?

At the next meeting, the information identified is reviewed and deter-
mination made on root cause, if possible. Frequently, the triage team may
have to ask “why?” several times before they reach the ultimate root cause of a
problem. The following example (based on [1]) illustrates this point:

The requirement appears to have been missed in the test plan.

2. Why? Well, it seems that this particular requirement was changed
after the SRS was signed off.

3. Why? Apparently, we learned that the customer wanted this
changed in a conversation with product marketing that was cap-
tured in a memo but not circulated to the project team.

Why? Product marketing didn’t realize this would impact testing.

5. Why? Product marketing doesn’t understand that changes to
requirements need to be communicated to the entire project team,
not just developers.

It is possible and likely that there may be multiple root causes for one
problem. All that are relevant should be checked. The triage team then cre-
ates a list of causes that represent the root causes of problems, as shown in

Table O.1.

Appendix O: Root-Cause Analysis 373

Table 0.1
Example of Possible Buckets (Root Causes)

Bucket

Description

W O N oo oW N

10

Feature was defined but not tested

Feature was defined but the test performed was inadequate

Feature was not defined—not included in SRS

Feature was not defined—in SRS not in use cases

Feature was not defined—in SRS, use cases but not user interface specification
Feature was not defined—not in technical specs

Feature was defined—Design was inadequate/inappropriate

Feature was defined—Coding was inadequate/incorrect

Feature was defined—Design review didn’t catch it

Feature was defined—Code review didn’t catch it

Installation/Environment/Version compatibility issue

Once a sufficient amount of data is collected, a root-cause-analysis
review is performed to try to identify the most common root causes of
problems and how they can be eliminated. A table similar to that shown in
Table O.2 is created as part of this process.

The triage team performs a Pareto analysis (see [1]) on the root causes
(to identify the 20% of root causes that account for 80% of the problems)
and then uses this information to drive process improvements aimed at pre-
venting those root causes from occurring in the future.

Table 0.2
Root-Cause-Analysis Review

Problem
Report# Cause#1 Cause#2 Cause#3 Cause #4

403 v - v -
508 - 4 v -
990 - v - -
1112 %4 v - -
Totals 2 3 2 -

374 Software Verification and Validation for Practitioners and Managers

Reference

[1]1 Arthur, L. J., Improving Software Quality: An Insider’s Guide to TQM, New York:
Wiley, 1993.

About the Author

Steven R. Rakitin received a B.S. in electrical engineering from Northeastern
University and an M.S. in computer science from Rensselaer Polytechnic
Institute. He has over 25 years of experience as a software engineer and soft-
ware quality professional in a broad range of industries. He has earned certifi-
cations from the American Society for Quality (ASQ) as a software quality
engineer and quality auditor. He is a member of the ASQ and the IEEE
Computer Society. As president of Software Quality Consulting, Inc., he
works with companies interested in creating a more predictable software
development process. Visit http://www.swqual.com for more information or
contact the author at info@swqual.com.

375

Index

Acceptance testing, 134, 140, 142

Accountability, 190-91

Accounting, configuration status, 125-26

Act-like-a-customer testing, 141, 142,
150-51, 154, 164

Ada, 4

Airlie Council, 347-60

ALAC testing. See Act-like-a-customer
testing

Algorithm testing, 136, 142, 143

Alpha testing, 134, 140

American Society for Quality, 363

ANSI/IEEE Standard 828-1998, 111, 328

ANSI/IEEE Standard 829-1998, 139

ANSI/IEEE Standard 1042-1987, 111, 112

Argument passing, 295

ASQ. See American Society for Quality

Assessment, risk, 253, 255

Assessment scheme, Bootstrap, 11

Assumptions, reliability models, 172-73

Attributes of Good Requirements
Specifications, 78

Auditing, configuration management, 111,
124, 127

Automated testing, 151, 152

377

Backwards scheduling, 204
Bank of New York, 199-200
Baseline
change assessment, 122, 124
changes to, 120-22
defects reported in, 163-64, 358-59
management, 111, 112, 115, 118-24
Behavior, changing, 189
Behaviors, wrong, 187-88
Best practices
Airlie Council, 347—60
binary quality gates, 354-57
defect tracking, 357-360
defining requirements, 349-50,
353-54
employee management, 235-37,
240-42, 360
process-oriented organization, 233, 234
progress definitions, 357
Rational Unified Process, 31
quality management, 363-65
testing, 132-133
Beta testing, 134, 140
Big Bang testing, 139
Bill of material, 112-13
Binary quality gates, 354-57

378 Software Verification and Validation for Practitioners and Managers

Black box testing, 141, 154

Boehm, Barry, 24, 47

BOM. See Bill of material

Bootstrap, 10-11, 37

Bottom-up integration, 137, 138-39,
141, 142

Boundary testing, 136, 142, 143

Branching, 117-18, 293

Brooks-Motley model, 172, 175, 336-37

Buddy system, 135-36

Bug-fix release, 48, 184-85, 188,
192, 196

Bugs, fixing, 48, 110, 121-22, 141,
168-69, 171, 174, 184-85,
188, 192, 196, 245

See also Defects
Business needs, 232
Business risks, 200, 231

C code, 4, 282-84
C code, 4, 284-300
Call-pair coverage, 161, 162
Capability Maturity Model, 7, 8-9, 10,
36, 348-49
Career paths, 238
CASE. See Computer-aided software
engineering
CCB, 120, 121, 123
Certified Software Quality Engineer
exam, 363
Change control, 31, 120, 121-22, 147,
206-7, 243-44
Char variables, 298-99
Cleanroom process, 6-7
CMM. See Capability Maturity Model
COBOL, 4
Code baseline, 120, 121
Code coverage, 122, 161-62
Code freeze, 121-22
Code inspection
checklist, C code, 282-84
follow-up phase, 86
inspection meeting phase, 85-86
modules selection, 303
objectives, 83, 84
overview meeting phase, 85

planning phase, 84-85

preparation phase, 85
checklist, C code, 284-300
Coding checklist, 85, 86, 282-300
Coding phase, 310-11
Cohesion criterion, 281
Commitments
internal and external, 191-92
managing, 249-51, 341
Common code, 110, 116-17
Compatibility testing, 142
Competitive advantage, 231-32
Completion criteria, test, 148, 154
Complexity metric, 103-5, 122, 202-3,
303
Component-based architecture, 31
Computer-aided software engineering, 5
Concept specification, 18-19
Concurrent development life-cycle model,
21-22
Configuration, 112, 120
Configuration control board, 112
Configuration control tool, 120
Configuration management, 109-11, 146
See also Software configuration
management
Configuration management tool, 123
Configuration status accounting, 125-26
Configuration testing, 142, 143
Conformance quality, 197
Construction phase, 31
Copyright notices, 299-300
Cost metrics, process analysis, 38
Cost models, defect, 49—53
Costs
bug-fix release, 18485, 196
justifying, 45-49, 230-31
large applications, 17
maintenance vs. development, 4
measurement activities, 53—54
Coupling criterion, 281
CPM. See Critical path method
Creativity, 37, 190
Credibility, organization’s, 184, 196, 210
Crisis mentality, 187
Ciriteria assumptions, 17273
Critical path method, 222, 224

Index

379

CSQE. See Certified Software Quality
Engineer
Cumulative test time, 161
Customers
defects reported by, 357-58
feedback from, 134, 140, 245
penalty clauses of, 206
requirements of, 47, 197-98, 201,
203, 243
satisfaction of, 159, 191-92, 195, 198,
357-58
technical help needed by, 243-44
views on quality of, 96, 99, 167, 182,
243
views on unpredictable releases of, 185,
186-87
Cyclomatic complexity, 104-5

Data checklist, 282—-83
Data domain model, 171-72
Data structures testing, 136
Debugging, 135, 141
Defects
analysis, 105, 371-73, 245-46
costs, 47-53
defined, 68
detection efficiency, 48, 53-54,
163-64, 360
identifying and fixing, 48, 110,
121-22, 141, 168-69, 171,
174, 184-85, 188, 192, 196,
245
levels/numbers of, 92, 93, 106, 107,
197-99, 202-3
preventing, 48, 53-54, 168-69
reduction techniques, 233-35
removal efficiency, 49-54, 59,
163-64, 358-59
reported in baseline, 163-64, 358-59
tracking against quality, 357-60
Deming, W. Edwards, 35
Department of Defense, 6
Design Checklist, 82
Design inspection, 79-80
checklist, detailed design, 279-81
checklist, high-level design, 278-79
follow-up phase, 83

inspection meeting phase, 82
objectives and prerequisites, 80
overview meeting phase, 81-82
planning phase, 81
preparation phase, 82
Design phase
life-cycle models, 19-20
waterfall model, 308-9
See also Software design description
Design quality, 197
Detection, defect. See Defects, detection
efficiency
Developers. See Engineers
Development, 14449
See also Concurrent development;
Predictable software
development; Software
development process
Direct metrics, 95, 98, 99-102
complexity, 103-5
defect, 105
process, 106-7
product, 106
Documentation. See Written
documentation
Document baseline, 120, 121
Document control system, 120
DoD. See Department of Defense
Domain knowledge, 139, 238
Dynamic allocation, 290-91

Economic justification, 45-49, 230-31
Economy, global, 181-82
Effort, measuring, 93, 106, 107
Elaboration phase, 30-31
Empirical reliability model, 170-71
Employee performance measurement, 189
Employees

managing, 235-42

satisfaction of, 185, 186, 188, 195-96,

236

Engineers

attitudes, 8, 74-75

career paths, 238

creativity, 37, 190

experience, 303

labor market, 181

380 Software Verification and Validation for Practitioners and Managers

Engineers (continued)
process scheduling, 184
English language, 60
Error-handling checklist, 281, 283-84
Error-handling testing, 136
Errors, software, 68, 110, 121-22
See also Defects
Estimating schedules, 204-5
importance, 213-14
reasons for errors, 214—17
techniques, 218-23
training in, 204-5
yellow sticky method, 341-43, 345
Estimating tests, 15053
Evaluations, 35-36
Exclusive limit, 293
Extensibility, design, 281
“Extreme programming,” 181

Failure, 168
Failure intensity, 168
FAQs. See Frequently asked questions
Fault, defined, 168
Fault discovery, 171, 174
Features, balancing quality, schedule, and,
185-86, 195-96, 202-3,
207-11
File comparison, 117-18, 122
File pointers, 296-97
Find-fix cycle, 106, 148, 160, 233-35
Flexibility, process, 232
Focus groups, 99
Follow-up phase
code inspection, 86
design inspection, 83
requirements inspection, 79
sample process, 270-71
test script inspection, 88
Formal inspection. See Inspection, formal
Formal proof of correctness, 5-6
Formal specification languages, 4
Formal validation, 21-22, 146, 147—-49,
154
4GT. See Fourth-generation life-cycle
model
Fourth-generation life-cycle model, 27, 28
Frequently asked questions

development process, 36-42

inspection process, 61-71
Functional audit, 125, 127
Functional specifications, 279
Functional testing, 141, 142, 143
Function calls, 296

Generalized Poisson model, 172, 336

Geometric model, 334-35

GF model. See Gut feel model

Glass box testing, 140, 142

Goals, employee, 237-38

Goel-Okumoto nonhomogeneous Poisson
process, 172, 335-36

Goodness-of-fit test, 174

Gulf War, 200

Gut feel model, 170, 202

HALY/S, 4

Halstead’s Software Science complexity
metric, 105

Hatley-Pirbhai, 5

Hewlett Packard, 75-76, 92-93

HTML. See Hypertext markup language

Humphrey, Watts, 8

Hybrid life-cycle model, 27, 28

Hygiene factors, 237, 239

Hypertext markup language, 4

Identification
configuration management, 111,
114-18
development tasks, 34243
risk, 253, 254
IEEE Standard 730-995, 323
IEEE Standard 828-1998, 111, 328
IEEE Standard 829-1998, 139
IEEE Standard 830-1998, 317
IEEE Standard 1008-1987, 136
IEEE Standard 1012-1998, 325
IEEE Standard 1016-1998, 318
IEEE Standard 1042-1987, 111, 112
IEEE Standard 1061-1992, 103
IEEE Standard 1061-1998, 92, 93-94,
95, 101, 102, 103
IEEE Technical Council on Software
Engineering, 39
Implicit type conversion, 297-98

Index 381

Inception phase, 30
Inch-pebble level, 354-57
Inclusive limit, 293
Incremental integration, 137-38
Independent paths testing, 136
Independent verification and validation, 6
Informal validation, 21, 145—46, 154
Information systems software, 27
In-process audit, 125, 127
Inspection, formal
attributes, 73-74
completion, 70
criteria development, 65
defined, 61
importance, 59—60
institutionalizing, 74-76
key attributes, 63-65
participant roles, 62
participant training, 64-65
preparation requirements, 66, 69, 70
process, 61-62
questions about, 61-71
readiness requirements, 66-67
sample process, 263-71
See also Code inspection; Design
inspection; Requirements
inspection; Test script inspection
Inspection meeting, 62
code inspection, 85-86
design inspection, 82-83
functions, 68—69
requirements inspection, 79
sample process, 268-270
test script inspection, 87—-88
Inspection Problem Report Form, 64, 68,
69, 70, 78,79, 82, 85, 86, 87,
88,270, 274
Inspection Process Summary Report, 269,
275
Inspection Summary Form, 64, 78, 82, 86,
105
Inspection team, roles of, 63
Inspectors, roles of, 260-61, 267
Integration testing, 133, 136-39,
141-42
Interfaces checklists, 279, 280, 282
Interfaces testing, 136-39

International Standards Organization,
9-11, 37

“Internet time,” 181

IS. See Information systems

ISO. See International Standards
Organization

Iterative software development, 31

IV&V. See Independent verification and
validation

Java, 4
Jelinski-Moranda model, 171, 333-34
Jovial, 4

Kelvin, Lord, 91
Key process area, 348—49
KPA. See Key process area

Labeling, 115-16
Labor market, 181
Life-cycle models, 17-18
development approaches, 21-22,
27-29
hybrid, 27
object-oriented, 29-32
rapid prototyping, 22-24
selecting, 233
spiral, 24-27
waterfall, 18-20
Life-cycle processes, 11
Life tests, 142
Littlewood-Veral Bayesian model, 174
Load/stress testing, 143
Logic checklist, 280-81
Logic testing, 136
Loop checklist, 299
Loyalty, employee, 239
Lucent Technologies, 76

McCabe Cyclomatic Complexity metric,
104-5
Maintainability, code, 283
Maintenance phase, 313
Management, attitudes of
on inspections, 74-75
on software quality, 7, 167
on written documentation, 38

382 Software Verification and Validation for Practitioners and Managers

Management, ineffective, 187-88, 204,
205, 206, 250
Management, risk. See Risk management
Management, roles and responsibilities of
baseline changes, 120
commitments, 249-51, 341
customer satisfaction, 242
employee satisfaction, 196, 204, 211,
235-42
inspection, 62, 64-65, 261
organizational change, 188-93, 204,
207-8, 210-11, 242
process, 41, 229, 231-33, 235-37,
245
product, 245-47
project success, 205
schedule-building, 343, 346
quality, features, and schedule, 196,
198, 203, 204—7, 210-11
risk, 191, 253, 256
Manual testing, 151, 152
Manufacturing process, 112-14
Marketing, 18, 250, 251, 341
Mathematical reliability models, 170-71
Mean time between failures, 6
Mean time to failure, 168, 170
Measurement, software development, 188,
192, 198
Mentality of permanence, 238
Merging, 117-18
Metrics
baseline change assessment, 122
follow-up phase, 271
inspection meeting, 270
overview meeting, 268
planning phase, 266
preparation phase, 268
quality, 91-103, 163-64
See also Direct metrics; Validation
metrics
Milestones, project, 121, 354-57
Mills, Harlan, 6
Misinterpretation, 60, 76
Model-based development, 27-29
Moderator, roles of, 68—69, 77-79,
81-88, 258-59, 261,
265-70

Modula, 4

Module metrics, 105, 122, 124
Module testing, 133, 135-36, 303
Motivation, employee, 237-38

MTBF. See Mean time between failures
MTTEF. See Mean time to failure
Multitasking programming languages, 4

Naming, 115-16
NASA, 6
Negative testing, 142, 143

Objectives, metrics program, 93
Object-oriented design, 47
Object-oriented model, 29-32
On-line technical help, 243-44
OOD. See Object-oriented design
OO model. See Object-oriented model
Organizations

changes in, 188-92

credibility of, 184, 196, 210

life-cycle processes, 11

predictable, 188, 195-96, 231

successful, 240

unpredictable, 186-88, 196, 230, 244
Overview meeting

code inspection, 84, 85

design inspection, 81-82

sample process, 266—68

Parallel development, 116-17
Pareto analysis, 64
Particular assumptions, 173
Patch release, 48, 184—85, 188, 192, 196
P-CMM. See People Capability Maturity
Model
Penalty clauses, 206
People-aware management
best practices, 235-37, 240-42
effective team-building, 239-40
motivating, 237-38
reducing turnover, 239
People Capability Maturity Model,
241-42
Peapleware (DeMarco and Lister), 235-37
Performance checklist, 281
Personal software process, 9
Person-hours/defect measure, 160

Index 383

PERT. See Program evaluation and review
technique
Physical audit, 125, 127
Planning phase
activities, 264—65
code inspection, 84-85
design inspection, 81
entry criteria, 264
exit criteria, 265—66
metrics, 266
objectives, 264
requirements inspection, 77-78
test script inspection, 86—87
Platform testing, 142, 143
Play area, 123
Poisson reliability model, 175-76
Poor-quality software, 198-200
Positive reinforcement, 188—89
Positive testing, 142, 143
Postmortems, project, 151, 24445,
367-69
Postrelease find-fix cycle, 48, 50, 52-53
Predictable organizations, 188, 195-96,
231
Predictable software development, 182-86
Preparation phase
code inspection, 85
design inspection, 82
requirements inspection, 78
sample process, 267-68
test script inspection, 87
Prerelease find-fix cycle, 47-48, 51,
53,77
Prevention, defect. See Defect prevention
Previous documentation, 64, 67
Primary life-cycle processes, 11
Process
competitive, 230-31
improvement initiatives, 8—12
management’s role, 41, 229, 231-33,
235-37, 245
metrics, 64, 74, 106-7
selecting of, 233-35
successful, 231-34
views on, 229-30
Process model, 11

Producer, roles of, 63, 65, 68, 69—70, 81,
84, 86-87, 25960, 265, 266,
269, 270
Product
installing, 244
metrics, 64, 106
postmortem reviews, 151, 24445,
367-69
questions regarding, 242-44
root-cause analysis, 160, 168-69,
245-46, 371-73
triage process, 245
Product concept document, 316
Productivity, software development, 7
Profitability. See Economic justification
Program evaluation and review, 222, 224
Programming languages, 4
Progress definitions, 357
Project management. See Management
Prototyping. See Rapid prototyping model

PSP. See Personal software process

QFD. See Quality function deployment
Quality
audits, 125, 127
assurance planning, 6, 123, 323-24
balancing features, schedule, and,
185-86, 195-96, 207-11
controlling, 35-36, 205, 363-65
costs, 53-54
defined, 40, 197-98
and development goals, 4547
impact of poor, 198-200
metrics, 91-103, 163-64
requirements, 96, 99-101
and risk, 200202
surveys, 99
tracking defects against, 357-60
views on, 7—8, 167, 182, 243
and written documentation, 38—39
Quality factors, 95-97, 99, 100-1, 104
Quality function deployment, 47
Quality of conformance, 197
Quality of design, 197
Quality subfactors, 95, 97, 99, 100, 104

Rapid prototyping model, 22-24
Rational Software Corporation, 30

384 Software Verification and Validation for Practitioners and Managers

Rational Unified Process, 30—32
Reader, roles of, 260, 268, 269
Record collection, 126
Recorder, roles of, 261, 269
Record retention, 126
Recovery checklist, 281
Regression testing, 134, 140, 142, 148
Relationships, importance of, 196
Release procedure, 330
Reliability
defined, 168
expectations, 167
programming languages, 4
Reliability growth models
assumptions, 172-73
basics, 172-73
selection, 173-74
tools, 174-76
types, 170-72, 333-37
terms and definitions, 168
test-analyze-fix process, 168—69
Reporting, conﬁguration management,
111, 124-26
Requirements
analysis phase, 305-6
coverage metric, 163
definition phase, 18-19, 48, 77,
307-8, 349-50, 353-54
and development problems, 60
gathering stage, 23
grouping by priority, 340—41
See also Software requirements
specification
Requirements inspection
follow-up phase, 79
inspection meeting phase, 79
objectives and prerequisites, 77
overview, 76-77
planning phase, 77-78
preparation phase, 78-79
traceability, 163, 279-80

Requirements Inspection Checklist, 76, 78,

277-78
Return values, 295, 298-99
Risk management
assessment process, 253, 255
economics of, 231

identification process , 253, 254
importance of, 191, 206
mitigation process, 253, 255
risk types, 252
software quality, 200-2
spiral life-cycle model, 26
techniques, 252-56

Root-cause analysis, 160, 168-69,

245-46, 371-73
RUP. See Rational Unified Process

Safety-critical software, 200-1
Safety-related testing, 142, 143
Safety risks, 2001
Sales, development and, 191-92, 202,
250, 251, 341
Sandbox, 123
Scheduling
backwards, 204, 217-18
balancing quality, features, and,
185-86, 195-96, 207-11
and change management, 2067
errors in, 214-17
factors influencing, 203—4
importance, 213-14
and project management, 205
realistic, 189-90
and risk/commitment management,
206
techniques, 222, 224-25, 34346
training, 204-5
unrealistic, 181-82, 183—-84, 187,
203-4
Schick-Wolverton model, 335
SCM. See Software configuration
management
SDD. See Software design description
SDP. See Software development plan
Seamless process, 29
Segment coverage, 161-62
SEL See Software Engineering Institute
Shared code, 110, 116-17
Shewhart, Walter, 35
Shewhart cycle, 35-36
Shutdown testing, 142, 143

Simultaneous update, 110

Index 385

SIRO. See Software Inspection and Review
Organization
Size, software program, 92, 93
SMERES. See Statistical Modeling and
Estimation of Reliability
Functions for Software
Societal risks, 200
Software
defined, 112
nature of, 7-8
Software configuration, 112, 120
Software configuration item, 112, 119, 124
Software configuration management
auditing and reporting, 124-26
baseline management, 118-24
basics, 111-12
characteristics, 10911, 146
identification, 114—18
manufacturing process, 112-14
plan outline, 328-29
resources required, 123
terms and definitions, 112
waterfall model, 308
Software crisis, 3—7
Software design description, 19-20, 73,
81, 82, 85, 302, 318-19
Software development plan, 319-22
Software development process
and global economy, 181-82
improvement initiatives, 8—12
management, 17, 40—41
overview, 35-36
predictable, 182-86
selection, 17-18
waterfall model, 305-13
written documentation, 36—39
Software Engineering Institute
Capability Maturity Model, 7, 8-9,
10, 36, 348-49
inspection attributes, 73-74
People Capability Maturity Model,
241-42
Software Inspection and Review
Organization, 76
Software Problem Report, 147-48
Software producing unit, 10

Software quality. See Quality

Software quality assurance, 6, 123,
323-24
Software reliability. See Reliability
Software requirements specification, 19, 21,
73,78,79, 87
attributes, 301-2
document outline, 316-18
and testing, 139, 145, 150-52, 163
yellow sticky method, 340
Source code, 123
SPC. See Statistical process control
SPICE project, 9, 37
Spiral life-cycle model, 24-27
SPR. See Software Problem Report
SPU. See Software producing unit
SQA. See Software quality assurance
SRS. See Software requirements
specification
Startup testing, 142, 143
Statistical Modeling and Estimation of
Reliability Functions for
Software, 174-76
Statistical process control, 6-7
Storage checklist, 282-83
Structure checklist, 280
Supporting infrastructure, inspection, 64
Supporting life-cycle processes, 11
Synchronize-and-stabilize model, 21
System testing. See Validation testing

Tailoring process, 232
Teams
building effective, 239-40
members, 257, 264
triage process, 245, 246
Team Software Process, 9
Testability, 281, 283
Test-analyze-fix process, 168—-69
Test planning
development, 153-54
document outlines, 324-28
estimation, 150-53
overview, 149-50
readiness review, 154
Test procedure, 149, 154, 326
Test Procedure Inspection Checklist, 87,
88, 300

386 Software Verification and Validation for Practitioners and Managers

Test report, 149, 155, 326
Test script, 149, 154, 327-28
Test script inspection
follow-up phase, 88
inspection meeting phase, 87-88
objectives and prerequisites, 86, 87
overview, 86
planning phase, 86-87
preparation phase, 87
Tests
acceptance, 140
alpha and beta, 140
best practices, 132-33
coverage metrics, 161-63
defined, 135
development versus, 144-45
integration, 136-39
levels, 133-34, 142
methods, 140—42
overview, 48, 131-33
triangle program, 131-33, 331-32
types, 141-44
unit, 135-36, 139
validation, 139—40, 144—49
waterfall model, 312—13
Therac-25 Linear Accelerator, 4
Third-party software, 116, 125
TickIT, 37
Time domain model, 171-72
Time to market, 45-46
Time to profit, 45, 46-47
Tolerance control, 35

Tools

baseline management, 116, 122, 123

reliability modeling, 174-76

Top-down integration, 137-38, 141, 142

Tradeoffs, 185-86, 195-96, 207-11
Training
baseline management, 122, 123
costs, 47
critical skills, 183
inspection, 64-65, 66
product use, 244
scheduling, 204-5
Transition phase, 31
Triage team, 245, 246, 371
Triangle program, 131-33, 331-32

Trillium, 11-12, 37
TSP. See Team Software Process
Turnover, employee, 239

UML. See Unified modeling language

Unified modeling language, 30, 32

Unit (module) testing, 133, 135-36

Unit testing, 139, 142

Universal assumptions, 172

Unpredictable organizations, 18688,
196, 230, 244

Usability testing, 142, 143

User manual, 243

User needs, 197-98

Validation
changes during, 118, 120, 121-22,
124
defined, 57
Validation metrics, 159-60
quality, 103, 163-64
test coverage, 161-63
time measures, 160—61
Validation testing

and concurrent development, 14449

formal, 14749

informal, 14546

model, 144—-49

objectives, 133-34, 139-40, 142

plan document, 324-26

readiness review, 146-47, 154
Varargs functions, 296
Verification

baseline, 121

defined, 57

metrics, 1037
Version control, 110, 116-18, 124
Visual Basic, 4
Visual software modeling, 31

Walk-through, 63
Ward-Mellor, 5

Waterfall life-cycle model, 18-20, 22, 23,

305-13
WBS. See Work breakdown structure
Web applications development, 17-18
White box testing, 140, 142, 153
Work breakdown structure, 224

Index 387

Workspace management, 123 reasons for, 36-39, 73, 230

Written documentation validation testing, 139
inspection process, 64
misinterpretation of, 60, 76
and predictability, 190, 231-32
process for, 182-83

Yellow sticky method, 224-25, 339-46
Yourdon, Ed, 7, 199, 201
Yourdon’s structured design, 5

	Contents
	Preface to the Second Edition
	Acknowledgments
	Part I Introduction
	1 Software in Perspective
	1.1 The Software Crisis
	1.2 The Elusive Silver Bullet
	1.3 Other Attempts to Resolve the Crisis
	1.3.1 Formal Proof of Correctness
	1.3.2 Independent Verification and Validation
	1.3.3 Software Quality Assurance
	1.3.4 Cleanroom Process

	1.4 Understanding the Nature of Software
	1.5 Software Process Improvement Initiatives
	1.5.1 SEI Capability Maturity Model (CMM SM)
	1.5.2 ISO SPICE
	1.5.3 Bootstrap
	1.5.4 ISO 12207
	1.5.5 Trillium

	1.6 Summary

	References
	Web Resources
	2 Software Development Life- Cycle Models
	2.1 The Waterfall Model
	2.2 Concurrent Development Model
	2.3 The Rapid Prototyping Model
	2.4 The Spiral Model
	2.5 Hybrid Models
	2.6 Model- Based Development
	2.7 Object- Oriented Models
	2.8 Summary

	References
	3 Software Development Process
	3.1 Software Development Process FAQs
	3.2 Summary

	References
	4 Economic Justification
	4.1 Economic Justification
	4.2 Software Defect Cost Models
	4.3 Measuring the Cost of Quality
	4.4 Summary

	References
	Selected Bibliography
	Part II Overview of Software Verification Activities
	Reference
	5 The Inspection Process
	5.1 Inspection Process FAQs
	5.2 Summary

	References
	Selected Bibliography
	Web Resources
	6 Applying the Inspection Process
	6.1 Attributes of a Good Process
	6.1.1 Institutionalizing Inspections
	6.1.2 Real- Life Experiences

	6.2 Requirements Inspections
	6.2.1 Objectives and Prerequisites
	6.2.2 Requirements Inspection Process

	6.3 Design Inspection
	6.3.1 Objectives and Prerequisites
	6.3.2 Design Inspection Process

	6.4 Code Inspection
	6.4.1 Objectives and Prerequisites
	6.4.2 Code Inspection Process

	6.5 Test Script Inspection
	6.5.1 Objectives and Prerequisites
	6.5.2 Test Procedure Inspection Process

	6.6 Summary

	References
	7 Software Quality Metrics
	7.1 Strategy for Implementing a Software Metrics Program
	7.2 Software Quality Metrics Framework
	7.2.1 Definitions
	7.2.2 The Framework
	7.2.3 Applying the Software Quality Metrics Methodology

	7.3 Metrics That Support Software Verification Activities
	7.3.1 Complexity
	7.3.2 Defect Metrics
	7.3.3 Product Metrics
	7.3.4 Process Metrics

	7.4 Summary

	References
	Web References
	8 Configuration Management
	8.1 Software Configuration Managment Basics
	8.1.1 Definitions
	8.1.2 Example of a Manufacturing Process

	8.2 Identification
	8.2.1 Naming and Labeling
	8.2.2 Version Control
	8.2.3 Software Configuration Items

	8.3 Baseline Management
	8.3.1 Workspace Management
	8.3.2 Baseline Change Assessment
	8.3.3 Version Management

	8.4 Auditing and Reporting
	8.4.1 Auditing
	8.4.2 Configuration Status Accounting
	8.4.3 Reports, Record Collection, and Retention

	8.5 Summary

	References
	Part III Overview of Software Validation Activities
	Reference
	9 Testing
	9.1 Levels, Methods, and Types of Tests
	9.1.1 Test Levels
	9.1.2 Test Methods
	9.1.3 Test Types

	9.2 Concurrent Development/ Validation Testing Model
	9.2.1 Informal Validation
	9.2.2 Validation Readiness Review
	9.2.3 Formal Validation

	9.3 Test Planning
	9.3.1 Test Plan
	9.3.2 Test Procedure
	9.3.3 Test Report

	9.4 Summary

	References
	Web Resources
	10 Validation Metrics
	10.1 Time Measures
	10.1.1 Find- Fix Cycle Time
	10.1.2 Cumulative Test Time

	10.2 Test Coverage Metrics
	10.2.1 Code Coverage
	10.2.2 Requirements Coverage

	10.3 Quality Metrics
	10.3.1 Defect Removal Percentage
	10.3.2 Defects Reported in Each Baseline
	10.3.3 Defect Detection Efficiency

	10.4 Summary

	References
	11 Software Reliability Growth
	11.1 Definitions
	11.2 The Test- Analyze- Fix Process
	11.3 Reliability Growth Modeling
	11.3.1 Objectives of Modeling
	11.3.2 Types of Models
	11.3.3 Model Assumptions
	11.3.4 Model Selection Process
	11.3.5 Applying the Selected Model
	11.3.6 Reliability Modeling Tools

	11.4 Summary

	References
	Web Resources
	Part IV Predictable Software Development
	Reference
	12 Motivation for Becoming Predictable
	12.1 Introduction to Predictable Software Development
	12.2 Characteristics of Unpredictable Organizations
	12.3 Characteristics of Predictable Organizations
	12.4 Management Can Change the Organization
	12.5 Summary

	References
	13 Balancing Quality, Features, and Schedule
	13.1 Quality
	13.1.1 The Impact of Poor Quality
	13.1.2 Quality and Risk

	13.2 Features
	13.3 Schedules
	13.3.1 Most Projects Are Scheduled Backwards
	13.3.2 We Don’t Teach Estimating and Scheduling Skills
	13.3.3 We Don’t Cultivate Software Project Management Skills
	13.3.4 We Don’t Manage Risk and Commitments
	13.3.5 We Don’t Manage Change

	13.4 Balancing Quality, Features, and Schedule
	13.5 Summary

	References
	Selected Bibliography
	14 Accurate Estimating and Scheduling
	14.1 Why Estimates and Schedules Are Wrong Most of the Time
	14.2 A Typical Scheduled Backwards Project
	14.3 Software Estimating Techniques
	14.3.1 Function Points and Feature Points
	14.3.2 COCOMO II
	14.3.3 Wideband Delphi Method

	14.4 Scheduling Techniques
	14.4.1 PERT and CPM
	14.4.2 The Yellow Sticky Method

	14.5 Summary

	References
	Selected Bibliography
	Web Resources
	15 Balancing People, Process, and Product
	15.1 Process
	15.1.1 Economic Motivation
	15.1.2 The Process- Oriented Organization
	15.1.3 Finding the Right Process

	15.2 People
	15.2.1 Provide Motivation
	15.2.2 Reduce Turnover
	15.2.3 Build Effective Teams
	15.2.4 Best Practices for Managing People

	15.3 Product
	15.3.1 Project Postmortems
	15.3.2 Triage Process
	15.3.3 Root- Cause Analysis

	15.4 Summary

	References
	16 Managing Commitment and Risk
	16.1 Managing Commitments
	16.2 Risk
	16.3 Risk- Management Techniques
	16.4 Summary

	References
	Appendix A: Inspection Roles and Responsibilities
	A. 1 Roles
	A. 2 Responsibilities
	A. 2.1 Moderator
	A. 2.2 Producer
	A. 2.3 Reader
	A. 2.4 Inspectors
	A. 2.5 Recorder (Optional Role)
	A. 2.6 Manager
	Appendix B: A Sample Inspection Process
	B. 1 Planning
	B. 1.1 Objectives
	B. 1.2 Entry Criteria
	B. 1.3 Activities
	B. 1.4 Exit Criteria
	B. 1.5 Metrics
	B. 2 Overview Meeting (Optional)
	B. 2.1 Objective
	B. 2.2 Entry Criteria
	B. 2.3 Activities
	B. 2.4 Exit Criteria
	B. 2.5 Metrics
	B. 3 Preparation
	B. 3.1 Objective
	B. 3.2 Entry Criteria
	B. 3.3 Activities
	B. 3.4 Exit Criteria
	B. 3.5 Metrics
	B. 4 Inspection Meeting
	B. 4.1 Objective
	B. 4.2 Entry Criteria
	B. 4.3 Activities
	B. 4.4 Exit Criteria
	B. 4.5 Metrics
	B. 5 Follow- Up
	B. 5.1 Objective
	B. 5.2 Entry Criteria
	B. 5.3 Activities
	B. 5.4 Exit Criteria
	B. 5.5 Metrics
	Appendix C: Inspection Process Forms
	Appendix D: Inspection Checklists
	D. 1 Requirements Inspection Checklist
	D. 2 Design Inspection Checklist: High- Level Design
	D. 3 Design Inspection Checklist: Detailed Design
	D. 4 Code Inspection Checklist for C Code
	D. 5 A C++ Code Inspection Checklist
	D. 5.1 Variable Declarations
	D. 5.2 Data Usage
	D. 5.3 Initialization
	D. 5.4 Macros
	D. 5.5 Sizing of Data
	D. 5.6 Dynamic Allocation
	D. 5.7 Pointers
	D. 5.8 Casting
	D. 5.9 Computation
	D. 5.10 Conditionals
	D. 5.11 Flow Control
	D. 5.12 Assignment
	D. 5.13 Argument Passing
	D. 5.14 Return Values
	D. 5.15 Function Calls
	D. 5.16 Files
	D. 5.17 Errors Due to Implicit Type Conversions
	D. 5.18 Errors Due to Loss of “ Precision” in Return Values
	D. 5.19 Loop Checklist
	D. 5.20 Copyright Notices
	D. 6 Test Procedure Inspection Checklist
	Appendix E: Attributes of Good Requirements Specifications
	Appendix F: Sample Criteria for Selecting Modules for Code Inspection
	Appendix G: Sample Software Development Process Based on the Waterfall Model
	G. 1 Requirements Analysis Phase
	G. 2 Requirements Definition Phase
	G. 3 Design Phase
	G. 4 Coding Phase
	G. 5 Testing Phase
	G. 6 Maintenance Phase
	Appendix H: Document Outlines
	H. 1 Product Concept Document
	H. 2 Software Requirements Specification (SRS)
	H. 3 Software Design Description (SDD)
	H. 4 Software Development Plan
	H. 5 Software Quality Assurance Plan
	H. 6 Software Validation Test Plan
	H. 7 Software Validation Test Procedure
	H. 8 Software Validation Test Report
	H. 9 Software Validation Test Script
	H. 10 Software Configuration Management Plan
	H. 11 Software Release Procedure
	Appendix I: Test Cases for the Triangle Program
	Reference
	Appendix J : Software Reliability Models
	J. 1 Jelinski- Moranda Model
	J. 2 Geometric Model
	J. 3 Schick- Wolverton Model
	J. 4 Goel- Okumoto Nonhomogeneous Poisson Process
	J. 5 Generalized Poisson Model
	J. 6 Brooks- Motley Model
	Appendix K: The Yellow Sticky Method
	K. 1 Start with a Complete Software Requirements Specification
	K. 2 Group Requirements into “ Must Haves” and “ Wants”
	K. 3 Commit to Deliver Only the Must Haves, Not the Wants
	K. 4 Yellow Sticky Estimating Rules
	K. 5 Identifying Tasks and Creating Initial Estimates
	K. 6 Building the Schedule Going Forward
	K. 7 Negotiate Based on Factual Information
	K. 8 Manage the Project to the Schedule
	K. 9 Benefits
	Appendix L: Software Development Best Practices
	L. 1 Define Requirements First
	L. 2 Binary Quality Gates at the Inch- Pebble Level
	L. 3 Risk Management
	L. 4 Peer Reviews
	L. 5 Project- wide Visibility of Project Plan
	L. 6 Defect Tracking Against Quality Targets
	L. 7 People- Aware Management
	References
	Appendix M: Software Quality Best Practices
	Selected Bibliography
	Appendix N: Project Postmortems
	Appendix O: Root- Cause Analysis
	Reference
	About the Author
	Index

