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1.1 Introduction

Electrical Interference refers to the presence of unwanted volta cirarte. leanlBaT) :
: oltages or currents, in cables or s
electronic equipment, which can damage the equipment or degrga_de_ its pe ﬁul:tt:'a::;g ibles or A

Much of the uncertainty associated with electrical interference can be atiributed to the lack
of clear understanding of the meaning of the terminology used to de'scribe" vaﬁﬁﬂé:
situations. Loose terminology such as '‘Disturbance’, 'Dips! 'Spike’ 'Glitch’, 'Surge', etc
mean different things different people. : ' ik

The commonly used terminology may be clarified as follows :

e A Disturbance is a general term describing a voltage or current signal which

') deviates from what was expected. Many disturbances are not necessarily

e damaging, although the performance of the electronic equipment may be impaired
! in some way. Some examples of disturbances on a 50Hz power supply are :

_ Power Failure, Power Outage, Voltage Dip or Blackout, which is total break
in the supply voltage for a period from a few milliseconds to several hours.

Under-voltage or Brownout, which is a sustained reduction of supply voltage
lasting for a period from a few seconds to a few hours. |

- Sag, which is a temporary reduction of supply voltage lasting ’Tﬂ
few cycles up to a few seconds. I

L '.'



'
"' _.J
D h

iy, O% e vansient oy
lﬂﬂlﬂﬁ“ﬂ w”’#m 5 preleced Lecawsse # M

nomk: Inkerforences & 2 ot |
Mwmm The detonion Getonicn Gy 0 Mz o te ol

“erariat ws ey o Ye Vrdernens
- BOMI NEenCy,  Yamonios me 8 1eel of ron e s, reeidians,
mmmwimwmwmw = -

- MRITDONIG WReIIeIenCs Lompren g iy
ferrr onisen o8a haernonics

ﬁi C m ’f‘ﬂugﬂw Interferonce s % CAARRD IS5 H"q 1fﬁ-’¥ﬂ¢'f;}‘ Gistontion (above

n ”..-.L; m m ‘9’ the nexmal sevssovial wsietlerm. A& s e i 1 OO Sor e

. more modern and more genersl \ern EMI (Elsciromagnaetic Interlerence).  EM

L Goves inierisrence oue 10 elecic and magnelic felde over a wids lecuency
gpRolium, Inchuding lreguencies in the radio spectnm,

Miﬂ From; IMGH6I6Nce suparitnposed
m 8 siousoidsl wayslonn

. but effactive, way 1o understand Interference problams ia 10 remembes that thete
W6 threo elarnents lo every inorforence problem

ﬂ‘lll'l must be & Bourca of Interference 6nergy
E @ rusl be a Viotim that ls upset by 1he interfarence oneryy
h 31-, wire must bo & Coupling Path betwean the Gource and the Viclim
il iﬂ
E ; fgm of all three
?- H 0 lﬂMﬂﬁ Interfsrence problems s to understand e mechan 3
> axamings some of (he mosl common sources of iflafr!ml Interterence and
farfarence Is trnsferrad into the electionic contiol squipment

n _|l,-

= l.: I' .-'-I!-:I‘T-
" II;"' |r-l




r Lightning Protection Systems is currently under brepare R di/dt is the rafe of rise of current in kA/us

: * uunlroi Systems a,
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tive knowledge is largely summaris )
T i h ,.‘ r:.il— . Figure 1.1 : The Lightning Current Waveform

elevant 5| B I; -I'-I:'.-; .L' i
= aE | . I = .
1 t .‘ l. -

i _:I" - %‘sﬁ wavetorm definitions are from AS 1768-1991 and |IEC 1024.1.1-1993
r 1

.E* l’a 3 | is the peak current in kAmp

; is the time to crest in us
t, is the time to half-value in us

- =

mr - 2 of the most important values are :

i

[T IR P o

!ﬁ;‘

. : lhe peak current
. tha maximum rate of rise = [%Lu

. ':1h‘E average slope between the 10% and 90% points on the wavefront

= I_ill:.l_' L) ‘-I'-"! 1 _..l'

-

0.9 - 0.1T
t£(0.9) - £(0.1)

]I.J'.

f—y
" -

dt ]mh" 50%

N
o
- - .

'S lﬁh average slope between the 30% and 20% points on the wavefront

di ¢ - 0,87 =0,3T

LdEyouzs0n (0.9) - £(0.3)

4 ' Ii that the strike
s of lightning events (lightning flash) noticed quite early on
to 4&1@:99 Scientific measurements have confirmed that lightning usually

strokes), each of similar form to the
el vty ourtant SuNes ( ) f current through the same

| 0
rm above. There can be as many as 20 surges
H&uﬂllv the first surge is the highest in magnitude.
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.32 The Rate of Rise of the Lightning Current (di/dt)

'-.j&‘;-*'.,e :ahove. _the measured values of the rate of rise of the lightning current are
scattered over 2 Vﬂde range, and are also described in terms of a probsbilty . the
srobability :ofﬂ'le rate of rise of current (di/dt) exceeding a particular value.

I b
For example, the graph and table below show that there is a 5% probebility of the
maximum rate of rise of current (di/Gl) ., of a first negative stroke exceeding B5KALS .

Rote of Chaonge

of Current

------
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2.6kAus 7 2kAlus 20KkA/us
f*jf;j;_'ys | 5.0kAjus 14kA/us

2 5%

Maximum Rate of Rise

-

10kA/us 40kA/us 162kA/us

|l Average Steepness
between 30% and 90% 4. 1kA/us 20kA/uS 99KA/LiS

" n ] - | ! .'5

| ' between 10% and 90% 3.3kA/us 15kA/us Hkﬂuis

32KA/us

__ Fo L Figure 1.6 :  Tables showing lightning current rate of rise probabilities
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Total Rise Time
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Figure 1.7 :  Table of Probable time to crest t,, of Lightning Current

Typical values for t; obtained from |EC 1024-1-1 (1993) are shown in the table below

(lognormal distribution assumed)

Type of
Lightning Stroke

e
=

First Negative Stroke

Subsequent Negative Stroke

Positive Stroke

e —

Figure 1.8 : Table of Probable time to half-value t; of Lightning Current.
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It is interesting to compare the average values obtained irom
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=
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. L ik the wavelOrmms t TF“{:*-.-r-l_Hi'l L,"-.r' for
measurements, as listed in the tables above, with the wavelorms HatiiEiEty =

Hles, elc @

pel e % = . W= oy .'“'. f‘,} - ..lli-jj_._ to, Clu
testing electrical equipment, such aslransfﬁn_ﬂtﬂﬁlfﬁn S G T

® 1.2us/50us for voltage waveforms  IEC 102 maee H

[\ |
~*  Bus/20ps for current waveforms  [E
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% Cansequently, the length of the tail affects :

. Cc  '{ Jﬂ? £ l@ﬂf:m currents have been measured where the lightning currepy,
. s s '
have a tail that ext

| i for hundreds of milliseconds. Fortunately, in these cases, {pg
ave a tal tat eXends BF L C0OR). This type of ihting is Known as ot lighining

‘< often associated with the ignition of fires.
1.4 Volitage and Current Surges due to Lightning
1.4.1 Surges due to Direct Lightning Strikes

Lightning behaves like a current source. Consequently, the voltage at the paint of strike s
‘equal to the product of the fightning current | and the impedance Z presented by the

structure and the earthing system to the lightning current.

Simply, from Ohm's Law : Ve IxZ

A _--'Chéj_'rge&j'_‘(:i;:}ud; 3

Lightning
Surge Current

Surge /
Voltege v J

——

7 Impedance of
Down Conductor

Earth Surface

B T A Ay A A N S N N T L L

t+ A+ 4+

B AR TR T AR L I I AN P T et P e T Tl T o T, T L,

+4+++++++++4+++ ++

Figure 1.9 :  The Impedance of the Earth Path
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For example, a horizontal transmission line conductor hag : ~
- b L i ..' = il' -

a000. When struck by lightning with a peak cuireny of wwg_. pedricn ot
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b 7] e L
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by L
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IR L = L7 I

_ 300
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Vpr}ﬂk = 15:00{}}(1" .

This would be sufficient for insulation breakdown
on the transmission line.

can be achieved by :

o Shielding the overhead power cable using overhead earth wires |
e Burying power transmission cables 3

e Shielding buildings using tall lightning masts

1.4.2 Induced Surges due to Adjacent Lightning Strikes S

High voltages and fauits on transmission lines and other structures are not ﬂﬂj’

e

direct lightning strikes. High veltages can also be caused by ﬁghm]ngmﬁ *.‘ 1
of these facilities .... called adjacent lightning sirikes. These cause induced ]@Q EE N

'
1 by

Earth Wire ,- il
| (Comneced to Earth ol eceh o)
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¢ of the induced mmmm ﬁlﬂ!.hiﬂh- The experience of power system
stralia has shown that the insulation levels of 95kV appear to be adequalte

P

'1.4.3 Avoiding Side Flashes

Whﬂn the lightning current flows to ground through the lightning down conductor, it
produces high volt drops due to high series impedances (mainly inductance). High volt
drops along the down conductor increase the probability of side flashes to adjacent objects
The non-uniform field breakdown voltage for air is about S00kV/m, so adjacent sl;uctures'

should be greater than 2m (at least) from the down conductor.
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 puring a lightning strike, the air terminal (o tgg
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Lightning
Current
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Figure 1.12 : Equivalent Circuit of Lightning Path - =
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mended by [EC 1024, are given i

The minimum dimensions of bonding conductors, recom
he Figures A.11 and A.12 at the end of Appendix A:
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To understand the significance of the inductance _D.f m«aﬂ' _ i of ihe power
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" Figure 1.13 : Comparison of the Lightning Waveform with a 50Hz Waveform

I|I-:'_i . T :
~ Going back to first principles, for any conductor

di

v, = L— uilding Air Terminal
x dt

------

where : v, s the inductive volt drop along the conductor
. {4 is the (self) inductance of the conductor :
-t di/dt s the rate of rise of the current through the conductor
: Down
| l.'- ) Conductor
2quently, the lightning current waveform, which has a very high di/dt, can produce a !
L= antial volt drop when passing through the inductance of the air terminal and down i
: IJ. - conductor. By comparison, the volt drop for a 50Hz current is negligible. |
he problem is that all conductors have inductance ... even a straight conductor leading
fror 'Hia air terminal down to the earth electrode. |t may be difficult to measure or predict e
e magnitude of this inductance, but a useful rule-of-thumb is to use a value of 1 uH/m. Earth Earth
“ﬁ;ﬁﬁlte_msﬁng 10 note that, while increasing conductor size will reduce the resistance of a ? Electrode Clectrode
- _ygﬂ"gl‘.meM;lctalgtm Is not greatly affected by its cross—sectional area. The table o
Delow shows the calculated values of inductan ‘ EOOMME
[ __Ehﬂw ce for a range of conductor sizes. BN Freterned Arraraeniig (b) NOT RECOMMENDED

Figure 1.15 : Recommended down connection techniques

~andiictore  connecte
CONQUCIUTS LA IMEEEE

Another important rule is that inductance IS lﬂ}'e:;:v hﬂfmg:‘m
paralel. Two down conductors SEP?med % atw .on down conductors are GV -
recommended minimum separation distances between SEEEEEEE

table below.
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arious cross-sectional area
£ Wavelorm assuming a straight rising edge)
' Reference 3.25
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| . i or failure of
[ !P Changes in the filter capacilance due 1o age, lemperalure
. capacitance units within the bank.
= gﬁp H&I’&:;'I?:m inductance due 1o temperalure and current
e Small changes In the system frequency
o ies below the
"ii'f""q'll'all reactance of the filter becomes caga:::;ina:;:zﬁzﬁ': & and: e
. .'4['-:'[":'?':?;']-:‘2"".':{‘1: monic frequency, resonance can occur be o encies, This cossibiity
HF j, N Inductance at fundamenital or other lower 'r?nq:nt cleg. L Teaariiich:
I - oyoleElil any L L1 g
should be considered In the design of harmonic filter equip
b Al s g, 8] [Pt el ol '-I..: S
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Chapter 2 ; THE OBJECTIVES OF SITE EARTHING

2.1 The Objectives of Site Earthing
The main objectives of a good quality site earthing system are as follows -

e To avoid physical damage to buildings and equipment due to direct or indirect
lightning strikes and power system fault surges. The earthing system must provide
a safe path for lightning and fault currents to flow into the body of the earth,

e To provide a safe working environment for personnel even during lightning strikes
and power system faults. The *"touch potentials® at metallic enciosures should be
below the voltage level at which personal injury can take place.

e To provide shielding and an alternative path for induced currents to reduce the
effect of coupled noise on electronic equipment.

e To provide an equipotential platform on which electronic equipment can operate and
be safely interconnected without fear of large differential voltages, even when the
equipment may be located in several buildings, separated by some distance.

Many aspects of the first objective were covered in Chapter 1. The second objective is
covered in considerable detail in AS 3000-1991 : SAA Wiring Rules and is well known to
most electrical engineers, technicians and particularly electricians. The third objective will
largely be covered in Chapter 3, but will be expanded on in this chapter. The last objective
IS the more difficult to achieve and is the main subject of this chapter.

2.2 Categories of Earthing

Several different categories of earthing are commonly referred to in the context of earthing
for industrial sites, large buildings and power supply installations. These are :

Neutral Earthing
Safety Earthing
Signal Reference Conductor Earthing
Screen Earthing

2.2.1 Neutral Earthing

Neutral earthing refers to the earthing of the neutral point of the transformers for the
power supply to buildings, industrial sites, etc. Distribution fransformers are usually
connecled in the delta-star (Dyn11 or Dyn1) configuration, with the neutral point on the
secondary side solidly earthed to the substation earth electrode.

From a power supply point of view, neutral earthing is particularly important to prevent

= of the 3-phase power supply system during fqult
???r‘“:{Pil‘ﬂgE:Oln _l‘t...‘.ail.e'?a?f_lfnfi‘ic‘f-rf.fl.-lnn - -nf|m na_-.,?ho i~r aarthh fﬂl]" mrrenls_ whlch
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peutral is often isolaleq
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n practice, the neutrs
"!.5-'—11"}5.5" |Dad3. and
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In ‘addition, the
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et

sontaining the electron.
eonducted noise.
. 1
jered from a single phase
‘to the electronic circuits vix
s supply- In practice, if i

il
y H _‘;'
|
Sub—Distribution Boord
and Instrumentation
: =

-

Secondary Winding of the Transformer

- Safety Earthing Is covered in considerable data|

s m Safety Earthlng

Safety E | ] :
will not be covered in great dept Rerd n AS 3000-1g91

. SAA Wiring Rulas and

the phase conductors accidentally m
*alive" for the period until the fault
sltuation represents a considerable
the *live* piece of equipment,

- If one of

re, t would become
were detected by the protection ang isolated. This

safety hazard 1o personnel standing nex 1o or louching

Consequently, all exposed metalwork should be gojiq)
i £y Y connected 1o
conductor, which is further bonded to 4 safety earth

_ _ the building earth electrode (recommende
bonded to an earth conduclor provided by the supply authority. (Refer to AS 3000 1’;}91#
SAA Wiring Rules), '

The symbol that will be used to indicate a Safety Earh is as follows :

Codar - Broen
Cobnr @ Sha
Colar : Tdiew /e

This symbol represents the third conductor (green/yellow) in a single phase supply
cable.

m=>

2.2.3 The Signal Reference Conductor

The earthing of the signal reference conductor has little to do witﬁ personnel safety, touch
potentials or protection of equipment against lightning. Any decision to fzam:n the signal
reference conductor should be made purely from the point of view of noise immunity.

The purpose of the signal reference conductor is to providela‘cumrqon refEfence pre:n; u:or
the small voltages associated with electronic equipment. This is particularly rmpuna:{ 4 ?t
equipment Is required to transfer signals to other ramptel electronic equipme |
electronic devices are connecled together by data communications cables. Some commo
reference plane needs to be established between them.

Galvanically introduced noise is directly re!atec! to the manner of earttl;ungeamnsrgga;

reference conductor, Galvanically introduced noise can be minimised _ty 4 Ii bl

signal reference conductor at one end only. There will still be some nlapaq;h w[: b H’;s L

o o B B IITE canlbel Led:lﬁdﬂ'?: ::Zl:a?l ?e?:::::::d mc:gui'mr aarth:d at one
ential signal transmission, witt

::La'lﬁ; ‘Ij_smlea;s rf'loisygand preferable. However, the slgnaﬁl reference n;:;da?‘;?t:\ ::::'ld

NOT be confused with the cable screen, which can sometimes be ea
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although " Figure 23: EIA/RS—422 Senal Dala Communicafions Link using a Scresned =
Twisted Pzir (STP) cable with the signal reference conductor ezrthad '
at one end onjy.
- _ it o e i '-'_'.'- .:.-' = :.:_:v . 3 j A M I'E?r lypi = I cor Emﬁ 1 EE ﬂ-ie CG—EIE' [ LM‘] Eﬂlﬂm‘ 1 OF 'i'idéﬂ E:‘.?a".-r&t-.iﬂn_ Here the —_—
_ A e | electronic signal reference is connected to earth at both ends, the two ends are isolated _
2 from each other via 2 transformes. Once again, the elecirostatic screen should be earihed ad
at one end only, while the eleciromagnetic screen should be earfhed st bofiends. This s
covered in the next section. =
Device—Y -
IS e = 1 © n_ ol )
l :I 1 | S
VI | PN
Signc! Refersnce Conductor 1 ! | _: eV |
» |
' _---_.....,.,-...-__-..___..,.-__-_.-__..-Jull - [ |
oL AL Cweroli Screen ""_'-L___

.......

The inclusion of the tansistor symbol
the next wmedtomsrefermmm

nd . while the . noise immunity considerations.




,H; The Methog .
hity of the interconnec. °

e JQ‘I;[ by SUrroyn

di Pﬁm
JF&:‘_;
arthed at multiple DOint
[IEFSUCh as circy ),
own about the alternatj,
s on practice to earth ;,h,h_ : : - e
B e el carthing b e 2.3 Coordinating Earthing and Shielding within a Control System
| I _u
Although the overall earthing system should be seen as o :
Y AE i) | _ ne system, i
o T_;.I_mff;::hb?' medmg 2 between _!he different earths, defined above, is important to ensure yadequa?;epftzg;ihﬁ
1“ e S €artheq the elec_ﬂtnc power system ilself, the protection of operators ang users, the protection of the ~1e
table sc .r materials are metallic electronic control equipment and the shielding of this equipment against noise

L]
-
ST

= It is also important to note that the behaviour of the earthing system will be differen
. | : . t fo
_ _‘.-'-MUST be known about various frequency ranges. For the first two types of earth, the 50Hz behaviour is prubahi;
Vices ... most important. For the rest, frequencies from 50Hz Up to the MHz range should be
considered.

lectronic equipment is withi an
tﬁaﬂeﬂ. This s usualy
nt room floor. In |EC 1004
RG} and represents ideal Before continuing, an additional s

Grid ymbal is introduced that represents a Well Earthed
18 Building. This is an ideal situation where a building and its contents al| remain at the

same potential, even during the worst type of surge such as a lightning strike. In this ideal
Qeference Grid (ZSRG) is as follows ) Situation, the building and its contents are said to be on an equipotential platform. The
BN T techniques for achieving this are outlined in this sectior.

Readir
2.3.1 The Well Earthed Building

The following symbol indicates a Well Earthed Building (equipctential platiorm) :

Rthe installation - 232 The Problem with Earth Coordination

t a ri-i_ ST ce, then the building The fundamental problem with earth coordination is the difference in voltage between items
R rence, of electrical equipment during major surges, such as earth faults and lightning s;rﬂ;es.‘“;l_'n
‘ i | is situated within

PR i . i f then lllustrate the problem, assume that some electronic conpni equipment is si
asiand-alone item of equipmen’ each of two bgildings A and B, which are situated some distance apart. Initially, the ear:lhhs
A E al reference grid (ZSRO) of the two building are NOT intentionally connected, except through the bedy of the earth.

“€ro signal re

The earth resistances of the two buildings are designated as R, and R;.
rote :;-':‘: J iﬁﬂﬂh.




| ¥

VIR '

A e ==
= .
}

4
|
| &
|

= __i-_gijiff connection

3
uree) the building-A o
ue eanth” reference potentia) v
Jugh R the building-B e

Figure 2.7 :  Two separately earthed buildi
_ S ngs A and B - WITH nnect
Building-A struck by lightning g

The problem and solution is very similar to the easily visualised situati

| _ ed situation where a2 ship m
transfer aume @gﬂ 1o another ship floating nearoy in heavy seas. What should bE goﬁ
to ensurh ﬂ“_nat-_th_e cargo fransfer can take place without damage to the ships or the carao?
This is the well known Two Ships Analogy:. 24

1l 'F
R : Figure 2.8 : The Analogy of the Two Shi
2nd B - no cable connection. ogy ps

One solution would be to clamp both ships firmly to the sea bed to prevent them moving
relative to one another during the transfer operations. Although possible, this is NOT a
practical solution.

e :.TF‘-'- buildings, the rist Another solution would be to clamp the two ships together with as many ropes and chains

BT gl=

r g-B, could be sever? as possible to prevent relative movement between the two ships during the cargo transfter

nt installed at either © operations. This is a far more practical solution and is the technique commanly used in
o these situalions. Although this solution does not prevent all relative movement, It IS
reduced to small manageable magnitudes.

This solution is similar to what has been found practical for building and plant earthing.
To avoid large potential differences between the earths of separate buildings, their earths
must be tightly interconnected through as many conduclive paths as possible.
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| .- a ;';th}"f[ | HI t“ench 'E'Elﬂhg_ iy

gy

7l

ween Two Buildings or Struciye.
_ 1 ]

1d B need not be low values This i
§ beas low as practically possibe

be considered. In the example aboy. .,

Nare two paths along which i
SIS directly into the earth via R, a0 1.
inection and via Rg into the earth The

p aleng the interconnecting cable 2 1.
lding A and B.
I_J I;:r

- '.-'f A s
ﬁ;dgmwgabmmml flow 1, along
and Ry should be as low as possible, o Sy
encouraged to flow Into the local (low resis ) B ot o th A
voltage V, as possible.

2.3.4 The 50 Metre Rule

By _Inlarcnnnecling the two building earths i
seen by the lightning current is reduced be
connected In parallel, How the low
L 3 e .

due to the finite Propagation velocity of the lightning m”Zﬁt "’;3:; o, eanth resistance
cable. As explained in Chapter 1, the inductance i :

If the two buildings are sufficiently far apart, such that it takes the fightn;
3 ¥ tn
make the round trip (there and back), then for th 'gntning current 10us to

| . e first 10us of the lightring stroke
resistance Ry does not contribute to the net earth resistance seen by the Iightnir%g current E

This has led to the *rule of thumb* known as The 50m rule -

When determining the earth resistance seen by the lightning current, consider
only earth electrodes within S0m of the prospective point of strike.

2.4 The Earth Electrode

Codes of practice on earthing and the standards all recommend

as possible. For safety purposes, the earth resistance should
authorities recommend values as Jow as 1Q.

as low an earth resistance
be < 100 and many supply

the electrode system and the way in which it is connected are more important than
achieving a specific value of resistance.

From the viewpoint of lightning protection, a single integrated structure earth electrode
system, as opposed to the concepl of a separate 'clean’ earth, is preferable.

The four most common types of earth electrode are as follows. These are covered in more
delail in Appendix B.

e \Vertical driven rods

® Ring trench earth around the perimeter of a structure
e Radial conductor electrodes (crow's foot)

e Foundation reinforcing steel electrode

Considerable care must be exercised in selecting the correct type, size and materiall for
earth electrodes. Guidance is given in both the national (AS 1768-1991) ar!d intematmpal
Slandards (IEC 1024.1-1990). Tables have been included in Appendix B which summarise
these recommendations. |EC 1024.1 recommends that eanh electrode should be made of
copper or steel with copper = 50mm?® and steel = 80mm?®.
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- ngStEGI N

'J?f; 1 A8mM diayc, 242 Site Building without an External Lightnin
{f more than 2m) and trench 8aHh P _
g e 2 AMhg A situation often arises where 4 buildin
e oo y e System). st g e

not have A .
nto the site equ| e emal LPS (Lightning

Potential platform

bl ts at ildi :

0 et el _ S earth should be used ' :
_ s | of the LPS (Lightning Protection S a3 the bonding point
e ) If no earth point exists at the building, then e ~
s lower resistivity) soil at deeper |ayy metalwork should be bonded ' e Mer one should be nstalied or the buildir
GEEEI RS SY Y. SOU £ metalwe and ~ - TR 'g
dly mean much lower impedance Thq&_ Used as the bonding point for the lightning protection.
T - S
T 2.5 Steps in Designing an Earthing System for 2 Structure

urges t“f”l 1o current during

AT 0 The following step-by-
‘ parallel paths at the connection Doin|

step approach to site earthing can be followed in most cases :

& Step 1: Install the Trench Earth iy
OCKy ground
- ® Bury a trench earth around the perimeter of each building. ta'd]
.o - Depth of trench earth : > 0.5m
t be ignored as method of making - Distance from building : not closer than 1m from the walls (or in building o
orbs moisture) and thereby foundation)
¢ and the surrounding so; ~ Preferred earth conductor :

Copper, 250mm® or dia =95mm (or 30x3mm, or

Y HQ bars (rebars) for e 20x3mm copper strip), building reinforcing steel

gally: aimed at the use o For ast, a “crow's foot* trench earth

. :.ﬁ currents. This does L or a mas, a4 Ccrow's foo encn e arran
-"'“'f’r'-l?;%ltning or EMI. When ' radials =30m and number of radials ~8.

event a portion of the lightring

gement is preferred with length of

® For a small structure, at least two down conductors, each connected to its own
earth electrode (driven rod) should be used.

:5 lectrodes to suit the loca
i . Trench Earth
= around Perimeter

=g - |

n advantage during the fis / \

L] .I t.
F-

P n ~ ~
) electr % provides a lower ear! 4 ( _

; o

driven rods, trench earth & )
L7,

arallel, will contribute to a lower overd 7

N\
=\

N
; N

ently has two earthing systems, .
dan: ﬁﬁrﬁnics earth (‘clean .G,: Z
the lightning current will take i
u '. reason, amongst others,
‘i,ﬁbtennal earth platform.

.

Figure 2.11 : |Install Trench Earths around perimeter of Buildings
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ong the trench earth,
[ Wik o --Fu--l Dawn Conduclnr{
BNBNImes rod depth (<, e Jeei)

:.'_ “':,f 1rlﬂn|yVGry Bpe‘ﬁia[ {:annm .
teel or stainless steg (Minim, '

i

ditiona Ithn rods.

1 Buildi \ Woter Pipe or d -
- e E;dlﬂg any ﬂther buried T
: -_ Intercannection Melallic object .

Z %// Figure 2.13 : The addition of Bonding between Buildings and Structures
o Step 4 Define Bonding Bars for Equipotential Bonding 1al Re

® Define bonding bars for
paint of entry exists, ensure that bonding ba

* Bond any external metalwork to the building earnth (metal wal .
_ framewaork). g ( walkways, chimneys,

e
ation with Trench Earths

n _
4t ® The bonding 'bar should be connected as closely as possible to the earth electrode
r #_} | as well as building metalwork, reinforcing, etc.
sther Components Use b , - -
2t o se bonding material dimensions in accordance with IEC 1024.1-1990.
g between the buildings, the buldn:
.'..'.'--_"':i; ”:j' ied metallic objects such a — “u / Tranch Electroda
einforced concrete foundations shour
'|. ——————— .__.....I + e
.* Bonding Bar |
I Bond ol Incoming
o T Eorthable Conduclors
1
Al ¢ ' —— Inconing Power Earth
| g, 1. i ey e e e LT — ] =
igir 8pacing should not exceed
iclures. Buiding Reinforcing, Melolwork
ke ng AI I or Ground level Ring Conductor
iould be interconnected by mez | i
point of equipotential bonding). | j
¥ o
r"pt :plpesl re-en!?rcmgm:ﬁi
hey are bonded to the air l;;;muf
metal frame or reinforced bultr™ Figure 2.14 : Definition of bonding bars for equipolential bonding
.
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e
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Malollic Object
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Flgure 2,16 ; Bonding of Metallic Objects Inside a Bullding to the Bonding Bar

2.6 Concluding Comments on Site Earthing '

® The overall objective In designing  bullding earthing

8 1o create a single j
equipotential platform on which electronie equipment can safely operate,

¢  Minlimising the earth resistance s |

ess Important than ensuring that during a
lightning strike all bulldings rise In potential equally so that there is no ditferential
voltage betwoen the earths of adjacent bulldings. This would stress signal and

power cabling running between the bulldings.

* To avold large currents through the building earth Interconnections the individual
bullding earth resistance should still be a low value (< 100)),

e  [Bonding of metallic objecls and conductors must be done in accordance with the
standards such as AS 1768-1891, IEC 1024.1-1990, IEC 1024.1.1-1993 and the
olectrical safety system In accardance with AS 3000-1991.
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COUPLING OF |NTg
ELECTRICAL SysTey -'CE INTO THe

not practical to completely eliminate gist

ower system faults and harmonics
1 and the treatment of the cable screens, am
8 on the level of interference. Particularly '--"hen

1 distances in a noisy industrial environment.

urbar which |
:r::ance; which are associated with lightning

+ TOM e electronie equipment. The -:ab’?e

'ouring and earthing hav

Hing |2 | Ve 2 major
Si€Clronic equipment is connected

5 chapter covers the mechani ' ,

g : ISm by which coupled into the elecironic
"and how the coupling can be minimise VR ol |
St H Al Svisssala) JesSian of the earthing and
UERSYSIEIN. -~ rlowever, the discussion in this section is imited to lower frequency Readir
Such' as those produced by lightning events. sw

o e ching surges, fault currents and
T 1 l:' 1 : . = = i _l\- ; . i
Her _..fa.in_s frequency phenomena such as harmonics. This analysis does not cover RFI. =

the surges are
d by the correct

alysis is valid where the wavelength of the disturbance

g field is longer than twenty
s the length of the conductors under consideration.

_ Frequency . Wavelength Length of Conductor |
(1)  50Hz 6000km 300km
) 10kHz 30km 1.5km
ol (3) 1MHz 300m 15m
| @ 1omHz 30m __15m |

I -

. o w
- (1) Power System phenomena (faults, harmonics, switching, elc)
| _'i-?':.‘_;‘ (2) Lightning phenomena
(3 & () RF

A

'_kﬁﬁ“g'-’;surgas and interference can be coupled into the electronic control system via one or

}pa“i*e of the following three mechanisms :

I Galvanic (resistive) coupling _ direct electrical connection
® Capacitive (electrostatic) coupling - eFectnct‘neflidEIsds
®  Inductive (magnetic) coupling - magnetic

- 1 il i i } I t{}

However, before analysing the mechanism of interference couping, :ntliirpzcgesjag‘es-

feview the main differences between "unbalanced” and DaTanCiiiwl Zrehveen these two
This N U substante differel_'wﬁ! Ir;fe[::rf:e ::nﬂTductor are also different for
techni rthing the signal T

i!l techniques. The methods of earthing

|
¥

the two connections.
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;Il 1 .i._u.l:_ Signal Connection
| communication interface
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RS L etween two signal conductors. wh i
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Common Mode Voltage
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I
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1 tﬁg_causes of coupled noise and interference
here !_1__7.:;_.;._{;3 the overall design should aim to achieve
power cables from control, instrumentation and commun

from the material
Coupled into the

pcrppleie Segreqgation of
J iCation cables.

jelding ha electronic circuits from the sources of noise
\ ;;g ic:_ Isolation : Where possible, try to use 3 differential connect;
|iy?l as EIA/RS-422 or EIA/RS-485, in preference to an u;";balmfm
nnection standard, such as EIA/RS-232 or EIA/RS-565, g
, f“: sn;afdfng : In cases where there is a possibility of high electric
uuf to high rate of change of voltage), capacitive shielding should be used
with the ;_-gh_iald earthed at ONE end. |
J,"; netfc Shielding : In cases where there is a possibility of high magnetic
'-i'%.}f{;?"i‘i“l {flua to high rate of change of current) inductive shielding should be used
‘-'.-'éil_ri' shield earthed at BOTH ends and also at other convenient locations.

and interference.

_. Ietﬁtrnstaﬂc shields should be earthed ... at least at one end.

| wi ‘cables with multiple channels, each twisted pair should preferably have an

electrostatic shield, which is electrically insulated from all other electrostatic shields

=

-_ﬁ__tﬁﬁ entire length of the cable. Multiple channel cables should also have an
overall electrostatic shield.

f‘_{""; here twisted conductors of a shielded cable must be exposed, for example at
ﬁl ;.];:;u,lj'fauiput terminals, the untwisted, unshielded length should be minimised.

5- . . § &

" If a shielded signal cable is broken, for example at a junction bex, the shield
 continuity should be maintained.

.i-"-'}'}:, b jf‘ij"l;e.'.:lua:lng the effect of coupled noise and interference.

~J "!EWha[e_ possible, use twisted pairs (x40 twists/m) to further reduce the effect of

i v Ao : = 13 : for inductive
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! | jer | tre.
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-'Illﬁ_ﬁ'lgr?e'r ?requencies to be transmitted over longer distances before signal distortion

~ becomes significant.

£ ! | | ' er signal conductors. The small
- Tw educes inductive coupling with other s .
:Eitlrgg I?;st:e;n the twisted signal conductors largely cancels the net magnetic

 fields associated with the conductor currents.

| be used wherever possible,
twisted signal conductors should
alanced differential interfaces (e.g. EINRS-422 & EIA/RS-485)

anced interfaces (e.g. EIA/RS-232).

multiple conductor cable,
: : ral twist in the

For these reasons,
‘which implies that b

are preferable to unbal

ssary fo use an unbalanced connection wi

qughlsa: a:: E|A/RS-232 cable, the conductors should have a gene

axial direction.
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be terminated. On multiple
s should be terminated at

f the cable.

Unused conductors and electrostatic shields should
channel cables, half of the unused conductors and shield
one end of the cable and the remainder at the other end 0

Special three conductor twisted shielded cable is available for three—wire signals,

such as potentiometer signals and dc power (+5V, ~5V, common).

Ensure that the Earthing and Bonding has been correctly implemented.
See later chapters for complete details

Some overall practical recommendations are as follows ..............-..

Signal cable routes should be around rather than through high-noise areas.
where signal cables must unavoidably run parallel to power cables

In cases
over long distances, it is

recommended that:

The communications cables should be laid as far from the power cables as possible
at the outer extremes of the cable ladder or duct. The cable ladder or duct should
be made from a conductive magnetic material, such as galvanised steel.

If possible, the power cables should be laid up in trefoil to minimise the associated
electromagnetic fields. Also, they should preferably be armoured.

The cable trays/ladders should be specified with a magnetic barrier between the two
types of cable. Enclosed steel ducts, steel conduits or steel barriers are suitable.
The communications cables should be as close to the steel screen as possible.

The cable tray/ladder, ducts, conduits and barriers should be electrically bonded
together at every join. They should be earthed at least at both ends and at any
other convenient locations.

The communications cable should be a shielded twisted pairs, with the electrostatic
shield earthed at one end. The screen continuity should be maintained at each
termination point. Screens of individually screened cores, in the same cable, should
be electrically isolated from each other, but continuous for each line through

junctions.
Where data cables cross power cables, the ideal angle is 90°.

Optic fibre cables are increasingly attractive alternatives to copper conductors for
data communications circuits in high interference environments. Fibre cables do not

suffer from coupled noise or longitudinal voltage stresses.
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Chapter 4 : ELECTRICAL SHIELDING
__-—_‘\—\\_‘I.\
1.1 Introduction

The cable shields, which were mentioned in previous chapters, are only one of a wide

va_riety of electromagnetic (EM) shields. In the context of industrial control, EM shields can
also include the following components :

e Metallic equipment enclosures and cabinets
e The walls of equipment rooms

e  Structural steel in steel buildings

e Reinforcing steel in reinforced concrete

These EM shields offer a greater or lesser degree of screening to electromagnetic
interference, depending on the types of material used and the degree to which they are
bonded to other components.

From an overall earthing point of view, the walls of a building, or of a control room, or of a
metal enclosure (cabinet or panel) could be the designated as the equipotential boundary
between zones of different electromagnetic environments. Ideally, all conducted surges
should be “clamped® to earth before entering an environment of decreasing electro-
magnetic interference (EMI).

The purpose of electrical equipment zoning is to define those specific areas where the
electromagnetic conditions are similar.

4.2 Definition of Surge Protection Zones (SPZs)

Surge Protection Zones (SPZs) are also sometimes called Lightning Protection Zones
(LPZs). The two terms are interchangeable. Surge Protection Zonr_es (SPZs) are
characterised by significant changes of the electromagnetic conditions at their boundaries.

Electromagnetic conditions are defined in terms of :

e Capacitive Coupling (Electric Fields)
e Inductive Coupling (Magnetic Fields)

Surge Protection Zones (SPZs) imply the following requirements :

At the boundary of the zones, all metal penetrations must be bonded to earth.

e Screening measures must be intreduced for electrical paths betvfeen zones .
e Once a zone is defined, the electrical system must be designed, installed an
maintained in such a manner that the zone definitions remain true.
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Achieving perfect conductivity of building walls would be exiremely expensive and i
not justifiable. So, the strategy is to provide shielding for individual Mﬁﬂ
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the control rooms and equipment rooms associated with an elecironic control system.

4.4 Shield Design Criteria

A realistic objective is to achieve a nested shielding topology, where the zone exerior ©©
the building is the most harsh and, as progress is made towards the more desply nested
zones, the electromagnetic environment becomes more benign. This nesied approach S
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Figure 4.5 :  Nested Shielding Topology for the second example
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Bond the cable screens to the PLC Cabinet as close to the paint of

antry as possible, Avoid using long “tails®.
Bond discrete devices, such as the PLC Rack, to the metalwork of
the enclosure, which is earthed at \he base. This lakes advantage of
the low Impedance of the metal struclure,

Preferably, also connect the discrete devices to the earth bar in the
enclosure. Use stralght runs by the shortest possible route. DO
NOT coll the earth connaction as this introduces extra inductance.
The Signal Cable travels through & more harsh zone, SO screens

should be bonded at the entry to the enclosure.

Typleal connections for an Industrial Automation System
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£5:  SURGE PROTECT
L THEIR APPLICATIof DEVICES AND

ntroduction

e Protection Unit is a combination o
g designed to switch on in the
-_._;_,:__ﬁ;j,j_‘ divert the associated
5 of Surge Protection is not necesss
\ent is j_,ls?ci, s*{en ||:u fndustnal application tronic devic
e oven | . . Wisiives - |
2ars, t‘“ n quite .CllffICUﬁ electrical environments. These devi :e- DEE[?E s
Foff with expensive surge protection units. ¢S TR WOUE e peet

electronic, angd
« and other electr
B cincal co
;S:;ursence of high surge voltages and t;r:linem&
g€ current to earth ... without damage to ftsif?e

ry for Every applicati
- appiicalion where o :
S. Many elec € electronic

there are some electronic devices, which are non—critical tn the operat
SWEtem, where surge protection cannot be justified. On the other hang e o
gevices, which are so important to the continued operation of the plant, th fre e

gtion is essenttal Many devices have surge protection already built-lir; Eag ng(e:

outputs.

11
jiestion commonly asked by many designers and users is
-
:1 "e need to use Surge Protection Devices for our instrumentation and
gsystem components and ... how far do we need to go with this equipment?*

| S
iiRately; there is no simple answer to this question and the decision would be based
IBEGEMENT rather than on a well proven and well known formula. The closest
(s] -_I-'g.e“Protection is the decision to take out an Insurance Policy.

1 ii:':_gl l;!ﬁthJﬁt spent on Surge Protection (Insurance) depenas on Risk Assessment ...
= the likelihood of a dreaded event ever taking place

oy the consequences of a dreaded event actually taking place

The trade—off of RISK against COST
= No Insurance (Protection) Purchased ....
B How much will it cost if the dreaded event DOES happen

Some Insurance (Protection) Purchased -...
S How much will it cost even if the dreaded event DOES NOT happen

| V"—".?Ff'i_ﬁ' system, the following issues should be considered :

i wer supply.
\thorough analysis of the electrical power Systerm = szt:;:-‘:cn%fnlpzm
sarthing arrangements, voltage, quality of supply, SWILC log:ability el
Is the environment a high lightning area’ What is the tI;:r D s and consaquences
Joes the designer of the control system understand e

f Surges and the methods of earthing, shielding and

P . es?
Mhat is the likelihood of major power system s*;:g > ihing adequate?
Vhat measures have already been faken .. lsd now muich would it cost?
Mhat Surge Protection would be necessary an

e -'-_'

. -B1-
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54 Testing Surge Protection Devices

There is no alternative to actual laboratory te:
The influence of stray effects can never be pfe_r:ll
“standard® voltage and currents surges to the device.

A typical current waveform is 10KA (8/20us)
" e Peak current e = 10KA
e Risetimetocrest L = 8us
e Time to half value of 4 = 20us
-.,l'i%!«.'“typiml voltage waveform is 10KV (1,2/50us)
o Peakvoltage Viw = 10KV

e Rise time to crest of t, = 1.2u8s
e Time to half value of & = 50us

The shape of these test wavelomniis.
-t[;]; the test circuit shown in Figure 5.11.

waveforms is shown in Figure 5.10.

" Figure 5.9 : Preferred (more expensive) UPS Connections for Neutral

testing of SPUs (Surge Protection Unf!s],
cted. Testing is performed by applying

This waveform is generated

iInput terminals of
neutral of the UPS
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Appendix A : LIGHTNING AND LIGHTNING PROTECTION

\

A.1 Introduction

The danger of Lightning can be evaluated if there is a clear understanding of :

the basic physics of lightning

the concept of the altractive radius of a structure on the ground

the lightning current waveform parameters

current and voltage surges due to direct lightning strikes

Induced voltage surges due to lightning strikes to adjacent structures

now structures should be protected against damage by direct lightning strikes

A.2 The Physics of Lightning

Lightning is an ionised channel that Propagates from one charge region fo another
oppositely charged region and permits an electric current to flow between the two charged
regions. For cloud-to-cloud lightning the initiating and terminating charge regions are both
in a thundercloud, while for cloud-to-ground lightning the initiating charge region is in a
thundercloud and the terminating charge region is on the ground. The ionised channel can.
in some cases, be as long as 10km.

<255 halls s e N

+ + + + +

Charged Cloud

— - Downward
— Leader
Charged ‘f*i
3 o -

Bmldlng § B3
+ +|F

R Earth Surface
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Figure A.1 : The Initial Stages of Lightning
(1) The build up of charge in the cloud and on the ground.

(2) The establishment of the ionised Downward Leader
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Figure A2 : The Intermediate Stages of lightning
(3) The establishment of the ionised Upward Leader
(4) The interception of the downward leader by the upward leader

After the interception of the downward leader by the upward leader, an ionised channel of
high conductivity is established between the cloud and the ground through which charge
equalisation between the cloud charge region and the ground occurs. Virtually all the
energy associated with the lightning is converted into light, heat, sound (thunder) and radio
waves. The peak temperature in the ionised channel is approximately 25,000°C, but this
lasts for only a few microseconds. This charge equalisation involves the flow of current
down the ionised lightning channel, through any intervening structure and into the ground.
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ds or  where it is focateq The conversion formula from IEC 1024 is as follows :

j!ﬁ{uﬂ'iﬂpmbabilily of 5

i N, = 0.04 x T,*5 ground flashes/km®/year

where : N, is the lightning ground flash density in strikes/km2/year
17 is the annual number of thunderstorm days

18 average number of cloud-to-
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The upward leader is able to intercept a vard leader provid OWrTW:

ard leader | , downwar provided the d
approaches within a distance known as the affractive radius R, of the structure f?éfn iﬁw‘:’:i:
the upward leader Is initiated. In the case of a tall mast, all leaders propagating downward

within a radius R, from the mast will terminate on the mast. The area w: :
the mast is known as the aftractive area of the mast. B i s Rat

Attractive Area

= TI Ry

L !

o ol -F ' Figure A.7 : The Afiractive Area of an Air Terminal, viewed from above

If the attractive area were a constant value (it is NOT), then the calculation of the average
number of strikes to the mast per year could simply be calculated from :

L i L e e gl T R B W S s o T Sy Pt =
] & W [} - = F e ¥ v
1 gy e |'-'I:'-T?.r.5’.rﬂl,'lr ‘r;"..-.i.fl"l U'_,.‘-;‘ 2F INAl
: = g e e e - -:l' :ﬂ-r;'-'ﬂ... el | | AR B ;

N, = aftractive area (as fraction of km®) x ground flash density (in flashes/km?/year)

R 2
— a
or N, 11:[ 7 000] N,
where . N, is the number of strikes per year

R, is the attractive radius of the mast in metres
N, is the ground flash density in flashes/km/year

However, the attractive radius is NOT a constant value but is a function of the magnitude of
the peak lightning current | (dependent on charge) which varies from flash to flash.

For a tall mast, the following is an empirical formula for estimating the attractive radius
(Andy Eriksson, 87)

where : R, is the attractive radius of the mast in metres
' h is the height of the mast in metres
| is the peak lightning current in KA

For example, for a lightning flash to a 15m high mast with a typical peak current of 34kA

R, = 0.84 x 15%° x 3497¢ = 58m

Eiﬂi#



AR = R uununtﬂfﬁ4hﬂ;ﬂﬂpagamugduwn?q
L e il riogative leaders with:a Prospectve PP T a
s s s 0 ST 8L

within 58m of i conductor that extends horizontally along R
Another common gwmm B Mﬂfﬁ line. For a horizontal conductor aboy {‘_"Jl'}.r:
above the surface, such as @ irical relationship for estimating the attractive djgy.,,,
Nt ) : an gmp . < 0n
round, the following is 8

etmmg side of the conductor (Eriksson, § 7

e A
R = 0.67 x A*E x I°
R, 67

Lyl o ide of the conductor in metres

It ive distance on either side ¢
:' fslsmﬂ: h:g:td;eﬂia horizontal conductor in metres
| is the peak lightning current in kA

where :

A.3.3 Prediction of the Number of Strikes to a Structure per Year

| inate on the structure the .
_ of flashes that will termina , the peay
Clearly, to calculate the number O

_ tive lightning flash needs to be known in advance. This :
curent of Sady prosp mle'g"f,:'f round this problem is to use computer baseq
obviously not mﬁfm s prElﬂGf the number of strikes to a structure per year ang the
mathematical ques to
magnitude. |

e T current of lightning flashes can be simulated using a rangj,
Theb?aﬂ n:r;tgr'e -huwnm; Monte %:ario analysis, which is easily implemented o .
,'Lﬂ r pﬁt‘er! The comptter produces a sequence of peak currents such tha i,
- m::jn of values matches that of actual lightning (e.g. 98% of the simulated strokes have 2
ik current > 4kA, 50% > 4kA and 5% > 90kA). For each of these simulated strokes
aftractive radius of the mast s caloulated from the height of the mast and the s,

peak current.

For example, if the first simulated strake has a peak current of 20kA and the object has :
height of 15m, then the Attractive Radius is :

R, = 0.800% 1508 £ 2007 = 39

Attr _""ﬁ_:&L Aﬂta (km?) % of the mast associated with this first simulated

PR e downward leader terminating on
- AHraciive Area 1o one km? of area.

- ‘ — -"' 'I_:l.""':.::_- [ Y
T P

THS £

=
=

-

|'l
]

vard leade ,;‘;g%_j;__prapa'gate downward at any point Wi

If the object is situated

per year, then five flashes should be simulated to aive th
mast is struck per year. 9ive The average number of times the

2 2 2
SRR =Y RREN NN STR Y
1000 1000 1000 1000] ~ ™ Too0

where : N, is the number of times the mast is struck per year
R., Is calculated from the Peak current of the first simulated fiash
R,. s calculated from the peak current of the secorid simulated flash
Ry s calculated from the peak current of the third simulated flash
Ry s calculated from the peak current of the fourth simulated flash
R. s caleulated from the Peak current of the fifth simulated flash

To obtain a more accurate average value of the number of times the mast is struck per
year, many more flashes may be simulated -~ Pernaps 500 flashes to simulate 100 years.
The average is then calculated from the following :

- R. I B P
NS — l n 31 ] o TI 'ﬂz R + T: a}ﬂﬂ'
100 1000 1000 1000

For the case where a lightning mast is performing a lightning protective function then, if the
probability of protection failure is P (usually increases with Increasing stroke current I), then
the probability of the mast being struck and there being protection failure can be calculated

by replacing

Ra 2 Ra“ 2
1 y h -3
“[1000} i “[100 l £

where ; P, is the probability of protection failure for the first simulated flash

For the full simulation of 500 flashes the number of times the mast is struck and protection
failure occurs per year is given by

1 Ryl R, r [R% ]"" J
— - = U al . + lllll + ﬂ pf,ﬂ(}
s 100 1000] Pr ™ M 3500 P 1000

Extensive research has been conducted into the assignment of valqes to p, especially for
strikes to transmission lines. However, this is beyond the scope of this course.
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radii, which results in more certainty of protection. protective angles or sphere

A.4.1 The Protective Angle Method

The Protective Angle method states that if the building or object to be protecied lies within

an imaginary cone with apex at the tip of the lightning rod it will be prot
to installations where the air terminal is a mast or rod. B e

= Angle of
7 . Protection
Lightning E Y4
Protection Protected ™. Unprotected
Mast Building Building

Earth Surface

Figure A.9 ;

The Protective Angle Method

Clearly, the choice of the angle at the apex of the cone is important in determining the
protected area. The angle chosen depends on the protection level required, which is
dependent on the type of building to be protected (defined in IEC 1024-1990).

Heught of Structure

Protection Level ,;35 0 1{

n/a

n/a = Cone of protection approach is not applicable for these cases

Figure A.10 : Recommended Values of Cone Angle a from [EC 1024-1 1990
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Mathematically the electro-magnetic field has two commiponents :

& Eiecfricﬁﬁd:ﬂuetotheprmmaufmmdwgedensﬁy
o W%:mwmwhmmmamwmmnmmﬂ

— The Electromagnetic Field can be expressed mathematically in vector form as -

L .
faa [P

i —

,. 1 97
E = -yy- 92
! 3t

; where : vV i8 the scalar potential at 2 point calculzted from the magnitude and
| position of the lightning charge as follows :

/'J.f 1
- V. = ——es f[.E X
e 41{&-” rd"

Building where : = I8 the permittivity of air
NOT Protecis. p is the charge dengsity in the volume element dv
1 ia the distance of the volume elemert fom the

point of measurement

>y

is the vecior polential at a point calculated from the magniude and
direction of lightning current flow

£ Lfff s

where : [7 is the perneability of 2k
J is the current density in the volume element dv
r is the distance of the volume element from he

point of measurement

The above mathematics is relatively simple to understand and implement. The difficulty s
- - to decide on a value of p (the charge density). Research indicates that there is 3 wide
9 Radius of the Ball o7 : scatier of appropriate values for p.
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A.6  Useful Tables from IEC 10241 (1990)

The following tables (IEC 1024-1
protection systems (LPSs) for buildi

1990 - gui *
fngs_” offer guidance N the design of extemal fightring

Solid, Stranded

or as a Coating or as a Coating
Hot Galvanised Steel Solid or Solid

Stainless Steel Solid or
Solid
Al Do NOT Use
Aluminium Solid or Do
NOT Use T
Stranded il
Lead Solid a{ as Solid or as Do NOT Use
a Coating a Coating

e ——

of sulphates

Figure A.14 : The Corrosion properties of different materials
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Corrosion
_ Increased by | Electrolytic with
Copper Against many Concentrated
malerials Chlorides,
Sulphur
“ compounds
W and organic
“ materials
Hot Galvanised Steel Good even in -
“ Acid Soils
Stainless Steel Against many Water with
materials dissolved
Chlorides
Aluminium - Basic Agents
Lead High Acid Soils
concentration
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Appendix B :  SOIL RESISTIVITY AND EARTH ELECTRODES

D E———,— L ———
B.1 Introduction

0?: Di:e the :nair:n Iobjectives of Earthing electrical systems is to establish a commion
;el crter;a | pnderjnt ial for the power supply system, building structure, plant steelwork
electrical conduits, cable ladders & trays and the instrumentation system. To achieve this

objective, a suitable low resistance connection to Earth i '
3 , arth is desirable. '
difficult to achieve and depends on a number of factors : irable. However, this is often

Soil Resistivity

Size and type of Electrode used

Depth to which the Electrode is buried
Moisture and chemical content of the soil

® e o °

B.2 Soil Resistivity

Resistance is that property of a conductor which opposes electric current flow when a
voltage is applied across the two ends. Its unit of measure is the Ohm (Q) and the
commonly used symbol is R. Resistance is the ratio of the applied voltage (E) to the
resulting current flow (l) as defined by the well known linear equation from Ohm's Law :

Ee= T % K

where : E Potential Difference across the conductor (Volts)
| Current flowing through the conductor in (Amperes)
R Resistance of the conductor in (Ohms)

"Good conductors® are those with a low resistance. "Bad conductors® are those with a high
resistance. "Very bad conductors® are usually called Insulators.

The Resistance of a conductor depends on the atomic structure of the material or its
Resistivity (measured in Ohm-m or 0-m), which is that property of a material that
measures its ability to conduct electricity. A material with a low resistivity will behave as a
‘good conductor® and one with a high resistivity will behave as a ‘bad conductor®. The

commonly used symbol for resistivity Is @ (Greek symbol rho).
The resistance (R) of a conductor, can be derived from the resistivity as :

R = 0 M L
A

Resistivity (Q-m) of the conductor material

Length of the conductor _}(m)
Cross sectional Area (m’)

I where ;

> o
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£0il Resistivity in Q-m

Buried Length of the eeclrode nm
diameter of the electrode in m
buried depth of fhe elecirode in m

ical ez U connections can aleo be made from various "etar
patral point. This is sometimes called 2 *crow's foot” earth elecirode.
oV h'nvpe‘jm perffjn'nanrg‘ with several parallel nathe.
e electrode will have a higher low tfrequency (50Hz)

1_ Tlrﬂtu ﬂem ol each of the rzadial conductors. The formula for calculating the
Bsistance of radial wires is given on Page 69 of AS 17628-1991 ‘
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und-grid Mesh Electrodes
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Lroi
¥Aarn ]‘.‘ile. of the use of conductors, buried under the surface of the earth, s the

Qi mesh. Grid meshes are often used to complement rods or can be used
O When deep driven rods are impractical due to soil and terrain considerations.
88 are often used for the earthing in subslations to creale an equipotental

of several facio:
i8n them, ther
7

m Ad algo fo handle the high fault currents retuming to the transiormer neutrais.
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ted using vertical earth spikes. Increasing the area of the grid coverage can

Iy reduce the earth resistance.
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entation of the earth electrode as a resistance can be more easily understood
rivation outlined as follows :

-t =

Whe n the lightning current passes from the earth electrode into the soil, it imposes
Blcurrent density J in the soil. As the current spreads out, the current density
gecreases with distance from the electrode. From the fundamental version of
Ohm's law, if the soil resistivity is p, this produces an electric field E in the soil as
follows :

ERRE = Jp

"
From the electric field E in the soil, the voltage \V at the earth electrode can be
derived by integrating over distance from the earth electrode.

v = [Badx
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Integrator and Differentiator Lab

- The Integration and Differentiation functions
ﬂ as applied to Process Control.

Objectives

1. To demonstrate the Intregal and Differential functions as applied to a P.I.D.
process control loop.

Integrator

a) That the output of an Integrator will ramp in proportion to the magnitude of
the input signal.

b) If the input returns to zero the Integrator output will remain at its present
value, i.e. zero input results in zero rampping output, i.e. steady state.

Differentiator

a) That the output of a Differentiator will assume a value dependent on the
rate of change of the input signal.

b) If the input maintains a steady value the Differentiator output returns to
zero, i.e. zero rate of change of the input results in a zero output.

Integrator

Application

The Intregal functions as applied to a P.1D. process control loop is used to
remove ‘offset” between the process ‘setpoint’ and the process variable being
measured for use in the control feedback loop.

Method

Construct the circuit of Figl. or use the J&B P.1.D. Controle board.
Adjust the J&B “integrator’ rotory switch to “12’ and the gain to “0.1".
w%d%r the “integrator’ to ‘IN’, and the ‘proportional” and ‘differential” to

Connect a CRO and DVM to both the input and output circuits.
Apply a 0.5V DC input signal and monitor, and record,(draw a family of
graphs) the output for a period to allow the output to’ saturate” ;

repeat for values through to 5.0V DC.

Explain the implication of the results when applied to a “closed loop” control
system and the “error signal” and the controller output to the F.C.E.

Page. 1
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egrator and Differentiator Lab

Fig. 1. Integrator g3 1MR

‘-MTfﬁﬂ‘?r‘f‘?ﬂ—-hh—_.|I‘I‘-fﬂ;&*m*rjrrFfT#?* —

v

-Vee (-12V)
R2. 470kR

ey — —————— -

sample curve shown

- 3 — e

-
=
I
I
--‘
!
|
I
I
1
|
1
I
I
I
I
IR 5 O Mg
I
I
L EL A L=l Gl Rt
I
et 2 M
i
|
=l v ] S, -
I
e DA ol 1O
I
|

- i
|
= e
I
i
I
1
I
- owh -
!
|
- -y -
i
- b -
!
|
- g -
!

| it el i

o0
[
I
:
|
|
|
|
|
|
I
1
|
|
|
|
|
|
i
|

41
|
|

g
|

|
I

-'qr - lr - -I- - 1! - -

output

I
I
- - - -
I
1
|
|
I
T T
I
SRR S, RS
!
I
-y = -
|
i
I
|
- -
|
- e - -

!
ot
i i
!
!
I e
!
l-
|
|
- -
!
' aw e -
|
|
- - -
!
- d =
|
|
- - -
!
RS
|
I
Al ey |
|

o w— —

|
I
|
I
I
I o o
I
|

L —IHT -— -‘!‘. -llr - —

b e Uit W e wtan e it o

- -
I
i o Mk

!
!
|
I
i
I
|
I
L}
I
I

— o (R — -l-rl- -lr- -Ilr e

|
|
i
!
|

I
- o - - -

I
— - — - J. [rg—

I

i
e e e - - -
- - - F- -I‘l -l-l- _— ll-l-
5L, TN SRS IS (R I
et lr el 1- - -
Sl o) S L A M R el fleathas

rrrrrrr

............ .1.-;-.-i-.-rna-:-dtna-...-..t..r'-h....—-a..-.--p-i+a-.qaaa.—qr.rnor.-.-_-..r-r--‘..-..-;-.-.--r¢|-|-1--.-ﬂ-!dnadur—;i-a

LER R A NN ] ERERE AN B A RN N R R R I N N N R F R RN R T AR A N R R N E R R R I N R A E R AU A RN NN Y TR L R I L A R A N BN AT AN AR A ] ¥ [ [ N EW BE ERAmIREE R A1 It TLOUR BN N W e W
FEFER AR FARRSpEISARTN bR gri daFbaaRdiabaldadibaEnaiavwaeak i.rrirrn.i:l....pviat..r-rrua---f-:-l-#||d+-i. ----------------------- #-rn-l.-‘-lid-.-.ﬂi-l-
i e Dt b il o LB AS S L AR R R R N L LA R TN Y A g e e S T T S T TR RS N LR U A R R AN R R R R R bl jhadsaganrnnane
e L e R L R et e ey L R e R e L R R P R A R R R R R L R A AR RSN R AR AL bl piashbARES s inngav LN Ee R AN bl s
fpAESanpasspprcnbinibttasivabbnrnininpsnnnn IR EEIRLIER R I R I AL ..;;+.+-4.4.;..t*.+f-—-.-r.-app;..-pp-r.4—--.--i..-.-c--h-r:-a..-qitayaap_-tp

.__.ro-_:_..u._-_.r....__:-_-._._..__._._-.:_:a_._._..._.._.___—.-:__-o_._-q‘._-_..__.

Page. 2

Al L R R N T I A R R L R R T I I T T T R AL RN T E R R E R R AN R




\grator and Differentiator Lab

Differentiator
ekt e

Application

The Differential functions as applied to a P.L.D. process control loop is used to
counteract the speed of change of the process variable (PV) being measured for
use in the control feedback loop, and to minimise ‘overshoot’ of the process

variable.

Method

Construct the circuit of Fig2. or use the J&B P.1.D. Controle board.

Adjust the J&B ‘integrator’ rotory switch to 12 and the gain to 0.01.

Switch the “differentiator” to “IN’, and the “proportional” and ‘integrator’ to
OUE.

Connect a CRO and DVM to both the input and output circuits.

Apply a ramped voltage with a period of 10 sec. and an amplitued of 10 volts,
for the input signal to the differentiator, (ie. a triangular wave output from the
Signal Generator, which eeds to be set to its lowest range and minimum setting
on the frequency adjustment pot). The time period will have to be timed as the

“eadout is inaccurate at these low frequencies.

Monitor, and record,(draw a family of graphs) for the input and resultant output,
for a range of values of input ramped voltages that produce DC output voltages

from approx. 0.1V to 10V output.

Explain the implication of the results when applied to a ‘closed loop’ control
system and the “error signal” and the controller output to the ‘F.C.E".

gt _ Page. 3




ator and Differentiator Lab

Fig. 2.
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stor and Differentiator Lab

| Integration and Differentiation Lab

" the charts below show typical responses for input waveforms to integrators and differentiators.
Using the equipment already setup verify these output responses.
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sator and Differentiator Lab

Fig. 3. Integrator, dynamic curve
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- Chapter 5.1

Concept Review

Fig 75
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Chapter 5.1

m.o:omg Review

Integral
Compensation

The characteristic of anintegrator has already proved to be
problem in position control where it was found to convert 2 step input
into a ramp. lronically this can be put to good use.

Anintegrator can be implemented electronically and if it were usec
as a compensator then its effect on some simple error €ignals
would be as shown in Fig 73. These are of course only valid prior
to saturation.

smme- | [ntegrator |- \

smsdipe-| Integrator e

— Integrator jesgme— 4% /K\ : 30" lag

Fig73

Low frequency =
large amplitude
High Irequency =
low amplitude

The first two examples show very important aspects
® Ifthereis aninput (error) the output of the controller will continue
to change until it saturates.

@® Therateof change dependson the size of the inpul.

This means that a large error would produce high rate of application
of the correcting signal and that would continue at a reducing rate
until the error was forced to zero.

Obviously if the drive lacks the power o overcome the error the
integrators output will remain saturated.




Concept Review

Integral
Gompensation

-

The characteristic of an integrator has already proved 1o be a
.uagm_ﬂ in position control where it was found {0 convert a step iInput
into a ramp. Ironically this can be putto good use.

An integrator can be implemented electronically and if it were usec
as a compensator then its effect on some simple error signals
would be as shown in Fig 73. These are of course only valid prior
to saturation.

wmmslp-| Integrator Tl'v. \

s | Integrator 1.

i Integrator 1!. g /K\

Low frequency =
large amplitude
High frequency =
low amplitude

— o

The first two examples show very important aspects

@ |fthereisaninput (error) the output of the controller will continue
to change until it saturates.

@® Therateofchange depends on the size of the inpul.

This means that a large error would produce high rate ol application
of the correcting signal and that would continue al a reducing rate

until the error was forced 10 Zer0.

Ocsucm_x ifthe drive lacks the power lo Overcome the error the
S_mm..m_o_‘m_o:ﬁ:, will remain saturated.
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Concept Review

Chapter 5.1

Abasicintegrator was configured in curriculum CA02 and the AS4
circuitry is based on Fig 74.

C
R
va AVAVAY
Yo
Fig 74
- —
Vo =~-

RC % .._...mn=
and hence dvo ==1 Vg

dt RC

The value RCis called the TIME CONSTANT of the integrator

while 1isreferredtoasthe INTEGRAL GAIN.
RC

Thusvo ulr_%.qmﬁ where kj = Integral Gain=_1_
RC
and dvo =-KjVva

dt

For control purposes the inversionindicated by the - Siyn Is cancelled
out by subsequentinversions in the summing stages.

The Integral Gain kj will affect the rate at which the integrators

output changes foragiven input va and has units of 1
seconds

Forexample.ifki=21 andvg=2V.
S

vochangesatarateof2 1x2V = 4V
5 S

The AS4 controller provides a range of K; values from0.110 12 1.
S

Because of the possibility of saturation a ‘reset’ buttonis also
provided o allow the output to be manually forced to zero atany

time.
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Chapter 5.1

Abasicintegratorwa | =
Ut . s configured | _
circuitry is based on Fig 74. e

Fig74

vOo==-=1__ g
30% Va {

and hence dvo ==1Vg
dt RC

the TIME CONSTANT ofthe integrator

The value RC1s called
RAL GAIN.

is referredtoas the INTEG
RC

while

..x;qmaﬁ where ki = Integral Gain =1

Thusvo =
RC

and dvo =—KiVa
dt

ated by the -sign s cancelled

s the inversion indiC
ming stages.

For control purpose
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oul by subsequent|
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andva = 2V.

For example. itki = 21
S

mqmﬁmo_mwxm,.\un
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vo changes al
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Chapter 5.1

For derivative action everything looks perfect providing that we

Include a proportional path to overcome the problem of no response
0 aconstant error.

Unlortunately there can be serious problems particularly with servo
systems.

The electrical signals are notideal and will include various amounts
ofhigh frequancy noise. By implication these. though small, have
high rates of change. Since the derivative compensator's outputis
proportionalto the input's rate of change it can produce very large

Outputs from the noise that completely swamp the true signal. This
will be demonstrated later.

in an attempt to solve this problem various stages of LOW PASS
FILTERING have to be added to remove the noise. Thisis atbest a
compromise however because not only is some of the input
intormation lost, butthe filters produce phase lags that eventually,
with a lot of liltering, cancel out any phase lead that the derivative
compensator is trying to introduce!

The AS4 controlter has various filter stages but predominantly the
J4H2/160Hz one preceading the various compansators.

Returning to the derivative action the basic circuitis shown in Fig 76
for which the following relationship applies,

vo ==RC dvy (v < v saturation)
al
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Chapter 5.1

Forderivative action eve

include a proportional pa
10 aconstant error.

rything looks perfect providing that we
thto overcome the problem of no response

Unfortunately there can be serious problems particularly with servo
systems.

The electrical signals are not ideal and will include various amounts
of high frequency noise. By implication these, though small, have
high rates of change. Since the derivative compensator's output is
proportionaltothe input’s rate of change it can produce very large
outputs from the noise that completely swamp the true signal. This
will be demonstrated later.

In an attempt to solve this problem various stages of LOW PASS
FILTERING have to be added to remove the noise. Thisis atbest a
compromise however because not only is some of the input
information lost, butthe filters produce phase lags that eventually,
with a lot of filtering, cancel out any phase lead that the derivative

compensator is trying to introduce!

The AS4 controller has various filter stages but predominantly the
34Hz/160Hz one preceeding the various compensators.

Returning to the derivative action the basic circuitis shownin Fig 76
for which the following relationship applies,

vo=-RCdvyg (v<vsaturation)
dt
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ﬂw 4. Differentiator, dynamic curve
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mtegration and Differentiation functions
tied to Process Control. |

tregal and Differential functions as applied to a P1D.

S > tofs . . | : i
2 %) That the output of an Integrator will ramp i proportion to the magnitode of

| the input signal.
M._ p) Ifthe mput returns 1o zero the Integrator output will remain at its present
- value, i.e. Zero mput results in zero rampping output, i.e. steady state.

BIICILL

= @) That the output of a Differentiator will assume a value dependent on the
T. ~nmate of change of the input signal.
!

If the input maintains a steady value the Differentiator output refurns to
~ zero, i.e. zero rate of change of the input results in a zero output.

—

=
= —.l
i _.1
-
Wi "

Intregal functions as lied to a P1D. process control loop isused to
~ remove “offset’ between M_wcﬂonam ‘setpoint” and the process vanable being
- measured for use in the control feedback loop.

]
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